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Abstract. An asymptotic representation of Bahadur type of the
difference of M-estimators S —f¢~1", ie. of the difference of
estimators of regression coefficients for the full data set and for the set
from which the [-th observation was deleted, is given under the con-
ditions covering the most of y-functions which are at the present time
used in the robust statistics, including the discontinuous and rede-
scending ones. The representation is invariant with respect to the scale
of residuals.

1. Introduction. Pre- and post-application diagnostics has become a stan-
dard part of any data processing theory, and the statistics is not an exception.
In the region of the least squares regression analysis let us mention today
nearly classical monographs by Belsley et al. [3], Cook and Weisberg [8],
Atkinson [1], Bates and Watts [2], Chatterjee and Hadi [5] or Sen and Srivas-
tava [32] to give at least some among many others. In robust regression the
diagnostics are sometimes assumed to be something which is complementary
to the robust algorithms (see e.g. Huber [14]). Other authors propose to use
the robust algorithms as tools for diagnostics of data (see Hampel et al. [12] or
Rousseeuw and Leroy {28]). It is surely possible but some caution is necessary
(Hettmansperger and Sheather [13]) because it is even formally easy to show
that two consistent estimators may give for an arbitrary large sample size
arbitrarily different estimates of the regression model; see Visek [38] and the
references given there. Due to the fact that the robust statistics has offered for
the applications large scale of methods we may rather frequently meet a situa-
tion when the numerical results of the estimation of regression model by dif-
ferent (highly) robust algorithms gives considerably different models; see Visek
[36]. Then we need to make an idea which of results is acceptable for our data
(or adequate for the data, if you prefer this word) and it asks for diagnostics
too, see Rubio and Visek [30] and Noskova [24].

* Research was supported by grant of GA CR number 201/94/0322.
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Interesting discussions on diagnostics may be also found in some papers of
the transactions by Stahel and Weisberg [34], especially in papers by Ledolter
[18], McKean et al. [21], Neykov and Neytchev [23], Portnoy [26] and Simo-
noff [33].

In Visek [39] the Bahadur-type representation of the difference of the
estimators of regression coefficients for the full data and for the data from
which one observation has been deleted is presented in the random-car-
riers-framework for the continuous y-functions and for the y-function which is
equal to sign(x), i.e. which corresponds to the median in the location problem.
This -paper brings this Bahadur representation for the general type of the
discontinuous y-function, moreover taking into account a practical need of the
rescaling of residuals.

The studies of the asymptotic representation of the difference of estima-
tors are of course aimed to find a diagnostic tool for the situation when we look
for the most influential point among the data. Let us recall that for the
least squares, probably from the very early days of this discipline, the formula

ey Bl 10— B = —{[XO~ T XU L X (Y- XT AR

was used in the same way. The notation is nearly self-explaining, nevertheless,
X®=1D js the design matrix after delection of the /-th row from the full design
matrix X, and X; is the I-th row, assumed as a column vector, of the design
matrix for the full data. Sometimes it is referred that the case deletion diagnos-
tics for influential observations were introduced by Cook [6] or [7] (see e.g.
Geisser [11]) but the formula (1) has already appeared in Miller [22] and maybe
that it has been already used by Sir Francis Galton [10]; see also Chatterjee and
Hadi [5].

This paper establishes a formula similar to (1) for the M-estimators in-
cluding those which are generated by discontinuous y-functions. As already

~ mentioned, it was done in Visek [39] for the continuous -functions. Instead of

considering discontinuous functions in full generality ViSek [39] treated only
median-type y-function in the framework of linear model. Generalization on an
arbitrary discontinuous -function and especially on the nonlinear model is
technically somewhat complicated, however principally straightforward. Never-
theless, now we have at hand the Bahadur-type representation of the diffe-
rence of the M-estimators of regression coefficients for the full data and for the
data from which one observation has been deleted for all estimators used in
robust statistics. This opens the possibility to study a similar type of Bahadur
representation for the most influential subset of data. We hope to do this in
a forthcoming paper.

2. Notation and setup. Let N denote the set of all positive integers, R' the
I-dimensional Euclidean space, R* the nonnegative part of the real line, and
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(Q, o/, P) a probability space. We shall consider for all ne N the model
(2) Y, =9X,, ﬁo)'l'en:

where for some fix p, ge N, {X,};-, is a fixed sequence of vectors from R? and
B° = (B3, BY, ..., BY)T is a vector of regression parameters, where ' stands for
the transposition. Moreover, a function g: R?*? - R is assumed to be twice
differentiable (see Conditions A below) and, finally, {e,}s-1, e, £ — R, is a se-
quence of independent and identically distributed random variables (i.i.d.r.v.),
distributed according to the distribution function (d.f.) F. We will consider the
M-estimators of ° given as

3 f® = argmin { ¥ o([¥i—g(Xs, A5}
peRP i=1
and
@ o5 — argmin{ ) o([Yi—g(X., 1671},
peRrP i=1

i*l
where g: R — R is assumed to be absolutely continuous (denote the derivative

— at the points where it exists — by ¥) and 6, is a preliminary estimator of the
scale (see Conditions C below).

Remark 1. As follows from the given setup we shall consider the regres-
sion model with the fixed carriers. Although it may seem that it is less general
than the setup with random carriers, it is not inevitably so — see e.g. Condition
(i) in Juretkova and Welsh [17] which would need some array of setups with
the random carriers to allow an interpretation as a special case of a random
setup. On the other hand, the most traditional conditions, in the both types of
setups, have some corresponding counterparts, see e.g. Condition B (iii) in Rubio
et al. [29] and Conditions A (iii) below. Of course, the setup with random carrier
and the noise independent of carriers permits us to treat in a simpler way e.g.

Y W) 3 g (X B (Ko BT

than the setup with nonrandom carriers. In the latter setup, formally a some-
what more complicated version of the law of large numbers for independent but
not identically distributed r.v. has to be used although the spirit of the treat-
ment is the same. However, as we shall see in the proof of Lemma 3, sometimes
the setup with random carriers may be rather complicated to deal with, at least
what concerns the formalism, so that one may prefer to explain the ideas how
to reach the asymptotic representation in the framework with the fixed carriers.
Of course, a detailed but unfortunately formally really complicated discussion
would reveal that the spirit of the treatment is the same for the both setups.
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The proofs of Lemmas 1 and 2 below are nearly the same as for the ran-
dom-carriers-framework which was empoyed in Visek [39].

3. Conditions. We are going to give the conditions we shall need for the
preliminary considerations and later in the paper.
ConpDITIONS A. (i) There is a positive d, such that for any ﬂeR"

18— B°ll < do,
2

aﬁjg(x HU=12..0 and oon
ex:st for any xe {X,};=;. Let us denote the vector of the first partial derivative
and the matrix of the second derivatives simply by g’'(x, f) and g" (x, f), respec-
tively, and their coordinates and elements by gj(x, B) and gj(x, f).

(i) The functions g} (x, ), k =1, 2, ..., p) are uniformly in xe {X,};>,
Lipschitz (of the first order) in f in the §y-neighborhood of g° ie.

3(L>0) V(BeR?, |B—Fll < do)
max  sup |g(x, B)—gi(x, B2 < LIS—B°ll.

1<jksp xe{Xn}= 1

g(x’ ﬂ) (Jsk= 1, 22---a P)

Moreover, let

max sup max {lg(x, B%), lgi(x, BO), lg (x, BO)} < co.
l$]k$pxe{xn}“ 1

(iii) There is a regular matrix Q such that

lim ~ 2 g (Xi, B g (X, BOI" =

o B

and put (Q); = g;;.

Remark 2. It is clear that in view of the fact that B, is unknown, to be
sure that Condition A (ii) is fulfilled we have to ask if the Lipschitz property of
g’ (x,7B) holds (at least) in a “reasonable” subset of R?, in dependence on our
a priori knowledge about possible values of f,. A similar statement, perhaps
somewhat weaker, is true what concerns uniformity in x e {X,} . The word
“perhaps” should indicate that our knowledge about possible values of X’s is
a little bit better due to the fact that at the moment when we apply the results
we know the first n elements of the sequence {X,}= ;. On the other hand, in the
applications we usually use (or if you want, meet with) rather smooth models
g(x, B). Moreover, for too wild models we would not be able to perform
required computations yielding the corresponding estimate.

Let us observe that A (ii) implies that there is J < oo such that for

# = {xe (X}, BR?, 16—l < b0}
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we have
 max suj supmax {lg (x, B)I, lg;(x, B)l, lgi (x, B} < J.

Of course, the boundedness of the model g(x, ) for BeRP?, |f—B°| < & for
some positive J, is restrictive from the theoretical point of view. From the
practical standpoint, the boundedness is nearly irrelevant because any un-
bounded model would be, in fact, useless. Finally, observe that the matrix Q is
positive definite. It is due to the fact that any real symmetric matrix can be
written as AAA", where A and A are an orthonormal and a diagonal matrices,
respectively. Moreover, for any ze R? we have

lim = Z g (X, BV (X, BTz =2"Qz >

n—+oo N

which implies that A has only nonnegative elements. However, the regularity
of Q implies that all diagonal elements of A are nonzero. Then for any z # 0

ZTQz=¢("E>0, where £ =AY 4"z,
ConprTioNs B. (i) The function y allows decomposition in the form

&) Y=Vt .+,

where , has a derivative y, which is Lipschitz of the first order, ¢, is
a continuous function with derivative ¥, being a step-function, and y, is
a step-function itself. Let us denote by D, = {ry, 7s2, .., r's,} (B finite) and
D, ={fe1, Te25 ---» Ten,} (again h, finite) the points of jumps of ¥, and of y,
respectively.

(ii) 0% = vare, € (0, oo0) and there is a positive 3, such that F (z) has a den-
sity f which is bounded on

he

D.(%0) = {J [o°r—90, 01+ 95].

i=1
Moreover, the density f is Lipschitz of the first order on

. hs

D,(3) = U [o-75—36, 075+ 30].

i=1

Let us select H < o0 so that it is an upper bound of fon D.(9,) as well as the
Lipschitz constant on D,(3,).

(i) There is a finite K such that
sup W) <K and sup | (2) < K.

ze{Ds(90)wD(S0)} zeR\{Dsu D}
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(iv) Ey/(es/o) =0 and y =01 EY’ (e,/0)+0 > 0 for

hs
0= k;f (rox @) LY (rss+) — ¥ (e — )1

Remark 3. Conditions B essentially coincide with those of Hampel et al.
[12], Section 2.5a, however their form (especially decomposition (5)) follows
Jureckova [15]. They were used in [12] to study the change-of-variance func-
tion and they cover presumably the most of y-functions used in the present
robust statistics. Some heuristic comments on them may be found also there.

- 4,"Notation (continued). In accordance with conditions given above let us
enlarge our notation as follows:

g (X, n~12¢t, n~ 127y
= [gy (X, Bo4+n" 240127y, gy (X;, BO4+n" 2t 40127y, ..,
| gy (X, B+ 2t 4n™ 20T,
g} (X;, n~ 12, nm127Ty)
— [ (Ko, BO4+n~ 2 t4n™12700), gl (X, fO+n~ V2 bn™ 12750,
Gin (X, BO+n" 2 e n™ 2R )T,
0(Xi, n™ Y28, n™12 700 = g(X,, BO4+n" P t+nT 20 —g (X, £°),
& (X2, n~ 27 = g (X, BO4n V2 in V2 ) — g (X, B0 +n 12 i)

(notice ~ that the difference between &(X;, n”'*t,n"Y?>"*y) and
& (X;, n~12¢t, n”Y277y) is not only in the sign ’ but also the arguments of the
subtracted terms are different). As above we shall write g’ (X;, n~ /%) instead of
g (X;, n"'2¢, 0) or 6(X;, n~"/21) instead of 6(X;, n~'2t, 0), etc. Finally, let
us put -

s(X;, n™2t, n™ 27"y, gexp(n Y2 v))

=y ([ei—6(Xi, n~2t, n~ 2" "u)] 6~ Lexp(—n~ 2 p))
xg' (X;, n~12¢, n=1277y) :
— Y ([ei— 0 (Xi, ™2 0)] 0~ Lexp(—n~ 2 v))g' (X, n™ 12 0),

6) S Y2t,n 27Ty, gexp(n”'?v)
= Y s(X;, n7 V2, n7 2y, ocexp(nT 2 0)).
i=1

Again, as for the derivatives of the function g, we denote by
$;(Xi, n™ Y28, n7 127"y, gexp(n~ 2 v))

~and  S;(n"'2t,n" 12 "u, cexp(n~?v))
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the j-th coordinates of the vectors
s(Xi, n™ 12, n" Y277y, gexp(n~ % v))
and  S(nY?t,n" V> u, sexp(n”?v)),
respectively. Finally, for any M > 0 let us put
@ Iu = {t,ucR?, veR*: max {||t|, [lul, v} < M}.

The range of indices or of variables (used in just introduced notation) will be
clear from the context or it will be indicated at the place where they will be used.

5. Preliminaries. We shall give now three lemmas for deriving the Bahadur
representation of

n (B‘(n -1,h_ E(")),

LeMMA 1. Let Conditions A be fulfilled and let the y-function have a deriva-
tive ' which is Lipschitz of the first order, ie. Y =, Moreover, let
vare; =a%€(0, ), EY(e;/0)=0 and |Ey' (e /o) < 0. Then for any fix
7€[0, 4] there are sequences of random matrices {%,(v)}-, such that

max |(#%,(r)y| =o0(1) as. as n—> oo
1<i,j<p

and we have

(8) sup|S(n~'*t,n 2y, cexp(n~ 12 v))
Im

+n'2 7 [0 EY/ (e1/0) Q+U,]u]| =0(n™") as. as n— 0.
For the proof of this lemma as well as of the next one see Visek [39].

LeMMA 2. Let Ey (e;/0) = 0. Moreover, let Conditions A hold and let the
function  have a derivative ' such that for —o0 = ro <ry < ... <r, < o0 and
real numbers oy, Ay, ...,0-1, W(X)=0, for xe(rg, rei1] for k=
0,1,...,h—1 and /' (x) =« for xe(ry, ). Finally, let vare, = ¢2€(0, )
and let in a $4=neighborhood of the points ory, or,, ..., or, the distribution func-
tion F have a bounded density f and let us denote its upper bound by H. Then
for any fixed t€[0, 3] there are sequences of random matrices {%,(t)}%, such
that

max |(%,())] =0(1) as. as n— oo
1<i,j€p

and we have

9) sup|S(r~'*t,n 2"y, cexp(n~?v))
Im

+n'27* [0 EY (€1/0) @+ Uu(]u = 0, (™) as n— 0.
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We are going to give a similar assertion to those given in Lemmas 1 and 2
for the step y-function. Unfortunately, the assertion is formally somewhat
more complicated than the previous ones because the discontinuity of the
function hampers to give a simple approximation of the corresponding sum
(compare with the results concerning the asymptotic linearity of the second
order M-statistics in Rubio and Visek [31]). As we shall see later, the
estimators determined by -functions with jumps are really different in charac-
ter from the estimators determined by the smooth y-functions.

To prove Lemma 3 we shall need the following assertion:

. AsserTiON 1 (Stepan [35], p. 420, VIL2.8). Let a and b be positive numbers.
Further, let ¢ be a random variable such that P(¢(= —a)=mn and
P(¢ =b)=1—n(for ane(0, 1)) and E = 0. Moreover, let T be the time for the
Wiener process W (s) to exit the interval (—a, b). Then

6 =g W(T);

where =g denotes the equality of distributions of the corresponding random
variables. Moreover, Et = a-b = varé.

Remark 4. To avoid any misunderstanding let us recall that we assume
W(0) =0 (see e.g. Csorgd and Révész [9] or Stepan [35]).

Remark 5. Since the book by Stepan [35] is in Czech, we refer also to
Breiman [4] where however this simple assertion is not isolated. Nevertheless,
the assertion can be found directly in the first lines of the proof of Proposition
13.7 (p. 277) of [4]. (See also [4], Theorem 13.6, p. 276.)

LEMMA 3. Let Conditions A hold and let  be a step-function with the steps
at the points rq, 4, ..., ty. Moreover, let vare, = ¢2€(0, c0) and assume that
in a 94-neighborhood of the points ory, or,, ..., or, the distribution func-
tion F has a density which is Lipschitz (of the first order). Then for any

" fix ©€[0, 4] there are the Wiener processes W;, = W;.(s), a system of stopping

times py(n~"2t, n"12 " u, cexp(n~"?v)), a sequence of random variables
Kun(t) “and a sequence of processes Ky (n~"*t, n™12"*u, oexp(n~'?v)) with
jok=1,2,...,p, seR*, neN, t, u, veJy, so that

(10) lg}?’?iphcjkn (@ = 0,(1),
(11) le?fpsup | (n™ Y28, n™ 27"y, cexp(n™ 2 v))| = 0,(n7),

n
(12)  max sup ul LY ww(nT e, nm 2y, gexp(n” Y2 0))
SISP gy i=1

=0,(n'*"") as n—- o,
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and for t,u, veTy

(13)  Si(n='*t,n'?"*u, cexp(n” " v))

P
+n0'2770 Y [+ Kpn (D] th+ A (n™ Y22, ™27 0, aexp(n™ 2 1))
k=1

= Wi tyja(n™1?t,n7 127"y, gexp(n™ /2 U))),
i=1

where =g denotes the equality in distribution.

Remark 6. The Wiener processes ¥}, and the stopping times y;, (n™ 12 ¢,
n 1277y, cexp(n~?v)) with i=1,2,...,n,neN, j=1,2,..., p, 1e[0, 1],
t, u, ve Iy, are defined on a probability space (&, o7, P) which is generally
different from (Q, &/, P). So it is clear that 0,(n'>"%) in (12) refers to P.

The proof of Lemma 3 below seems to be technically a little bit more
complicated than the proof of the previous assertions, however its idea is as
simple as in the previous cases. Let us also note that in Visek [39] the proof of
a similar assertion to Lemma 3 is given, and it is simpler due to the fact that
g(X;, p) = XT B and the rescaling of residuals is not considered. So to read that
proof may be helpful in understanding the following one. Finally, let us men-
tion that the technique which will be used in the proof is due to Portnoy [25]
(see also Jureckova and Sen [16]).

Remark 7. In the proofs of next lemmas we shall need some constants
Cu,m=1,2,..., 4, ¢, etc., definitions of which will be straightforward. The
definitions of the constants will hold only within the given proof.

Proof of Lemma 3. Notice that due to the fact that y is bounded we
may assume that Ey (es/g) = 0. Moreover, without any loss of generality we
may assume that ¢®> = 1 and h = 1 (we shall write r instead of r,). Finally, let
oo < oy, and A = max {|ao|, |o4|} and let n, be the smallest integer such that
M < 8y nd/? (see A (i) and (7)), and let us assume only that ne N, n > nq. Let us
write for [0, 4]

Au(®) = {f, TeRP: 8(X;, n~ Y2, n= 2% ) > §(X;, n~ V2 1)},

Then denoting successively by S©(n~2t, n" Y2~y rexp(n~'?v)), { =1, 2, 3,
the expressions

14) Y {[eogy (X, 742, 072 Fu)—a, g7 (X, n™ Y2 1)]

i=1

X [I{&(X.',n‘ 1/2t) + rexp(n— 1/2v) < e; < 8(X3,n ~ 1/2t,n— 1/2 —Ty) + rexp(n— 1/2p)}
—F(6(X;, n™ ' 2t,n" "> "u)+rexp(n~ ' v))
+F(6(Xi, n™ 2 ) +rexp(n™ 2 0))] Ly (¢, 4)
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L2y g (Ko, 2, 25 g g (X, n™ 22 0)]

X [I{é(X,-,n‘ 1/2t,n~ 1/2 = ty) + rexp(n~ 1/2p) < e; < 3(Xi,n ~ 1/2t) +rexp(n— 1/2v)}
—F(6(X;, n" 2 )+rexp(n~1?v))
+F(0 X n 2 t, n 2 u)rexp(n™ o)) L o, (6, W)},

n
(15) Z 0y 5,1 (Xi3 n'_1/2 t: n_llz_tu){[I{J(Xi,n’ Y2¢n—12-vu)trexp(n~ 1/2v)Se;) 1
i=1

+ F(&(X,, no1/2 t) +r exp (n_l/2 U))] IA,,,,(t) (l’, u) + [I{a(xh,,— 1/2¢) + rexp(n—V2v) S e} — 1
+F(0(X;, n" 2 t, n" 2 " u)+rexp(n~ 2 v))] L ot )}

and
X n
(16) Z oo 07 (X;, n~12¢, n_llz_tu){[l(eis.d(xi,n‘1/21)+rexp(n‘1/20))
i=1

_F(é(XH n~12 t) + rexp(n_ 12 U))] IA]n(T) (ta u) + [I(e; S6(Xy,n~1/2t,n~ 2= y)+ rexp(n— 1/20)}

—F(0X;,n 2,02 ) trexp(n™ 2 0))] I e o, (¢, w)},

we have (keep in mind please that we have assumed o = 1)
Si(p~ e, n™ 2 u, exp(n 2 0))—E S (02t n 2w, exp(n M2 v))
3
=) SOm 2, n7 127y, rexp(n~ 2 v)).
=1

Let us consider at first (again for te[0, 3]) S®(n™2¢, n~ Y2 "y, rexp(n~*?1v))
and let us put for i=1,2,...,n

9 (c) = min {[oo g} (Xi, n~ 12 ¢, n™ Y2~ u)—a, g (X, n= Y2 1))
X [1=F (3(X;, n™2t, n=Y2="u) 4 rexp (n™ Y2 1)) + F(5(X,, n~ Y2 1)
+rexp(n”2v))],
[ao g1 (Xi, n™ 128, n 127 ) —ar, gy (X, n™ 12 1)]
X [F(6(X:, n"Y2t)+rexp(n™ 2 v)—F (§(X;, n=121, n~ 1277y
+rexp(n™ 2 o))} Ly (¢, 1)

+min {[o; g4 (X, BO+n" 12t 407127 y)—ay g (X, n™ 12 0)]
X[1=F (6 (X;, n™ Y2 t)+rexp(n Y2 u))+ F(5(X;, n~ 21, n~ 127 ty)
+rexp(n~'2v))],
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[oy 94 (Xi, n™ 128, n™ 127 ) —ag gy (X, n™ 12 1)]
x [F (8(X;, n=2¢, n= 2= 2g) 4 rexp(n™ 2 1) — F (3(X,, n~ 2 1)
+rexp(n™ o)} e (¢t u)
and
df) (r) = max {[ao gy (Xi, n™ 128, n7 127 w)—a, g4 (X3 n™ 2 1)]
X[1=F((X;,n 2t n~ 2 "y)trexp(n™ Y2 v))+ F (6 (X;, n™ 121
+rexp(n=2v))],
[0 94 (Xiy n™ 26, ™2 ) —oc, g4 (X, 2]
X [F(6(Xi, n" 2 t)+rexp(n™ 12 v))—F(8(X;, n~ V21, n=127y)
+rexp(m™ 2 o))} Ly (&, 1)
+max{[e, gy (X, = ¢, n™ 12" u) —ag g (X, n™ 2 1))
X [1—=F (8(Xs, n "2 t)+rexp(n™ 2 v))+ F(8(X;, n~ 121, n™ 127 7y)
+rexp(n~'?v))],
% PP
’ x [F(6(X;, n~12¢, nL1/2-fu)+rexp(n"”zu))
‘ —F(0(X;, "2 t)+rexpn o)} 1 e, (¢, )
and denote by #” = (W (s), s€ R) a Wiener process. Finally, fori=1,2,...,n
let us define py’(n~Y2¢, n~ 2> "y, gexp(n~'/?v)) to be the time for W(s) to
exit the interval (cf’(z), 433’ (7)).

Making use of Assertion 1, i.e. employing Skorohod’s embedding of the
Wiener process, we obtain

SPn~12¢, =12y, rexp(n~'?v))

n
— o W(Y W (n~2t, n= 12"y, gexp(n~21))).
i=1
Starting with some n, > n, we have for t,u,ved and i=1,2,...,n
max {|g1 (X;, B2+n~ 2 t4+n" 1277w, |9} (X5, n™ 12 0)|}
x|F(6(X;, n~Y2t, n" Y2 u)+rexp(n~ 12 1))

—F(5(X,, n™ 1) +rexp(n o)) <n 275 T Cy - ful,

where C, is a positive constant. Thus for k¥ =0, 1 we denote by V,(z, u) the .
time for W(s) to exit the interval (a(z, u), b (z, ) with

A7) ac(z, w) =min{(=1) ' n7127%-24-J-C; - Jlull, (= 1)*-24-J-C, - Jul}
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and
(18) by(r, u) =max {(— 1)} n~*27"-24-J-C; - |lul, (—1)-24-J-Cy - |lull}.

Consequently, we obtain

E[sup 5 Yoo “)":”Vl . ")] <n'27-C,  for C;=24-J-C, > 0.
Im i=1 .

So for any fix & > 0 the Chebyshev inequality for nonnegative random varia-
bles gives * '

P(supliul™* Y [Vo(r, )+ Vi(z, w)] > &~ *n'?7"-C,) <.
In i=1
Since
p (™2, nm 2y, gexp (nT 2 0) < Vo(T, w)+ Vi(, u)
fori=1,2,...,n,

we obtain also

(19) F(sup lul =t Y, wP(n~Y2¢t, n~Y2""u, gexp(n~ ' v))

Tn i=1 .

R N AR
We shall now consider, again for t€[0, ], S® (n~"2¢, n™ 127"y, rexp(n~"/?v)).
Recalling that
(X, n 12, n ™27y = g (X, n~ Y28, n 7127 0 — g (X, n™ M2 0)
and keeping in mind A (ii), let us write
14 p

Q0) 18X, n P, T2 = a2 Y [ Y gh(X, B u]”

k=1 j=1
P P
<1270 Y Y [gh (e BT lul < nmt270p¥2 0 M,
- k=1 j=1
where f are appropriate points from the neighborhood of g° and the fol-
lowing inequality holds:

max |f9—p%| <n7Y2 M.

1<j<p
Let us put similarly as above
c? (1) = min {o; &' (X;, n~ 21, n™ 12 7ty)
x [F (3(X;, n™12¢, n™ 2"yt rexp(n~ 12 v))— 1],
a8 (X, n~ 12t n—uz—:u)F(a (X, n= 112, n= 11277y
+rexp(n~ 12 v))} IAi.,(f) (¢, u),
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+min {o; &' (X;, n™ 22, n" 27 u) [F (5(Xi, n~ Y2 t)+rexp(n~ 12 v))—1],
ay & (X;, n™ 2, n 2T ) F(S(X,, n~ Y2 ) +rexp(n™ /2 ”))}IA;E,.@)(’:’ u)

and
d (r) = max {a, & (X;, n~2t, n" 127 "y)
X[F(6(X:, n™"?t,n""2""u)+ rexp(n~?v))—1],
0y 8'(X;, 1 T2, nT P TR F(6(X, nT P, nm 2Ry
) o +rexp(n1/? ))}IA‘_"(I)(I, u)
+max.{oc1-5’(Xi, n~12, nm 127 ) [F(6(X;, n~ 2 0)+rexp(n™ ) —1],
& (X;, n 2, n 2 ) F(5(X;, n~ Y2 ) +rexp(n~ 12 O e o (¢, 1)

Repeating the steps from the previous part of the proof and making use of (20)
we obtain

(21) SP@m Y2t,n" 27Ty, rexp(n~12v))

n

=aW(Y 4P (™ *2t, n™ 2" u, gexp(n™ 1))
i=1
with
n

22) P(supllul™* Y uP(n~12¢t, n" 12" u, cexp(n~ 12 v))
Im i=1
> 8—1n1/2—r_C3) <e

where C3 is an appropriate constant, ul(n~'2¢, n”Y>"*u, cexp(n~ /%)),
i=1,2,...,n, are corresponding stopping times, and ¢ any positive number.
Further, modifying slightly a few previous lines we obtain also

(23) S®n Y2, n" 27y, rexp(n~ 2 v))

‘_EBW(Z #53)( Sy pmzmTy aexp(n_l/zv)))

= i=1

-1/2

with
@4  Pluplul~'Y uP (21, n~ 2 ", gexp(n= Y2 p)
P Y
Im i=1
>e 1nl?7TCy) <

and appropriately defined ¢’ (z), diy (), piP (n=/2t, n™ 27"y, gexp(n~'/?v))
and C,. Putting now

ﬂi1n("_1/2 t,n” 1277y, o CXp ("_1/2 U))
_ Z ﬂ(é)( —12y pm12-ey, aexp(n’l/zv)),
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from (19), (22) and (24) we get

n
sup [lull "1 Y winn(n"?t, 72y, cexp(n Y2 0)) = 0,(n**"7) as no o
In i=1

and

Si(n2t,n 127y, gexp(n 12 0))—ES, (n"V*t,n 2"y, cexp(n~?v
P

=g W( Y sin(n™Y2t, n" 2 "y, gexp(n~ 12 v))).
i=1

For j=2,3,..., p the proof can be carried out along the same lines. To
conclude the assertion of the lemma we need to carry out an approximation to
the mean values

3
ES;(n™"2t,n 2"y, gexp(n ?v)) = Y it u,v), j=1,2,...,p,
=1
with n{).;(t, u, v), { =1, 2, 3, given successively by the following expressions:

@5) ¥ {[wogi(Xi, n 2, n7H2 T w)—ay g (X, n 2]
i=1

X[F(8(X;, n"2t, n "> ""u)+ rexp(n~'?v))
—F(0(Xy, n™ 2 t)+rexp(m™ 2 0)] 1, ., (¢, v)
+ [y g1 (X5, n™ 128, nm 12 ) — 0o g (X, n7 12 0)]
X [F(6(X;, n™ "2 t)+rexp(n~*?v))
—F(O X, n 2t 0™ 2" u)+rexp(n™ 2 0))] Lg ., (¢, W},
@6 Y {ay 8 (Xy, n 28, n 12 y)
i=1
B X[1=F(6(X;, n™12t, n 12 "u)+rexp(n™ 2 v)) 1 4, (¢, w)
—F(0(X:;, n” ") +rexp(n 2 0)) L. ., &, wlt
and
@7 Y {aedy(Xs, n” M2, 0727 y)
i=1
X[F(6(X;, n 2 t)+rexp(n™ 2 v)) I 4, (¢, w)
+F(6(X;, n~ 2 t, n7 2 y)+rexp(n 1 U))IAf,,(r)(t’ W]}
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(see (14)+16)). One can verify that ¥, (¢, u, v) +=f3)): (¢, u, v) may be written
as

28 Y &F(Xin Pt a7 27w {ay [F (0(Xi, n™ 2 t)+rexp(n™ 12 v))

i=1
—F(0(X:, n™2t, n™ 127 )+ rexp(n ™2 0))] Ly, 0 (8, 1)

+o; [1-F(6(X;, n~ Y2 t)+ rexp(n™ 12 v))]
+ao F(3(X;, n™ 12 1)+ rexp(n=121))

’ +%F7[(5 (X5, n~ 128, 071270y rexp (n~ Y2 0))
—F(6(X;, n™ 2 0)+rexp(n 2 0))] L (¢, 0}

Recalling that we have assumed that E(e;) = 0, we obtain
(29) Ev(e)=ao[l-F(r)]+a, F(r) =0.

Taking into account (20) and the fact that the density fis Lipschitz of the first
order in $;-neighborhood of the point r, we may find constants Cs and Cg such
that

(30) |[F(8(Xs, n~Y2t, n™ Y2 u)+rexp(n~ 22 v))
—F(0(X;, n" 2 ) +rexp(n™Y20))| <n Y277 Cs- M,
and
|F(6(Xi, n™ 2 ) +rexp(n Y20))—F ()| <n '2-Cs- M,

which together with (29) implies that the absolute value of the expression in (28)
(and hence also [r{)); (¢, u, v)+ 7l (¢, u, v)]) is for any ¢, u, ve F; bounded
by n7*-C,; < 0. Secondly, we have

gy (XK n 2 e m 2 ) gl (Xm0 < YRR gl ]
together with-
g4 (Xi, n” V2 0)—g4 (X, BO) < n™12-0-p1 2 t],
and taking into account (30) once again we obtain

supIES1 (n~2t,n" 127"y, gexp(n~'?v))
ImM
"‘(051 —aO)Z g’1 (Xis ﬁO) IF(5(XH n-—l/Z t)+rexP("_1/2 U))
i=1

—F(6(X;, n~ " 2t,n 12 "y)+ rexp(n~ 112 v))” =0,(n").

4 — PAMS 172
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Putting z® = (0, ..., 0, z, 0, ..., 0) (where z is the k-th coordinate of z), we
may write

(Bl F(X,n Y2, n 2 "y)+rexp(n~'2v))
—F(6(X;, n ™2 +rexp(n™ > *0)) —n" 27 f (r) [g' (X, BO)1Tu
= p- 12t i ?[f(é(X,-, n=U2¢, pm12=c g

k=10
+rexp(n™ 2 0))g5(Xy, BO4+nT 2t +nT 127 20 —f (r) g5 (X, )] dz.

Making use of the assumption that f(z) in the $,-neighborhood of r is Lip-
schitz of the first order as well as of the fact that g” (x, ) in the neighborhood
of B° exists and is bounded (uniformly in xe X,, X5, ..., X, we conclude that

|f(6(Xs, n™ 128, n™ 1275 ;) rexp(n™ o)) —f (7)) <n~ Y2 Cq
as well as
lg' (X, n™ 4022, n™ 1277 20)— g’ (X;, B)) <012 Co

for some constants Cg and C,. Hence (31) is (starting with some n3) bounded in
an absolute value by n~!7*-C,,, and hence

sup ||[ESy(n~Y2t, n= 2" u, ¢ (exp (n~ 1))
T

7y —a0) )3, 6 (K BT (X BT ) <17 Cao

for n=n,4
uniformly in X;e€S,i=1, 2, ..., n. This completes the proof of the lemma.

6. Bahadur’s representation. In this section we will give Bahadur’s represen-
tation of n(f™—f®=19) The plan how to do this is simple. At first, using
Lemmias 1, 2 and 3 for © = 0 we shall prove that n(f®—g®"~19) = 0,(1), and
then using the same lemmas for 7 =% we derive the representation.

Remark 8. It is clear that under Conditions A and B, in the case when
¥, =0, the estimators f® and f® P fulfil the following relations:

() 3 W (CY—g (e f0 657 (X ) =0
and
(33) S ¥ ([G—g (X, f* 101679 g (X, o1 =0,

o~

i=
i#
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respectively (where 6, is a preliminary estimator of the scale of residuals; see (3)
and (4), and also Conditions C below). Sometimes the M-estimators (for the
linear model) are even defined as solutions of the equations (32) and (33); see
e.g. Jureckova and Welsh [17] or Rao and Zhao [27].

Generally this is not possible for nonsmooth g-functions, the derivative of
which is discontinuous. Then (32) and (33) need not necessarily hold for f® and
f®= 1 given by (3) and (4). As we shall see later to be able to apply Lemmas 1,
2 and 3 (in order to derive Bahadur’s representation) the relations (32) and (33)
are to be fulfilled at least approximately. In ViSek [39] one may find a rather
large discussion of such a- reqmrement It is shown that sometimes even for
a discontinuous function y (when it is simple or even symmetric) we may reach
equality in (32) and (33). The discussion also hints that we may hope that for
frequently used -functions and for the case when g (x, f) is not too “wild,” we
may recognize wheather (32) and (33) are approximately (in the sense of (34)
and (35)) fulfilled.

That is why we shall assume (and specify this in the following Condi-
tions C) that the left-hand sides of the equations (32) and (33) are small in
probability even for the discontinuous y-functions.

Conprrions C. (i) The estimators f® and f®» given by (3) and (4) are
ﬁ-consistent in the following sense:

V(e>0) 3(K>0 and npeN) VneN,n=2n, and I1=1,2,...,n)

P(/n|f"—f) >K) <z and  P(/nIf"t—p°) > K) <,
and fulfil the relations

(34) 21 ¥ ([Yi—g (Xe B™16,Y) g (X, f) = 0,(1)
and .
(35) _Zl Y([Yi—g (X, B2 D] 671 g (Xi f771) = 0, (D).

(ii) There is an ﬁ-consistent estimator &, of g, ie.

\/~ (G,—0)=0,(1) asn- oo,
which is affine invariant, ie. for any beR?
6u(Y+X - b) = 6,(Y)
and scale equivariant, ie. for any ¢ > 0

Gn(cY) =c-6,.
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Remark 9. It is obviously only a technical matter to show how the result
of Liese and Vajda [20], concerning the consistency of the estimator f® in
a nonstudentized framework, can be generalized for the studentized version.
Further, in Rubio et al. [29] it is shown that under conditions given here the
ﬁ-consistency of f™ follows from their consistency. Moreover, also in Rubio
and Visek [31] it is proved that under conditions given here there is for the
case ¥, = 0 an ,/n-consistent solution of the equation (32)." Also the result of
Rao and Zhao [27] seems to be in a straightforward way generalizable for
a nonlinear setup (their result applies also for y-functions with jumps but on
the other hand the y-function has to be monotone). So, it seems that there may
appear very diverse conditions for the consistency of the M-estimators for
general y-functions, and hence we have preferred to give Conditions C in the
present form.

Before proving the n-consistency of (8™ — = 1), let us recall one result
from Cs6rgé and Révész [9].

ASSERTION 2. Lévy’s law of iterated logarithm:

Wit
limsup sup W)

2o ggres+/2sloglogs

where W (t) is the Wiener process (see Assertion 1).

For the proof see Lévy [19] or Csorgd and Révész [9], Theorem 1.3.1. We
will need also the following

LEMMA 4. Let for some pe N, {¥" ®}2q, ¥® = {v("’}{ 1:3::22 be a sequence
of (pxp) random matrices such that for i,j=1,2,...,p

=1as. asn-— o,

(36) lim v{P = q;; in probability,

n— o

where Q = {q;H=1:3::28 is a fixed regular matrix. Moreover, let {0} be

a sequence of p-dimensional random vectors such that
(37 3(e > 0) V(K > 0) limsupP(||6™| > K) >¢.

Then
3(6 > 0) V(L > 0) limsupP (¥ ™®e™| >L)> 4.

Proof Due to (36) the matrix ¥"™ is regular in probability. Let then
0<1n<Agn< ... <2y, and zy,, Zy, ..., Zp, be eigenvalues and correspond-
ing eigenvectors (selected to be mutually orthogonal) of the matrix [¥"™]T ¥,
Let us write

r
0" =3 ajnZpm
j=1
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(for an appropriate vector a, = (a1, @24, ---> dpn)'). Then we have

p
(38) |7 @ 0™ =Y [an)® A llzial® = A0 1672,
=1

J

Moreover, denoting by A, the smallest eigenvalue of the matrix QT Q, we have
Ain— Ay In probability as n— co. The assertion of the lemma then follows
from (38). m

LeMMA 5. Let Conditions A, B and C be satisfied. Then
Cn (=t =0,(1) as n— 0.

Proof. First of all, let us recall that the Wiener processes as wgll as the
corresponding stopping times are defined on a probability space (2, #, P). Let
us also recall that for any ze R we may write

Y (@) = Ya(2) + ¥ (2)+ Y. (2).
Now, let us fix 4 > 0 and ¢ > 0, and making use of (12) for 7 = 0 let us find
C, < o and n; € N so that for the stopping times from Lemma 3 we have for
any n>n,
(39) 13({ max sup [ul ™! Y ;L,-j,,(n_”2 t, n_”z_’u,vacxp(n_l/2 v))
1Sj<p g3 i=1
>n'2Cy}) <e.

Further, by the strong law of large numbers we have

|W; )]
s

(40) -0 as. for s>

(see also Assertion 2), where W;(s) are the Wiener processes introduced in

Lemma 3 (for © = 0), and hence also

aupl 6,

s>t

0 as. for t— o0.

Since the stochastic convergence follows from the a.s. one, let us use (40) and
establish C, <oc so that we have

~ W;
41) P( max sup |__,_(S_)|

1<j<pg>c,

>A-C1‘1)<e.

Now applying Assertion 2 let us select C; < oo so that
(42) P(max sup |W(s)>Cs)<e.

1sjSpPogs<C,
Now, using (8)«13) again for 7 = 0 let us find sequences of random variables
{x$%,(0)}s>, and of random processes {H,(n~"?t, n"?u, gexp(n~ "2 )},
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withr=1,2,3,j,k=1,2,..., p, a constant C4, and n, > n; so that for any
n > n, we have

43) . P( max [5.(0)] > 4) <e,
1<jk<p
(44) P( max sup| T2 pT2y, gexp(nT )| > Cy) < e

(45) P(max sup |St20)s (¢, u, v)

1<jsp T3
] 0t Z (6 Eyi(er/o)gu+xi ) m]| > Co) <&
and - k=1
(46)  P( max sup |S¥e 05 (2, u, v)
15j<p I;

+ni2[ Y (0™ El(en/o) apt kB O) ]| > CJ) <
k=1 .

where we have denoted the corresponding sums for ¥, and lﬁc. (see (6)) by
S¥z0,(t, u, v) and S¥:, (¢, u, v), respectively. Let us denote similarly the corre-
sponding sum for ¥, by Sfq (¢, u, v) and let us put

(47) By, = {®: max sup[|u|| lzﬂw( 1/2t,n””zv,oexp(n‘”zu))

1sjsp Im i=1
nl/2. 1}
(48) Bz,,={a“): mx| ’()|>AC }
1<jsp S
and
49) B,, = {a”): max sup |W;(s)| > C3}.
1€jSpOss<C2

Putting D, = BS,nB5,nB5, we have
P, >1-3e.

For any &eD,, any j=1,2,...,p and for any ¢, u, ve %, we have either

(50 Y wijn(nV2t, n" Y2y, gexp(n~?v)) > Czn
i=1

or

(51) Y wm(n~ 2t n V2, cexp(n~ 2 v)) < C,.
i=1

Let us assume at first that (50) holds. Then, due to (47) and (48) we obtain
[Wi( X tm(n™ 28, n™ 20, gexp (™ v)))
i=1

<A-Ci* Y pi(n e, n7 2 u, aexp(n~?v)) < n'/2- Aljul.
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For the case when Y, . mim(n™%?t,n""?u, cexp(n™*?v)) < C, we have
(see (49)

[Wi(X in(n= 128, n™ 12w, aexp (™2 0)))| < Cs.
i=1

13

This means that for any éeD,, any j=1, 2, ..., p and for any ¢, u, ve Jyy we
have

n
|WJ(Z pjn(n =121, n~12y, gexp(n~1? u)))| <n'2-Al|u|+Cs,

i=1

ie. for any @eD,, any j=1,2,...,p and any t, u, veJy we have

Wi(Y pin(n=Y2t, n 320, cexp(n™ 12 p))—n'/?- A |ul| < Cy
i=1
and

n
Wj(iz1 tijn(n~ 2 t, n" 2y, cexp(n~1? v)))+n1/2-A lulf > —Cj.

Thus defining for j=1,2,...,p
Afn(t, u, v) = A-u - sign (S§io); (¢, u, v)
P
+n12 Y [0gu+xw+ A, (n" 2L, n™ 2, cexp(n~ 2 v))

=1
and taking into account that A was an arbitrary positive number we have

(52) P(IIEJ?‘EPS}E’ |S¥z00i(n =122, n= 12 u, cexp(n™?v))

p
+11 Y [0g5+ w45k — Ak 2, 4, )]t
k=1
+Hu(n V2, n" 20, sexp(n” 12 0))| > C;) < 3e.

Finally, using (39), (41)+(43), (45), (46) and (52), we may find for any 4 > 0 such
an nye N that for any neN, n > ny,

(53) P(sup||S(n~*2¢t, n” 2 u, cexp(n*?v))
Im
3
+n'2y[Q—A%(t, u, 1)+ Y, R 0)] u|| > 3C4+Cs) < 6e,
: r=1

where &) (0) = («2,(0), 32, (0), ..., k¥n (O))T. Let us recall that according to
Conditions C we have

ﬁ(ﬁ‘"’—ﬁ""l”’) =0,(1) asn-ow

and let us put

= Jn B0, G,=./n @ 0—fo), 5= \/E(lpg&"—loga).
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Then there is a constant C5 > 0 so that starting with some n, we have
P (max {||f]], |al, |81} < Cs) > 1—e.
Putting £,, @, and #, into (53) we obtain
2 [0([=g (% A~ 05 )/ (Xs, 1)
—y¥([Y, 9(X;, B0, Y) g (Xi, f™)]
_ ~[o7 9 +0,(N]n (A" —f"10) = 0,(1)  as n— co.
Fitially;, taking into account (34) and (35) we get
[ox Y@+ 0, (] n (B — f~ 1)
=y ([Y—g Xy, B "N oy ) g (Xi, o9 +0,(1)  as n> co.

The application of Lemma 4 completes the proof. m

THEOREM 1. Assume that Conditions A, B and C hold and y;= 0. Then
uniformly in le N we have

(54) nfmN—p) = —G,ET Y (er/0) QM g (X, B*)
x Y ([Yi—g (X, )16, ") +0,(1) as n—oco.

Proof. Let at first Y, = 0. Considering t = 4 and taking into account
Lemma 5 we may put

t:.~1 =./n—1 (ﬁ(")—ﬂo)a g = ("—1)(3("_1")_3(")),
8, = \/n (logd,—logo)

into (8) and (9) and we obtain

(53)

S [ ([5-g(XKi, BN 05 ") gy (Xir o 19)

i=1,i#l
_ll’([Yu g(Xi, ﬁ("))] 0',,_ 1)gZin) (Xia ﬁ(n))]
+6 LEY (e1/0) Qn—1)(B" 1N —f®) =0,(1) as n— 0.
Then using Lemma 5 once again, and employing (34) and (35) we have
t/’([Y;_g(Xb B("))] O'n_ 1) g, (Xh ﬁ‘"))
+0 LEY (e/0) Q- n(B" 1D~ f™) = 0,(1) as n— 0.

Finally, taking into account the regularity of the matrix O, we conclude the
assertion of the theorem.
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LEMMA 6. Let f,_,, ti,_1, and ¥, be defined as in (55) and let us put

p
(Un)j = Sj(%a tn—l: ﬁn——la ﬁn)+0 Z qjk(ﬁn—l)k'
k=1

Then

(56) (Unj (-i ﬂ'm n—1> un 1> U n))
and )

(57) L U.=0,0).

Proof. First of all, let us observe that for v =% we have
max I Z 'Cjkn(z Up—1 k)l = 0,(1)
1jSp =1

(where i, is the k-th coordinate of ti,—,) and

max sup|#,(n~"*t,n" u, cexp(n” 2 v))| = 0,(1).

1<€jk<p I

Now, using the main assertion of Lemma 3 for © = 4, we obtain (56). Applying
(12) for © =4, we obtain

max sup Jjul| ~* Z Kijn ( “12¢, n7lu, gexp(nV?v)) =0,(n"Y) as n— oo,

1<j<p Im i=1

and hence also

max sup Z Hijn(n ™12

t,n"tu,cexp(n 1)) =0,(n"Y) as n—o 0.
1€j<p I =1 .

Finally,
1IEax Z ﬂljn(n P n_lan—la aexp(n—llzﬁn))=0p(n_1) as n— .
<js<pi= :

Since the supremum of the Wiener process over a bounded interval is bounded
in probability, we get (57). = '

THEOREM 2. Let Condztwns A, B and C be satisfied and Y, # 0. Then uni-
formly in le N we have

(58)  n(BetI—fM) =y~ 1 Q7 g (X, f) Y ([H—g (X, f167Y)+ UL}

+0,(1) as n— o0,

where U, was defined in Lemma 6.
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Proof. Using (34), (35), and Lemmas 3 and 5 we obtain
¥ ([Y—g(X:, B 0y ") g (X1 B7)+7Q (B2 — ) = Uy +0,(1)

as n— oo,

and the proof of the theorem is complete. m

Remark 10. We have already known from Lemma 5 that the normed
difference of the estimators n(f™ — f©~19) is 0,(1). Theorems 1 and 2 specify
this information for the cases when ¥, = 0 and ¥, # 0. For the former case we
may give, if the function ¥ is bounded, with a large probability a nonrandom
upper bound for this difference, so that we have an idea about stability of the
estimation when adding or excluding one observation. Since the most of the
functions which are used in the robust considerations are bounded, this infor-
mation is useful from the computational point of view. (And the numerical
experience says that the approximation works for a rather small number of
observations, usually about twenty; see ViSek [36].) On the other hand, for the
latter case we of course also know that the difference is bounded in probability
but the upper bound may be pretty large and the numerical example given in
Visek [39] confirms much larger “fluctuation” of the L,-estimator, ie. of the
estimator generated by a y-function which contains jump, in comparison with
the estimators with smooth -functions.

In other words, for the former case if the “tuning” constant of the corre-
sponding y-function is properly assigned to “winsorize” really some residuals,
the max, <;<, |[n(f™ — f®~1Y)|| is nearly deterministically given. For the latter
case it is not so, and hence it may be preferable to avoid discontinuous
y-functions.

Remark 11. The uniformity in / which has been stated in Theorem 1 has
to be interpreted (as follows from the proof of the theorem) in the following

. way (let us consider for simplicity the case y; = 0):

V(:s >0 and 6 > 0) A(ngeN) V(neN, nzNogand I=1,2,...,n)
P(n(gr— g2 N
—6, 71 (e1/0) Q7 ¢/ (X, B ([Yi—g (X, f™0] 6577 > 0) <,
i.e. ng is the same for all I =1, 2, ..., n. This does not mean necessarily that

P(max |jn(B"—po=1H)

1<I<n
—6,E7 Y (e1/0) Q7' g (X, B™)Y ([¥i—g (X1, f™] 6, 1) > 6) <.

Similarly for the case y; # 0.
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7. Concluding remarks. In the LS-regression analysis the formula

B0~ B = —{[X O] X O 0L X (% - XT A

has been frequently used in the studentized form (in the situations when the
data are “regressionally equivariant”), ie. it was applied in the form

(59) (Bts 0 — Bt3. ) [var (Bis 0 — BB )1~ = (%i— XT f o~
forj=1, 2, ..., p, or for the norm of the difference ||f{% " — Al in the form

|ALs™ " — B3Il vax | A" — BRAIT ™% = (% — XT At o).

(In what follows for the sake of simplicity of explanation we shall assume for
a while that ¢, =0.)

For the M-estimators the presence of 0, (1) in (54) generally does not allow
to derive directly from (54) an approximation to the variance of
|f= 1D — f®™||. But it indicates that the term o,(1) in the representation (54)
may cause that the exact variance of || f~ 10— ,B""’ll (or of fir~ 10— f™) is much
greater than

60)  Zh =E"2y (es/o)tr {Q~}var {y ([¥i—g(X,, f™)] 07 ")} 0

or than

(61) E]?‘ =E™? Y’ (e1/0) {Qﬁl}jjvar {\l’ ([Yl_g X, ﬁ("))] g, 1)} o2,

respectively. This means that the large values of var |f“~ 19— f®| (and of
var (B~ 1D — ™)) might be caused by the fluctuation of |f®~ 10— f®| (and of
fr=10— ) on a set of (very) small probability. But then we may prefer to
“studentize” || ™ — f~ 1| by (60) (or f"~ 1P — B by (61)), i.e. by the asymp-
totic variance of || f™ — f®~19| rather than by an approximation to the exact

variance. We obtain

_ _ 1Y—g (X, ) '
(n—1,1) __ f(n) 2 1 — 1 -
BB i = S W g, 1o} T T
or (independcntly for any j=1,2,...,p)
(ﬁy,—l,l)_ﬁ-(;,))zj—l —_ W(Yl—g(Xla ﬁ(n))) +Op(1) as n— o0.

var'? {y ([Y,~g(Xy, Bl o, ')}
One may also observe that the difference in the prediction of the response
variable based on the estimate f™ or on f®~ 1 is proportional to the same
quantity. In fact, for any /=1, 2,...,n and some XeR? we obtain

P _ g1 _ xT {5(") — - 10y
and hence

sup {n?(n)_f((n—l,t)l 1X) -1 = | B — fn= 1.
ixl=1
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Further, as we have already observed in Remark 10, the only random
factor in (54) which depends on the d.f. F is y/(Y,—g(X,, /™)), the range of
which is bounded by inf, g ¥ (z) and sup,.g ¥ (z). This means that in the case
when the great error sensitivity of the estimator is properly assigned, i.e. when
some outliers are actually “winsorized,” max, <<, [|f™—p" 19| is nearly
always equal to sup,.g ¥ (z)] multiplied by some constant. So, it seems somewhat
strange to try to test significance of the largest change of the estimates. This
implies that to create a possibility to test significance of the change, we need to
exclude some sufficiently large subsample of data. The percentage of the ex-
cluded obsetrvations has to be larger than is the contamination level. We hope
the problem will be treated in the forthcoming paper.
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