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Abstract. An asymptotic representation of Bahadur type of the 
difference of M-estimators &l-fl$-lv'), i-e. of the difference of 
mtimators of regression coefficients for the full data set and for the set 
from which the I-th observation was deleted, is given under the con- 
ditions covering the most of $-functions which are at the present time 
used in the robust statistics, including the discontinuous and rede- 
wending ones. The representation is invariant with respect to the scale 
of residuals. 

1. Introduction. Pre- and post-application diagnostics has become a stan- 
dard part of any data processing theory, and the statistics is not an exception. 
In the region of the least squares regression analysis let us mention today 
nearly classical monographs by Belsley et al. [3], Cook and Weisberg 181, 
Atkinson [l], Bates and Watts [2], Chatterjee and Hadi [5] or Sen and Srivas- 
tava [32] to give at least some among many others. In robust regression the 
diagnostics are sometimes assumed to be something which is complementary 
to the robust algorithms (see e.g. Huber [14]). Other authors propose to use 
the robust algorithms as tools for diagnostics of data (see Hampel et al. 1121 or 
Rousseeuw and Leroy [28]). It is surely possible but some caution is necessary 
(Hettmansperger and Sheather 1131) because it is even formally easy to show 
that two consistent estimators may give for an arbitrary large Gmple size 
arbitrarily different estimates of the regression model; see Viiek [38] and the 
references given there. Due to the fact that the robust statistics has offered for 
the applications large scale of methods we may rather frequently meet a situa- 
tion when the numerical results of the estimation of regression model by dif- 
ferent (highly) robust algorithms gives considerably different models; see Vigek 
13q .  Then we need to make an idea which of results is acceptable for our data 
(or adequate for the data, if you prefer this word) and it asks for diagnostics 
too, see Rubio and Viiek [30] and Noskovi [24]. 

* Research was supported by grant of GA CR number 201/94/0322. 



Interesting discussions on diagnostics may be also found in some papers of 
the transactions by Stahel and Weisberg [34], especially in papers by Ledolter 
[Ig], McKean et al. [21], Neykov and Neytchev [23], Portnoy [26] and Simo- 
noff [3 31. 

In Viek [39] the Bahadur-type representation of the difference of the 
estimators of regression coefficients for the full data and for the data from 
which one observation has been deleted is presented in the random-car- 
riers-framework for the continuous $-functions and for the $-function which is 
equal to sign(x), i.e. which corresponds to the median in the location problem. 
This paper brings this Bahadur representation for the general type of the 
discontinuous $-function, moreover taking into account a practical need of the 
rescaling of residuals. 

The studies of the asymptotic representation of the difference of estima- 
tors are of course aimed to find a diagnostic tool for the situation when we look 
for the most influential point among the data. Let us recall that for the 
least squares, probably from the very early days of this discipline, the formula 

was used in the same way, The notation is nearly self-explaining, nevertheless, 
X(n-i.') is the design matrix after delection of the l-th row from the full design 
matrix X, and XI is the 1-th row, assumed as a column vector, of the design 
matrix for the full data. Sometimes it is referred that the case deletion diagnos- 
tics for influential observations were introduced by Cook [6] or [7l (see e.g. 
Geisser [I 11) but the formula (I) has already appeared in Miller [22] and maybe 
that it has been already used by Sir Francis Galton [lo]; see also Chatterjee and 
Hadi [5]. 

This paper establishes a formula similar to (1) for the M-estimators in- 
cluding those which are generated by discontinuous $-functions. As already 
mentioned, it was done in Vigek [39] for the continuous $-functions. Instead of 
considering discontinuous functions in full generality ViSek [39] treated only 
median-type $-function in the framework of linear model. Generalization on an 
arbitray discontinuous $-function and especially on the nonlinear model is 
technically somewhat complicated, however principally straightforward. Never- 
theless, now we have at hand the Bahadur-type representation of the diffe- 
rence of the M-estimators of regression coefficients for the full data and for the 
data from which one observation has been deleted for all estimators used in 
robust statistics. This opens the possibility to study a similar type of Bahadur 
representation for the most influential subset of data. We hope to do this in 
a forthcoming paper. 

2. Notatioa and setup. Let N denote the set of all positive integers, R' the 
1-dimensional Euclidean space, R+ the nonnegative part of the real line, and 
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(a, at, P) a probability space. We shall consider for all  EN the model 

where for some fix p, q E N, ( X , ) s  is a fixed sequence of vectors from Rq, and 
Po = (By,  84, . . . ,fi;)' is a vector of regression parameters, where stands for 
the transposition. Moreover, a function 8: R4'P -F R is assumed to be twice 
differentiable (see Conditions A below) and, finally, {en),", en: W -+ R, is a se- 
quence of independent and identically distributed random variables (i.i.d.r.v.), 
distributed according to the distribution function (d.f.) F. We will consider the 
Mestimators of given as 

(3) = arg min { 2 Q ([x - g ( x ,  fill 8; I)) 
#fRP i =  1 

and 

where e: R + R is assumed to be absolutely continuous (denote the derivative 
- at the points where it exists - by $1 and en is a preliminary estimator of the 
scale (see Conditions C below). 

Re mark 1. As foIlows from the given setup we shaI1 consider the regres- 
sion model with the fixed carriers. Although it may seem that it is less general 
than the setup with random carriers, it is not inevitably so - see e.g. Condition 
(ii) in JureEkova and Welsh [l;rl which would need some array of setups with 
the random carriers to allow an interpretation as a special case of a random 
setup. On the other hand, the most traditional conditions, in the both types of 
setups, have some corresponding counterparts, see e.g. Condition B (iii) in Rubio 
et al. 1291 and Conditions A (iii) below. Of course, the setup with random carrier 
and the noise independent of carriers permits us to treat in a simpler way e.g. 

than the setup with nonrandom carriers. In the latter setup, formally a some- 
what more complicated version of the law of large numbers for independent but 
not identically distributed r.v. has to be used although the spirit of the treat- 
ment is the same. However, as we shall see in the proof of Lemma 3, sometimes 
the setup with random carriers may be rather complicated to deal with, at least 
what concerns the formalism, so that one may prefer to explain the ideas how 
to reach the asymptotic representation in the framework with the fixed carriers. 
Of course, a detailed but unfortunately formally really complicated discussion 
would reveal that the spirit of the treatment is the same for the both setups. 
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The proofs of Lemmas 1 and 2 below are nearly the same as for the ran- 
dom-carriers-framework which was empoyed in Viiek [39]. 

3. Condlitionns. We are going to give the conditions we shall need for the 
preliminary considerations and later in the paper. 

CONDITIONS A. (i) There is a positive So such that for any ~ E R <  
118-8°11 < 60% 

exist for any x E {X,)& l. Let us &note the vector of the first partial derivative 
and the matrix of the second derivatives simply by g'(x, 8) and gV{x,  /I), respec- 
tively, and their coordinates and elements by gj(x, B) and gyk(x,  PI8). 

(ii) The functions gjk(x, fl) (j, k = 1, 2, . . . , p) are uniformly in x E (X,),"=, 
Lipschitz {of the first order) in B in the do-neighborhood of lo, i.e. 

Moreover, let 

(iii) There is a regular matrix Q such that 

and put (Q)ii = qij. 

Remark 2. It is clear that in view of the fact that Po is unknown, to be 
sure that Condition A (ii) is fulfilled we have to ask if the Lipschitz property of 
g$(x,-8) holds (at least) in a "reasonable" subset of Rp, in dependence on our 
a priori knowledge about possible values of 8,. A similar statement, perhaps 
somewhat weaker, is true what concerns uniformity in x E {X,),", ,. The word 
"perhaps" should indicate that our knowledge about possible values of X's is 
a little bit better due to the fact that at the moment when we apply the results 
we know the first n elements of the sequence (Xn),"= On the other hand, in the 
applications we usually use (or if you want, meet with) rather smooth models 
g ( x ,  p). Moreover, for too wild models we would not be able to perform 
required computations yielding the corresponding estimate. 

Let us observe that A (ii) implies that there is J < co such that for 
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we have 
max supmax {IB (x, fl)I, Ig>(x, BII, (xl 8111 < J .  

l < j , k 6 p  3 

Of course, the boundedness of the model g (x, 8) for fl  E RP, 1 1  8 - P o  1 1  < 6 for 
some positive 6, is restrictive from the theoretical point of view. From the 
practical standpoint, the boundedness is nearly irrelevant because any un- 
bounded model would be, in fact, useless. Finally, observe that the matrix Q is 
positive definite. It is due to the fact that any real symmetric matrix can be 
written as A M T ,  where A and A are an orthonormal and a diagonal matrices, 
respectively;-Moreover, for any ZERP we have 

which implies that A has only nonnegative elements. However, the regularity 
of Q implies that all diagonal elements of A are nonzero. Then for any z # 0 

z T Q z = S T < > O ,  where 5:=A1'2ATz. 

CONDITIONS B. (i) The function $t allows decomposition in the form 

where $, has a derivative $: which is Lipschitz of the first order, $, is 
a continuous function with derivative $: being a step-function, and t,h, is 
a step-function itself. Let us denote by D, = {rsl, rS2, . .. , rshB) (hs finite) and 
D, = {rCl, rCz, . .., rChc) (again h, finite) the points of jumps of $, and of $:, 
respectively. 

(ii) a2 = var el E (0, a) and there is a positive go such that F(z )  has a den- 
sity f which is bounded on 

he 

D,(g0) = U [ ~ . r , ~ - 9 ~ ,  a.rci+80]. 
i =  1 - 

Moreover, the density f is Lipschitz of the h t  order on 

Let us select H < SO that it is an upper bound off on D,(gO) as well as the 
Lipschitz constant on D, (80). 

(iii) There is a finite K such that 



(iv) E $t (el/u) = 0 and y = a-  E $' (el/a) + 8 > 0 for 

Remark 3. Conditions B essentially coincide with those of Hampel et al. 
[12], Section 2.5% however their form (especially decomposition (5)) follows 
Jurei5kovk [15]. They were used in [12] to study the change-of-variance func- 
tion and they cover presumably the most of $-functions used in the present 
robust statistics. Some heuristic comments on them may be found also there. 

- 4i-~otatioar (continaed). In accordance with conditions given above let us 
enlarge our notation as follows: 

= [g;(xi, g0+n-1/2t+n-1/2-" u) ,  &(Xi, jY"'n-1/2f+n-112-r u), . m a ,  

(notice that the difference between S (Xi, n- 'I2 t, n-1/2-' u) and 
6'(Xi, n-l/'t, n-1/2-'u) is not only in the sign ' but also the arguments of the 
subtracted terms are different). As above we shall write g' (Xi, n-'I2 t) instead of 
g' (Xi, n-'I2 t ,  0) or 6 (Xi, n-ll2 t) instead of 6 (Xi, n-liz t, O), etc. Finally, let 
us put 

s(Xi, n-ll2t, n-'I2-'u, ~ e x p ( n - l / ~  4 
= @(rei-S(Xi, n-ll2 t, n-l/z-ru)] ~ - ~ e x p ( - n - ~ / ~  v)) - 

A 

= C S(Xi, n-112 t ,  n-1/2-' u, ~ e x p ( n - ' / ~  v ) ) .  
i =  1 

Again, as for the derivatives of the function g, we denote by 

sj(Xi, n-ll2 t, n-1/2-ru, aexp(n-I/z v)) 

and Sj(n-1/2 t n- l / z - r  U, flexp(n-ll2 u)) 
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the j-th coordinates of the vectors 

and ~ ( ~ - 1 1 2  n - 1 / 2 - z  U ,  gexp(n-I/2 v) ) ,  

respectively. Finally, for any M > 0 let us put 

(7) FM = ( t ,  u e R P ,  V E R + :  max(lltll, Iluil, v) < M ) .  

The range of indices or of variables (used in just introduced notation) will be 
clear from the context or it will be indicated at the place where they will be used. 

. - 
5. Prelliminaaies. We shall give now three lemmas for deriving the Bahadur 

representation of 
n (p - 1 .u - p)). 

L E M ~  1. Let Conditions A befuuilled and let the $$unction have cr deriva- 
tive $' which is Lipschitz of the Jirst order, i.e. rl/ = $,. Moreover, let 
var el = aZ E (0, GO), E (t (e,/a) = 0 and I E @' (ella)/ < a. Then for any f i x  
Z E  [ O ,  +] there are sequences of random matrices {%,(z)),"=, such that 

max I(@,, ( ~ ) ) ~ l  = o (1) a.s. as n + oo 
1 S i , j G p  

and we have 

For the proof of this lemma as well as of the next one see Viiek [39]. 

LEMMA 2. Let E $ (ella) = 0. Moreover, let Conditions A hold and let the 
function $ have a derivative $' such that for - oo = ro < rl < . . . <rh < m and 
real numbers a ,  a ,  . . . , a , I// (x)  = ak for x€(rk ,  rk+ l ]  for k = 
0, 1,  . . . , h - 1 and q ( x )  = a, for x E (rh, a). Finally, let var el = a2 E (0, m )  
and let in a L4,=neighborkood of the points orl ,  or2,  . . . , mh the distribution func- 
tion F have a bounded density f and let us denote its upper bound by H. Then 
for any $xed T E LO, i] there are sequences of random matrices (42, (T)),"= such 
that 

m a x  I(@,, (z)lij1 = o (1) a.s. as n + oo 
l d l , ~ < p  

and we have 

(9) sup 11s (n-lI2 t ,  n-'i2-' u , a exp (n - '1' v))  
FM 

+ n l / z - r  [a -1E$' (e l /o )Q+42n(z) ]~II=OP(n-~  a s n - t m .  



We are going to give a similar assertion to those given in Lemmas 1 and 2 
for the step $-function. Unfortunately, the assertion is forma.lly somewhat 
more complicated than the previous ones because the discontinuity of the 
function hampers to give a simple approximation of the corresponding sum 
(compare with the results concerning the asymptotic linearity of the second 
order M-statistics in Rubio and Vilek [31]). As we shall see later, the 
estimators determined by $-functions with jumps are really daerent in charac- 
ter from the estimators determined by the smooth $-functions. 

To prove Lemma 3 we shall need the following assertion: 

- k&m 1 (!%ep6n [35], p. 420, VII.2.8). Let a and b be positive numbers. 
Further, let ( be a random variable such that P.(< = -a) = n: and 
P (5: = b) = 1 - n (for a a ~ ( 0 ,  1)) and Et = 0. Moreover, let z be the time for the 
Wiener process W(s) to exit the interval (-a, b). Then 

where denotes the equality of distributions of the corresponding random 
variables. Moreover, Ez = a - b = var 9. 

Remark  4. To avoid any misunderstanding let us recall that we assume 
W(0) = 0 (see e.g. CsorgIj and RkCsz [9] or Stepan [35]). 

Remark  5. Since the book by Stepan [35] is in Czech, we refer also to 
Breiman [4] where however this simple assertion is not isolated. Nevertheless, 
the assertion can be found directly in the first lines of the proof of Proposition 
13.7 Ip. 277) of [4]. (See also [4], Theorem 13.6, p. 276.) 

LEMMA 3. Let Conditions A hold and let $ be a step-function with the steps 
at the points rl, r2, . . . , rh. Moreover, Iet var el = a2 E (0, co) and assume that 
in a &+,-neighborhood of the points ar,, or,, . . . , arh the distribution func- 
tion F has a density which is Lipschitz (of the Jirst order). Then for any 
$x T E  [O, 41 there are the Wiener processes W$ = YT(s), a system of stopping 
times p- .  v n  (n-'I2 t, n-112-Tu, aexp(n-'I2 v)), a sequence of random variables 
ujk, (z) -and a sequence of processes qn (n- 'I2 t, n-ll'-+ u, aexp (n-'I2 v)) with 
j, k = 1, 2, ..., p, SER+,  EN, t, u, ~ € 9 ~ ~  so that 

(11) max sup l ~ @ ( n - ~ / ~  t, n-112-r~,  ~ e x ~ ( n - ~ / ~ v ) ) l  = OP(n-'), 
1SjSp F~ 

(12) max sup Ilull pij. (n-'I2 t, n-lI2-' u , a exp (n - 'I2 v)) 
1SjSp 5, i =  1 
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and for t, U, v E FM 

where =* denotes the equality in distribution. 
.. . 

Rernaik 6. The Wiener processes % and the stopping times pij,,(n-'I2 t ,  
n-1/2-z U, ~ e x p ( n - ~ / ~ v ) )  with i = 1, 2, ..., n,  EN, j = 1,  2, ..., p, 41, 
t, u, VE&, are defined on a probability space (0, 2, 8 which is generally 
different from (a, sf, P). So it is clear that 0,(n1/2-3 in (12) refers to p. 

The proof of Lemma 3 below seems to be technically a little bit more 
complicated than the proof of the previous assertions, however its idea is as 
simple as in the previous cases. Let us also note that in Viiek [39] the proof of 
a similar assertion to Lemma 3 is given, and it is simpler due to the fact that 
g (Xi, 8) = XTB and the rescaling of residuals is not considered. So to read that 
proof may be helpful in understanding the following one. Finally, let us men- 
tion that the technique which will be used in the proof is due to Portnoy [25] 
(see also Jurei3kova and Sen [16]). 

Remark 7. In the proofs of next lemmas we shall need some constants 
C,, m = 1, 2, . .., A, E, etc., definitions of which will be straightforward. The 
definitions of the constants will hold only within the given proof. 

Proof of Lemma 3. Notice that due to the fact that IL is bounded we 
may assume that E I) (el/a) = 0. Moreover, without any loss of generality we 
may assume that a2 = 1 and h = 1 (we shall write r instead of r,). Finally, let 
a,, < al, and A = max {laol, lull} and let no be the smallest integer such that 
M < 6, nAi2 (see A (i) and (7)), and let us assume only that n EN,  n > no. Let us 
write for z E [0, j] 

Then denoting successiveIy by S(n(n-112 t, n-1/2-z U, rexp(n-lI2v)), 5 = 1, 2, 3, 
the expressions 

- ~ ( d  (Xi, 1,-1/2 t n-1/2-' ~ ) + r e x p ( n - l / ~  v)) 

+ F  (6 (Xi, n- 'Iz t) + r exp (n- 'I2 u))] IAln(7) (t, u) 



+ [al g; (Xi, n ' I 2  t ,  n 1 I 2  ' u) - uo gi ( X i ,  n- t)] 

[ I ~ d ( X i . n -  l12t,n- L/2-ru) + r e x p ( f ~ - l / ~ v ) i e ;  < B ( X i , n  IDv)) 

- 
- F (G{Xi, n ' I 2  t) + r exp (n- lJ2 v)) 

+ F ( ~ ( x ~ ,  n- 'Izt ,  n-liz-' u) + r ~ X P  In - ' I 2  v))] IAFn(=) (t, u))  9 

and 

we have (keep in mind please that we have assumed 0 = 1 )  

s1 (,-l/z t n-1/2-r  u,  e ~ p ( n - ' / ~  0))- ESl (n-'I2 t ,  n-li2-' u , exp (n - ' I 2  v)) 

Let us consider at first (again for z E [0, i]) s(') (n-'I2 t ,  n-li2-' U, r exp (n-'I2 v)) 
and let us put for i = 1, 2 ,  .. ., n 

c$,1)(2) = min { [ao g; (xi, n-'I2 t ,  n-1J2-Tu)-a1 g; ( X i ,  n-ll2 t)] 

-x [I -I; (6 ( X i ,  n-'I2 t ,  n-1/2-r u)+r  exp(n-'Iz v))+ F (6 ( X i ,  la-'/' t )  

+ r exp (n-'Iz v))] , 

[olDg; (Xi, n-'l2 t ,  n-'1'-'u)-a1 g; (X i ,  n-lJz t)] 

x [F ( 6 ( X i ,  n-1izt)+rexp(n-112v))-F(iT(Xi, n-'I2t, n - '12-r~)  

+ exp In - ' I 2  v))]) I A ~ ~ ( , )  ( t  U )  

+min ( [ a l g ; ( ~ i ,  #1°+n-1/2 u)-aog;(Xi,  n-lI2 t)] 

x [ 1 - F ( 6 ( x i ,  n - 1 1 2 t ) + r e x p ( n - 1 / 2 v ) ) + ~ ( d ( ~ i ,  n-lI2t ,  n-1 /2-r  U )  

+ r e ~ p ( n - ~ / ~  u))], 
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[a1 g; ( X i ,  n- t ,  n-ltz-" 8; (Xi, n- l j 2  t)]  

and 

d l t ) ( ~ )  = max ( [aog;  {X i ,  n-'t2 t ,  n - 1 / 2 - r u ) - ~ 1  g; (Xi; n-'J2 t)] 

. x [ I - F  (S (Xi ,  n-'I2 t ,  n-'t2-' u ) + r e ~ p ( n - ~ ~ ~ v ) ) + ~ ( S ( ~ ~ ,  n-'I2t) 

+ r exp (n' v))] , . . 
- .  

Laos; ( X i ,  n-'I2 t ,  n-1/2- t~)-m1 gi ( X i ,  n 1 / 2 t ) ]  

x [F (6(Xi, n " 1 i z t ) + r e x p ( n - 1 1 2 ~ ) ) - ~ ( ~ ( ~ i ,  n-Il2 t 3  n-1/2-r U )  

+ ' exp (n- ' I 2  ~ v ) ) ] )  I A , ~ [ ~ )  ( t  r u) 

f max([ul g; (Xi, n-'I2 t ,  n - 1 / 2 - r u ) - a o g ; ( ~ i ,  n-lJZ t)] 

x [I - F  (6(Xi7 n-li2 t ) + r e ~ p ( n - ~ j ~ v ) ) + ~ ( 6 ( ~ ~ ,  n-lt2 t ,  n-1t2-zu) 

+rexp(n-'/' v))], 
I 

[a, g; (Xi, n-'I2 t, n-l/'-' u)-a0 g; (xi, n-'j2 t ) ]  

x [ F ( S ( X i ,  n- l t2  t ,  n-'j2-' u) + r exp (n - v)) 
- 

- F (6 ( X i ,  n  ' I 2  t )  + r exp (n - ' j 2  v))]) IA:nO ( t  , U )  

and denote by W = (W(s ) ,  s  E R) a Wiener process. Finally, for i = 1,2, . . . , n  
let us define (n-'I2 t ,  n-lI2-' u ,  a exp (n-'I2 v)) to be the time for W(s)  to 
exit the interval (cj;) (z), dl:) (z)). 

Making use of Assertion 1, is .  employing Skorohod's embedding of the 
Wiener process, we obtain 

~ ( 1 ) ( ~ - 1 / 2 ~  I n - l ~ 2 - r  u ,  r exp (n - '1' v)) 

Starting with some n1 2 no we have for t, u, V E &  and i = 1, 2, ..., n  

where C1 is a positive constant. Thus for k = 0, 1 we denote by K ( T ,  u) the 
time for W (s) to exit the interval (ak (7, u), bk ( T ,  u)) with 

(17) ak(z ,  u) = min{(-l)k+1n-1~2-".2A.J.C,-l~uII, ( - l )k-2A.J .C,- I /u l l )  
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and 

Consequently, we obtain 

So for any fix E > 0 the Chebyshev inequality for nonnegative random varia- 
bles . gives - ; 

n 

P"(sup Ilull-l C [Vo(t, u)+V,(z, u)] > E - ' ~ ~ / ~ - ~ . c  < E. 
TM i =  1 

2) 

Since 

p!?(n-112 t ,  n-112-'u, ~ e x p ( n - ' / ~  v)) < Vo(t, u)+ Vl(~,  u) 

for i =  l , 2  ,..., n, 
we obtain also 

n 

(19) P"(sup I]ull- pi,!,)(n-'/2 t, n-1/2-'u, a exp (n-'I2 v)) 
54 1=1 > E-l n 112-7. c 

We shall now consider, again for z E [O, $1, SC2) (n-1/2 t, n- l/' -' U,  r exp (n-lI2 v)). 
Recalling that 

and keeping in mind A(ii), let us write 

where /?? are appropriate points from the neighborhood of $ and the fol- 
lowing inequality holds : 

max ll/P-flOll < n-ll2M- 
l < j < p  

Let us put similarly as above 

c!,~)(z) = min (al Sf (Xi, n-ll2 t ,  n-112-'u) 

x [F(S(Xi, n-l /z t ,  n-'12-ru)+rexp(n-112 4)- 11, 

a, 6' (Xi, n-'I2 t, n-lI2-* u)F(6(Xi, n-liz t, n-'iz-r  4 
+ r e x ~ ( n - ' / ~  V))jl,,,) tt, 4, 
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+ m i n { ~ ~ 8 ( ~ ~ ,  n-"'t, n - 1 1 2 - z u ) [ ~ ( S ( ~ i ,  n-1/2t)+rexp(n-1/2v))-l], 

al S1(xi, n-lI2 t, n-liZ-" 4 F (6 (Xi ,  n-'1' t )  + r exp (n - V ) ) ) I ~ ; ( ~ )  ( t  , U )  

and 

&)(2) = max {al 6' (Xi, n-l12 t ,  n-lI2-' U) 

. . 
+max (al  6'(Xi,  n-lI2t ,  n-1/2-'u) [F @(xi, n-lJ2 t ) + r e ~ ~ ( n - l / ~  v))- I], 

.Id'(Xi, n-lt2 t ,  n - 1 1 2 - ' u ) ~ ( 6 ( ~ , ,  n - ' ~ ' t ) + r e ~ p ( n ~ ~ ~ u ) ) ) l , ~ ~ , ( t ,  u). 

Repeating the steps from the previous part of the proof and making use of (20) 
we obtain 

n 

= 9  w(C f ip(n-1J2t ,  , - 1 /2 -~  u , a exp jn - l i2 v))) 
i = l  

with 

where C3 is an appropriate constant, p{,21(n-1J2t, n-lJ2-'tk, aexp(n-1/2v)), 
i = 1 ,  2, . . . , n, are corresponding stopping times, and E any positive number. 
Further, modifying slightly a few previous lines we obtain also 

(23) S(3)(n-1/2 t ,  n-112-z U ,  rexp (n-lI2 u)) 

= g  w(% &)(n-lJ2 t ,  n-1/2-"u,  aexp(n- lJzu)))  - i =  1 

with 

and appropriately defined cj?) (z), (z), pI;?) (n- t , n- -' u, a exp (n- '1' v)) 
and C4. Putting now 

piln (n-l12 t n-1 /2-r  u,  a exp (a- ' I z  v)) 
3 



from (19), (22) and (24) we get 

and 

S1 t ,  n-112-zu, ~ e x p ( n - ~ 1 * v ) ) - E S ~ ( n - ~ / ~  t ,  n-112-T u,  a exp u)) 

. . 
For j = 2, 3, . .., p the proof can be carried out along the same lines. To 
conclude the assertion of the lemma we need to carry out an approximation to 
the mean values 

with nti!,)j(t, U ,  v), = 1 ,  2, 3, given successively by the following expressions: 

x [ F  ( 6 ( X i ,  n-'I2 t ,  n-'I2-'u)+ rexp(n-'I2 v)) 

+ [ul g; ( X i ,  n- l t2  t ,  n-lI2-' u)- uO g; (Xi, n-'I2 t ) ]  

x [ F ( 6 ( x i ,  n-'I2 t)+rexp(n-'I2 v)) 

- 
- P  (S ( x i ,  n ' I 2  t )  + r exp (n- '1' v)) I,;;,, ( t ,  u)]} 

and 

x [F (6 (Xi, n- ' I 2  t )  + r exp (n-  u)) iAi,(r) ( t  , U )  
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(see (1 4H16)). Qne can verify that RI~!~ ) , )~  (t , U, v )  + K[:,$~ ( t  U, U) may be written 
as 

n 

(28) CS'(Xi,n-1/2t,n-1/2-" u> {al [F (6(Xi, n-lt2 t)+rexp(n-ll2v)) 
i =  1 

. . ' +ao F [(d (Xi, n-I f2  t ,  n-1/2-z u) + r exp (n - IZ v)) 

Recalling that we have assumed that E$Qi) = 0, we obtain 

Taking into account (20) and the fact that the density f is Lipschitz of the first 
order in ao-neighborhood of the point r, we may find constants C, and C, such 
that 

and 

which together with (29) implies that the absolute value of the expression in (28) 
(and hence also IR{,~!,,, (ty U, ~)+n[:!~)~ (t, u,  v)l) is for any t, u, v € Y M  bounded 
by n-".C, < GO. Secondly, we have 

together with- 

and taking into account (30) once again we obtain 

4 - PAMS 17.2 



Putting zik) = (0, . . ., 0, Z, 0, . . ., 0) (where z is the k-th coordinate of zik)), we 
may write 

~ ~ a k i n ~  use of the assumption that f (z) in the So-neighborhood of r is Lip- 
schitz of the first order as well as of the fact that g" (x, 8) in the neighborhood 
of fiO exists and is bounded (uniformly in x  EX^, X2, . . . , X(,), we conclude that 

for some constants Cg and Cg. Hen= (31) is (starting with some n3) bounded in 
an absolute value by n-l-".Clo, and hence 

sup I1E Sl (n-lI2 t ,  n-1/2-r u, a (exp (n- 'Iz u)) 
Tif 

for n = n, 

uniformly in Xi E S, i = 1, 2, . . . , n. This completes the proof of the lemma. 

6. bbdw's represemtation En this section we will give Bahadur's represen- 
tation of n(B(n)-p-lp')). The plan how to do this is simple. At first, using 
Lemmas 1, 2 and 3 for z = 0 we shall prove that n(P)-B("-ls')) = 0,(1), and 
then using the same lemmas for r = 4 we derive the representation. 

Remark 8. It is clear that under Conditions A and B, in the case when 
I), = 0, the estimators #?(n) and P-lvo fulfil the following relations: 

and 
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respectively (where en is a preliminary estimator of the scale of residuals; see (3) 
and (4), and also Conditions C below). Sometimes the M-estimators (for the 
linear model) are even defined as solutions of the equations (32) and (33); see 
e.g. JureEkovA and Welsh [I71 or Rao and Zhao 1271. 

Generally this is not possible for nonsmooth @-functions, the derivative of 
which is discontinuous. Then (32) and (33) need not necessarily hold for p) and 
B(n-ls') given by (3) and (4). As we shall see later to be able to apply Lemmas 1, 
2 and 3 (in order to derive Bahadur's representation) the relations (32) and (333 
are to be fulfilled at least approximately. In Viiek [39] one may find a rather 
large discussion of such a-requirement. It is shown that sometimes even for 
a discontijluck function $ (when it is simple or even symmetric) we may reach 
equality in (32) and (33). The discussion also hints that we may hope that for 
frequently used $-functions and for the case when g (x, f l )  is not too "wild," we 
may recognize wheather (32) and (33) are approximately (in the sense of (34) 
and (35)) fulfilled. 

That is why we shall assume (and specify this in the following Condi- 
tions C) that the left-hand sides of the equations (32) and (33) are small in 
probability even for the discontinuous $-functions. 

Comrno~s C. (i) The estimators and P-lio given by (3) and (4) are 
&-consistent in the following sense: 

V(E > 0) 3 ( K  > 0 and no€N) V ( n € N ,  n 2 no and 1 = 1, 2, ..., n) 

B I I  > K ) < E ,  p ( & ~ ~ p ~ ) T ~ O l ~ > ~ ) < e  and P ( & I I F - ' ~ ~ ) -  O 

and fulfil the relations 

and . 

(ii) There is an &-consistent estimator Sn of IT, i.e. 

,,G(C?~-~T)=$(L) as n + m ,  

which is affine invariant, i.e. for any b~ RP 

8,(Y+X-b) = C?n(Y) 

and scale equivariant, i.e. for any c > 0 

an(cY) = cadn. 
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Remark 9. It is obviously only a technical matter to show how the result 
of Liese and Vajda [20], concerning the consistency of the estimator B(*) in 
a aonstudentized framework, can be generalized for the studentized version. 
Further, in Rubio et al. [29] it is shown that under conditions given here the 
&-consistency of 8'") follows from their consistency. Moreover, also in Rubio 
and Viiek [31] it is proved that under conditions given here there is for the 
case II; I 0 an &-consistent solution of the equation (32).'Also the result of 
Rao and Zhao [27] seems to be in a straightforward way generalizable for 
a nonlinear setup (their result applies also for $-functions with jumps but on 
the ither hand the $-function has to be monotone). So, it seems that there may 
appear very diverse conditions for the consistency of the Ad-estimators for 
general $-functions, and hence we have preferred to give Conditions C in the 
present form. 

Before provin~ the n-consistency of (/?n)-p-l*l)), let us recall one result 
from Csorgii and Rkvksz [9]. 

ASSERTION 2. Guy's  law of iterated logarithm: 

limsup sup I w (01 = 1  as. as n + m ,  
a<ts. JE 

where W ( t )  is the Wiener process (see Assertion 1). 

For the proof see Gvy [I91 or Csorgo and RBvtsz [9], Theorem 1.3.1. We 
will need also the following 

LEMMA 4. Let for some p E N ,  {-T(")),"= V(") = (v{y)){Z ;;;:::::p~ be a sequence 
of (p x p) random matrices such that for i, j = 1,  2, . . . , p 

lim vl,?) = qij in probability, 
n+w 

where Q = {qij)i,'i;i;:::;i is a $xed regular matrix. Moreover, let {13(")),"=~ be 
a sequence of p-dimensional random vectors such that 

3 (E  > O) v (K > 0) lim sup P (11 0(")ll > K) > E .  
n+ m 

Proof. Due to (36) the matrix -Ir(n) is regular in probability. Let then 
0 < I, ,  < A,, < . .. < A, and z,,, z,,, . . ., z,, be eigenvalues and correspond- 
ing eigenvectors (selected to be mutually orthogonal) of the matrix [Y("qT Y("). 
Let us write 

D 
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(for an appropriate vector a, = (a,,, a,,, .. ., u,,)~). Then we have 

Moreover, denoting by R ,  the smallest eigenvalue of the matrix QT Q, we have 
A,, 4 1, in probability as n + a. The assertion of the lemma then follows 
from (38). rn 

LEMMA 5. Let Conditions A, B and C be satisfied. Then 

Proof. First of all, let us recall that the Wiener processes as well as the 
corresponding stopping times are defined on a probability space (0, 2, 8. Let 
us also recall that for any Z E R  we may write 

@(z) = +aIz)+$c(Z)+$E(z). 

Now, let us fix d > 0 and E > 0, and making use of (12) for z = 0 let us find 
C1 < m and n, E N  so that for the stopping times from Lemma 3 we have for 
any n > nl 

(39) P"(( max sup llull-' C pij.(n-1/2 t,  n-'I2-"u, ~ e x p ( n - ~ / ~  0)) 
1 S ~ S P  F~ i=1 

> n1lZ C1)) < E .  

Further, by the strong law of large numbers we have 

Iy(s)l + o a.s. for s + m 

(see also Assertion 2), where %(s) are the Wiener processes introduced in 
Lemma 3 (for z = O), and hence also 

I WI(S'I + o as. for t + m  . sup - 
s > t  S - 

Since the stochastic convergence follows from the a.s. one, let us use (40) and 
establish C ,  < m  so that we have 

max sup - 
lGjGpS>c2 s 

Now applying Assertion 2 Iet us select Cj < m SO that 

( m a  sup I Y(s)I > C3) < E 
~ J ~ P O G s G C ,  

Now, using (8H13) again for z = 0 let us find sequences of random variables 
(O))z= and of random processes {&, (n- t ,  n-li2 u, a exp (n- 'I2 v))) ,"= 
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with r = 1, 2, 3, j ,  k = 1 ,  2, . .. , p, a constant C4, and n2 > n1 so that for any 
n > nz we have 

rnax ~ u p I ~ ~ ( n - ~ / ~ t ,  n-lizu, a e ~ p ( n - l ~ ~ v ) ) l  > C4) < E, 

P + nli2 [ (a- ' E $b(el/c) q j k  + K&! 0) %]I > ca) < &, 

and k = l  

where we have denoted the corresponding sums for t,b, and $, (see (6)) by 
Sko,(t, U, v) and Sk,,(t, u, v), respectively. Let us denote similarly the corre- 
sponding sum for $, by Sko)(t ,  u, v)  and let us put 

(47) B1,={G: max s ~ p I ~ u ~ ~ - ~ ~ p ~ ~ , ( n - ~ ~ ~ t , n ~ ~ ~ ~ v , a e x ~ ( n ~ ' ~ ~ v ) )  
l B j 6 p  FM i =  1 

> n1j2-C1), 

(48) 

and 

IY(')l > A .  ~ ; 1  8: max - 
l < j C p  S 

6: max sup ty(s)l > C 3  . 
1 4 j b p O 6 s S C z  1 

Putting D, = B",,nBE2,nB", we have 

For any 6 ED,, any j = 1,2, . . . , p and for any t, u, u E YM we have either 

(50) C pijn(n-1/2 t ,  n-'I2 U, ~ e x p ( n - ' / ~  v)) > C2 
i =  1 

Let us assume at first that (50) holds. Then, due to (47) and (48) we obtain 
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For the case when z:= pijn(n-112 t ,  n-'Iz u, a exp (n- u)) < C 2  we have 
(see (491) 

This means that for any 6 ED, ,  any j = 1, 2, . . . , p and for any t, u,  v E SM we 
have 

.. . . . 
i.e. for any-.& ED,, any j = 1, 2, . . . , p and any t ,  u, v E 5- we have 

n 

y(x ~ i ~ n ( n - " ~ t ,  n-'/'u, ~ e x ~ ( n - ~ ~ v ) ) ) - n ' l ~ - d  1 1 ~ 1 1  < C, 
i =  1 

and 
n 

~ j ( z  ~ i j n ( n - ~ / ~ f y  n-'I2u, ~ e x p ( n - ' 1 2 v ) ) ) + n 1 1 Z . ~  llull > -Cs 
f =  1 

Thus defining for j = 1, 2, . .. , p 

P 

+ n1I2 C [Bgjl + u$?A] u l + q n  (nf1I2 t, n-'I2 u ,  oexp ( , - ' I 2  21)) 
1 = 1  

and taking into account that A was an arbitrary positive number we have 

(52) P ( max sup IqgoIj (n-  ' I 2  t ,  n-'I2 u ,  CT exp (n- ' I 2  v)) 
1<i<p FM 

Finally, using (39), (41)-(43), (45), (46) and (52), we may find for any A > 0 such 
an n , € N  that for any  EN, n > nd, 

3 

+ n 1 I 2 y [ ~ - A : ( t , u , v ) +  2 rZ~(O)]ull > 3 C 4 + c 3 ) < 6 & ,  
r = l  

where rc"g (0) = (KY). (0)). KP~, ,  (0) ,  . . . , I C ~ , ,  ((I))=. Let us recall that according to 
Conditions C we have 

and let us put 



Then there is a constant C5 > 0 SO that starting with some n, we have 

Putting <, in and C,, into (53) we obtain 

- $ ([ K, g (Xi fl("))I 0; l )  g' (Xi fl'"))] 
- [ a ; l y ~ + o , ( l ) j n @ ) - ~ ( n - l l ~  = 0,(1) as n+ co. 

. . 
Finally, taking into account (34) and (35) we get 

[a; yQ + o, (l)] n (6") - t("- ' 9 ' ) )  

=$([~-g(Xz,~-l~'))]m~l)g'(~iy~-l-i))+~p(l) as n + m .  

The application of Lemma 4 completes the proof. 

THEORBM 1. Assume that Conditions A, B and C hold and $s = 0. Thm 
uniformly in I E  N we have 

(54) n@-1-9-p))=-&nE-19'(e1/~)Q-1gr(XI,p)) 

X $ ( [ ~ - ~ ( X , , ~ ~ ( ~ ' ) ] & ~ ~ ) + O ~ ( I )  as n + m .  

Proof. Let at first $, = 0. Considering z = 3 and taking into account 
Lemma 5 we may put 

~ - l = J n - l ( p ( " ' - f i o ) ,  & - l = ( n - l ) ( p - l J ) - p ) ) ,  
(5 5)  4 = J;;(log'0pbn-loga) 

into (8) and (9) and we obtain 

+a-1 ~$'(e~/o)Q(n-l)@(*-~*')-p)) = o,(I)  as n+ co. 

Then using Lemma 5 once again, and employing (34) and (35) we have 

Finally, taking into account the regularity of the matrix Q, we conclude the 
assertion of the theorem. 
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LEMMA 6. Let fn-l, and 0, be d@ned us in (55)  and let us put 

P 

(un) j  Sj($, i n - 1 ,  fin)+@ qjk(d#-l)k- 
k =  l 

Then 

(5@ 

and 

. , 

Proof. First of all, let us observe that for T = we have 

(where 1 2 ~ - ~ , ~  is the k-th coordinate of ti,-,) and 

Now, using the main assertion of Lemma 3 for z = i, we obtain (56). Applying 
(12) for z = i, we obtain 

n 

max sup Ilull-' pijn(n-1/2t, n-l u, c~exp(n-l/~ v)) = O,(n-l) as n + oo, 
l < j < p  5~ i = l  

and hence also 

Finally, 

max pijn(n-l/~fn-l, n-lli,-l, o e ~ p ( n - l / ~ $ ~ ) )  = O,(n-l) as n +  co. 
l $ j < p i = l  

Since the supremum of the Wiener process over a bounded interval is bounded 
in probability, we get (57). 

THEOREM 2. Let Conditions A, B and C be satisfied and $I, f 0. Then uni- 
formly in I E  N we have 

where U, was defined in Lemma 6.  



Proof.  Using (341, (351, and Lemmas 3 and 5 we obtain 

and the proof of the theorem is complete, s 

Remark 10. We have already known from Lemma 5 that the normed 
difference of the estimators n @)-@(*-ial)) is 0, (1). Theorems 1 and 2 specify 
this information for the cases when $, ES 0 and $, f 0. For the former case we 
may give, 2 the function @ is bounded, with a large probability a nonrandom 
upper bound for this difference, so that we have an idea about stability of the 
estimation when adding or excluding one ,observation. Since the most of the 
functions which are used in the robust considerations are bounded, this infor- 
mation is useful from the computational point of view. (And the numerical 
experience says that the approximation works for a rather small number of 
observations, usually about twenty; see Vis'ek C36j.) On the other hand, for the 
latter case we of course also know that the difference is bounded in probability 
but the upper bound may be pretty large and the numerical example given in 
ViSek [39] confirms much larger "fluctuation" of the L,-estimator, i.e. of the 
estimator generated by a $-function which contains jump, in comparison with 
the estimators with smooth $-functions. 

In other words, for the former case if the "tuning" constant of the corre- 
sponding $-function is properly assigned to "winsorize" really some residuals, 
the maxis is, 11 n @(") - @"-l'l)) 11 is nearly deterministically given. For the latter 
case it is not so, and hence it may be preferable to avoid discontinuous 
$-functions. 

Remark 11. The uniformity in E which has been stated in Theorem 1 has 
to be interpreted (as follows from the proof of the theorem) in the following 
way (let us consider for simplicity the case $, = 0): 

V ( E  > 0 and S > 0) 3 ( n o ~ N )  k ' ( n ~ N ,  n 2 N o  and I = 1, 2,  ..., n) 

p (1 in (p) - p(" - 1 J ) )  

-&,€-I $ f ( ~ I / ~ Q - ~ ~ ' W I ,  p("))$([E;-g(xz, p(n)llK1)ll > 8 )  < &, 

i.e. no is the same for all I = 1, 2, . . . , n. This does not mean necessarily that 

max lln -p@- 1J) 
'( i<l<n 

1 

- dn E - $' (el/r) Q - I  gf (Xi, fi(n)) y? ([x - g (XI, fi(n))] 8; > 6) < 8.  

Similarly for the case y?, f 0. 
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7. Condoding remarks. In the LS-regression anaIysis the formula 

has been frequently used in the studentized form (in the situations when the 
data are "regressionally equivariant"), i.e. it was applied in the form 

(59) (fi&;jlpi) - fiPd,J [var &;jlJ) - Ed, ,)] - It2 = (&-~ ; f i j )u - l  

for j = 1, 2, . . . , p, or for the norm of the difference ~ l f i f : ~  '*'I- fiPJ11 in the form 

(In what'folkws for the sake of simplicity of explanation we shall assume for 
a while that $, = 0.) 

For the M-estimators the presence of op (1) in (54) generally does not allow 
to derive directly from (54) an approximation to the variance of 
I I ~ ~ ( " - ' J ) - - ~ ~ ( ~ ) I I .  But it indicates that the term a,(l) in the representation (54) 
may cause that the exact variance of 11j?("-'*')-p)II (or of pj"-1.9 -8)) is much 
greater than 

or than 

respectively. This means that the large values of var ]ID("- - ~?")II (and of 
~ar(&-'~')-@))) might be caused by the fluctuation of ~[p("-~*')- (and d 
B@-lJ)-&)) J on a set of (very) small probability. But then we may prefer to 
"studentize" - /?@- l J ) I I  by (60) (or f l  - lp') - by (61)), i.e. by the asymp- 
totic variance of ~lfl(~)-fi("-'*~llj rather than by an approximation to the exact 
variance. We obtain 

or (independently for any j = 1, 2, . . . , p) 

(&-1.0-/jj@)~~:l = Ilr (E; - g (Xz Fn))) +o,(l) as n+ m. 
varl/"(IEl (t I.; - g(X1 Y B)1 g, I)) 

One may also observe that the difference in the prediction of the response 
variable based on the estimate b(") or on /?n-130 is proportional to the same 
quantity. In fact, for any I = 1, 2, . . ., n and some X E  RP we obtain 

p(n1- j%-l ,O = ~ T ( ~ ) - ~ ( n - l . ~ l  1 
and hence 

sup {lf(n)-p(n-lJ)l ~ ~ x ~ ~ - ~ )  = ~ ~ ~ ( ~ ) - f i ( " - l J ) ~ ~ .  
lIXll =1 



Further, as we have already observed in Remark 10, the only random 
factor in (54) which depends on the d.f. F is $(K-g  (XI, fi("))), the range of 
which is bounded by inf,,, $ (z) and sup, $ (2). This means that in the case 
when the great error sensitivity of the estimator is properly assigned, i.e. when 
some outliers are actually "winsorized," maxi ld. 11p(") -p- ''')I1 is nearly 
always equal to sup, l$(z)l multiplied by some constant. So, it seems somewhat 
strange to try to test sigdicance of the largest change of the estimates. This 
implies that to create a possibility to test sigdcance of the change, we need to 
exclude some sufficiently large subsample of data. The percentage of the ex- 
cluded obselvatioas~bas to be larger than is the contamination level. We hope 
the problem will be treated in the forthcoming paper. 
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