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PROPERTIES OF GREEN FUNCTION
OF SYMMETRIC STABLE PROCESSES

BY

TADEUSZ KULCZYCKI (WROCLAW)

Abstract. We study the Green function Gp(x, y) of symmetric
a-stable processes in R? for an open set D (0 < o < 2,d > 3). Our main
result gives the upper and the lower bound estimates of G, (x, y) for
a bounded open set D with a C*-! boundary. We also get a more direct
formula for the Green function for a ball. As a simple conclusion we
obtain “3G Theorem” and estimates of E*(zp), where 7, is the exit time
of D.

1. Imtroduction. The aim of this work is to study the Green function of
symmetric a-stable processes in R? (or of Riesz potentials of order «), where
0 < a < 2 and d > 3. The main result of this paper may be stated as follows:

THEOREM. Let 0€(0, 2) and d = 3. Let D < R? be a bounded open set with
a C*! boundary and let Gp(x, y) be the Green function of symmetric «-stable
processes for D. Then there exist constants C,, C, >0 depending only on
D, d, a such that for any x, ye D

. 1 0%2 (x) 5% (y)> Gp(x, y)
C, min — <
! (Ix—yl" 2 =y Ag,
. 1 6°2 (x) 6%/ (y)>
< min -, ,
<Ix—y|" 2 x—yf

where 8 (x) = dist(x, dD) and A, =2""n"%2 I (d—0o)/2)(I (2/2))" .

As an immediate application of these estimates one can get the so-called
“3G Theorem” (cf. [5] or [6]). We also use our main result to obtain estimates of
E*(tp), where 7, is the exit time of D, t;, = inf{t > 0: X, ¢ D} (Proposition 4.9).

These results extend the classical theory, related to Brownian motion, to
the case of symmetric a-stable processes, a€(0, 2). The class of a-harmonic
functions, a (0, 2), has simple homogeneity properties analogous to those of
the classical harmonic functions (¢ = 2). Also, the potential theory for0 < a < 2
in R? (d > 2) enjoys the explicit formulation in terms of M. Riesz kernels
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|x— y|*~¢ similar to the classical theory based on Newtonian kernel [x—y|?> ¢

(see [8]). The main difference and difficulty in the theory of a-harmonic func-
tions is that the support of the harmonic measure for an open set is not
contained in its boundary, as in the classical case, but in its complement. This
exhibits the fact that paths of symmetric a-stable process fail to be continuous.

Estimates of the classical Green function attracted attention for a long
time because of important consequences in potential theory, harmonic analysis
and differential equations. They are important tools in studying the
Schrodmger equat1on and Feynman-Kac gauge theory. Our work follows ra-
ther recent papers by Chung and Zhao (see [5] and [9]). Nevertheless, some
similar estimates in the classical case were obtained e.g. by K.-O. Widman in
the sixties and by M. V. Keldy§ and M. A. Lavrent’ev in the thirties.

Section 2 sets up notation and collects together some standard facts for
further use. We introduce the Green function of symmetric a-stable processes
and state its basic properties, The idea of studying properties of Green function
using methods of stochastic processes can be traced to the work of Hunt [7].

Section 3 is devoted to the study of the Green function of symmetric
a-stable processes for a ball. In our investigations we were inspired by the
paper by Chung [5], concerning the classical Green function for a ball. By
arguments from [8] we express the potential of harmonic measure for a ball by
the potential I, of the equilibrium measure for a ball. Thus we obtain a more
direct formula for the Green function. It may be interesting that for « = 1 and
d = 4 this function can be expressed by elementary functions. Using estimates
of I, and some ideas from [5] we prove the main inequalities for the Green
function. ’

In Section 4 we extend the results obtained in Section 3 to an arbitrary
bounded open set with a C''! boundary. These results are analogous to the
ones proved in [9] for the classical Green function. The proof of the lower
bound estimate follows [9]. The main difference is caused by the fact that in

" our case the support of the Poisson kernel P,(x, ) is not contained in the

boundary of a ball but in its complement. In the proof of the upper bound
estimate we exploit direct estimates of the kernel P,(x, -). At the end of this
section we obtain some applications of our main results. We also point out
some counterexamples.

2. Preliminaries. The notation C = C(x, y, z), frequent in this paper,
means that the constant C depends only on x, y, z. “Constants” are always

~ numbers in (0, o), so that we can freely multiply and divide them to get other

constants.
For xeR% r >0 we put

B(x,r)={yeR" |y—x|<r} and S(x,r)={yeR" |y—x|=r}.

The surface area of the (d — 1)-dimensional sphere (0, 1) = R? will be denoted
by w, = 2n%?/I'(d/2). Let ¢, be a unit mass at x. For any subset 4 < R?, we
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denote its complement by 4° = R\ A, its closure by 4, and its boundary by
0A = AnA°. Furthermore, we put

dist(4, B) =inf{|x—y|: x€ A4, yeB}, diam(4)=sup{|x—y|: x, ye A}

for A, B = R°. We write m(A) for the d-dimensional Lebesgue measure of the
set A < R Let #(R% denote the Borel o-ficld of R’

For the rest of the paper let xe (0, 2) and d > 3. By (X,, P*) we denote the
standard rotation invariant (“symmetric”) a-stable, R%-valued Lévy process (i.c.
homogeneous, with independent increments), with index of stability « and the
characteristic' function of the form

Elexp{i¢ X,} =exp{—t|£]*}, ¢EeR%,t>0.

As usual, E* denotes the expectation with respect to the distribution P* of the
process starting from xeR®. We always assume that sample paths of X, are
right-continuous and have left-hand limits almost surely. (X,, P*) is a Markov
process with transition probabilities given by P,(x, A) = P*(X,€A) and is
strong Markov with respect to the so-called “standard filtration” and quasi-
-left-continuous on [0, o) (see e.g. [3]). For the sake of brevity we will refer to
this process as to “symmetric a-stable”.

The distribution of X, with respect to P° has the continuous and bounded
density h, (¢ > 0). According to [10] we have

h(x)=t"%h,(t"'*x) and h(x)<ct|x]?% xeR

where ¢ = c(d, a).

For Ae#(R%), we define T, =inf{t > 0: X,e A}, the first hitting time
of A. The first hitting time of A° is called the exit time from 4 and denoted by
T, =inf{t>0: X,e A,

Let f> 0 be a Borel measurable function on R?. We say that f is a-har-
monic in an open set D < R? if

fx)=E*f(X,,), xeA,

for every bounded open set A with the closure 4 contained in D.

We define the harmonic measure w} (for D, in x, with respect to X) by the
formula wj(4) = P*(X,,€4), where xeR?; A, DeZ(R%. It is clear that
supp (w}) < D".

If A e % (RY), then, for each xeR?, P*(T, = 0) is either zero or one accord-
ing to the Blumenthal zero-one law. A point xeR? is called regular for
AeBRY if P*(T,=0)=1, and x is called irregular for A if P*(T, = 0) = 0.
We denote by A" the set of all points which are regular for the set A4.

Now, we will give a condition concerning regularity (the outer cone con-
dition). Let Be % (R?. Suppose there exists a cone V with vertex yedB such
that VnB(y, r) < B° for some r >0. Then y is regular for B

10 — PAMS 172
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For f > 0 and Borel measurable we define the potential operator of X, by

Uf(x) = E* _f fXadt.

According to [3] we have 0
Uf(x) = [ Agulx—yI*~% f (y)dy,

where Ag, = 2-*n~*I'((d—a)2)(T (/)"

U is called the Riesz potential and A,,|x—y|*¢ is called the Riesz kernel of
order o. We will write u(x, y) = Az, |[x—y*"%

Rewriting Theorem 1.16 in Chapter VI in [3] for symmetric a-stable pro-
cesses we get the important technical fact:

ProroSITION 2.1, Let Be #(R%. Then
fu(z, y)dwi(2) = fu(x, 2)da}(2).

We point out that in this work we consider only non-negative o-finite
measures. We define the potential Up of a measure u by

Up(x) = fu(x, y) du().
According to Proposition 2.1 and [3] we have the following fact:
PROPOSITION 2.2. Let y be a measure on R® and Be % (R%). We have
1) Up(x) > [Up(z)dojz), xeR;
(ii) if supp (u) = (BYY, then
Up(x) = [Up(z)dwk(z), xeR°.

The crucial fact of the potential theory of symmetric a-stable processes is
that the density of the harmonic measure for a ball is given by an explicit
formula (see e.g. [2] or [8]). Let xe B(0, r). The harmonic measure w¥,,) for
B(0, r) has the density function P, (x, -) (with respect to the Lebesgue measure)

given by the formula
T2—|JC|2 af2 _
Cg(mm) Ix—y~¢ for IJ’l >,

0 for |yl <r,

@1 P.(x,y) =

where ¢? = I'(d/2) 9?1 sin (ro/2).
Now we will introduce the Green function.

DerFINITION 2.3. If Be 2 (RY), define

Gp(x, y) = u(x, y)—E*u(X (z5),y) for x, yeR’, x # y.
We put

Gp(x,x)=0 for xe(BY and Gy(x, x) = oo for x¢(BY.
Gg(x, y) is called the Green function for B.
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It follows easily from the definition that if xe(BY, then Gz(x, y) = 0 for
all ye R?. Using Proposition 2.2 for u = &, we get 0 < G4z(x, y) < u(x, y). By
Proposition 2.1 we have G,(x, y) = Gz(y, x) for all x, ye R?. Notice also that if
D is an open set and xe D, then G, (x, x) = oo equals u(x, x)—E"u(X(rD),x).

According to [3], if BeZ(R%, then B\B" is polar. Using this and the
strong Markov property we can obtain the following technical lemma:

LeEMMA 24. Let f be a Borel measurable function on R®, f >0 and let
D, D, < R? be open sets such that D, < D,. Then for every xeR® we have

_ ©E* f(X (xp,) = E*[E¥*P0 (X (zp))].
By Proposition 2.2 and Lemma 24 we get the following fact:

PRrOPOSITION 2.5. Let D be an open set in R, B(x,,r) = D, xe B(x,, 1),
and yeR®. Then

(1) G)(xs y)> _[ GD(N, y)Pr(x_xl’ u_xl)du;

B(x1,r)°
(i) if in addition y¢B(x,, ), we have

G )= | Gl )P, (e—x,, u=s)du
B(x1,r)¢

Of course, this proposition remains valid if we replace B(x,, r) by an open
set A (A< D) and P,(x—x,, u—x,)du by dw}(u). In particular, G, (-, y) is
a-harmonic in D\{y}.

Let D, = D, be open sets in R As a simple conclusion of Lemma 2.4 we
get Gy, (x, y) < G, (x, y) for every x, yeR%

Let D = R? be an open set. We will present some facts concerning con-
tinuity of G, (x, y). The proofs of these properties are almost the same as in the
classical case, taking into account properties of A,, so the reader is referred to
[1] and [6].

G, (-, *) is continuous in the extended sense as a mapping from D x D into
[0, co]. This follows from the proof in [6], Theorems 2.4 and 2.6. By similar
arguments to those in [6], Theorem 1.23, we can obtain lim,,, G, (x, y) = O for
each yeD and zedDn(DY. If in addition D is bounded and éD < (D°), we
have

lim G(x, y) = G(xy, o) for x,, yo€R?, x4 # ¥,-
y_‘Y(l))
This follows from the proof in [1] (Chapter II, Proposition 4.7) and analogous
arguments to those in [6], Theorem 2.6.
By Proposition 2.5 (ii) and the extended continuity of G, (-, *) it is easy to
notice that if D = R? is an open set, then G,(x, y) > 0 for each x, yeD.

3. Green function for a ball. In this section we abbreviate B(0, r) to B, and
G, to G,. By Definition 2.3 we have G, (x, y) = u(x, y)— Uwi, (). The density
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of the measure @}, is given by (2.1). However, we will not use this formula but
the equivalent characterization given by the following proposition:

PRrOPOSITION 3.1. Let x€B,. Suppose v is a measure on R satisfying the
following conditions:

(i) supp (v) < B;;

() Uv(y) =u(x, y) for yeB:.

Then v = wjp,.

Proof. Of course, supp(w3) < B;. By Proposition 2.1 it follows that
w3, satisfies (ii). On the other hand, if u satisfies (i) and (ii), then by Proposition
2.2 (ii) and again Proposition 2.1 we get Upu(y) = Uw}, (v) for all ye R%. Then
4= wj by Theorem 1.12 in [8].

We will adapt some arguments and methods from [8] to get the expres-
sion for Uwj, which will be convenient for our purposes.
Let r >0 and x¢0B,. Define a mapping z — z*¥ by

7‘2—le2

3.0 zo>z¥=x—(z—x) P

If xe(B,, we call this mapping inversion with center at x and radius
R = (x|*—r?)2; if xeB,, we call it imaginary inversion with center at x and
radius R = (r2 —|x|?)'/2.
In the sequel we collect some well-known properties of these mappings for
further reference (see the Appendix in [&]).
ProrosITION 3.2. If z — z* is defined as above, we have
(M) |z* — x| [z —x| =
.. —2z,|R?
(i ot — g = 2R
|z, — x|z, — x|
2 2y (42 112
r*—|x]?)(*—|z
2 +( |x1%) (r* — 21

i z*2 =
(i) |2*| T— ;

(iv) the inversion maps B, onto itself, S(0, r) onto itself, and (B, onto itself;
the imaginary inversion maps B, onto (B):, S(0, 1) onto itself, and (B
onto B,;

dz* dz
v)

lz* —x? |z —xl*

Let z — z* be an imaginary inversion with center at xe B, and radius
R = (r*—|x|?)'/2. With each measure v which does not have an atom at the
point x we associate another measure v* by the formula

dv* (2%) = (lz;xi)rddv (@).

v* is called the Kelvin transform of v.
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By Proposition 3.2 (ii) we have
| Ia d

(32 U (% =[uy*, z*)———dv(z)

ly—x*"*lz—x*"* lz—x|*"* ly —x|
= _[Ada d~a p2d—2a a—d dv(z) =
ly—z] *R R R

) Uv(y).

Now, let us introduce the measure A having a density A(x) given by the

formula
r2—|x|*)"%% for |x| <r,
A (x) | )
0 for |x| = r

Denote the potential of the measure A by I, = UA. According to the Appendix
in [8] we have I, (y) = C;} for |y| <r, where

A,,,,w,, J" L gy Aagm®?!
2 (1+b) I'(d)2) sin(no/2)’

Let ¥ be the Kelvin transform of the measure A with respect to imaginary
inversion* with center at xe B, and radius R = (r>—|x|*)*/2. By (3.2) we have

- d—a
ZI R = At

It follows that UA*(y*) = C; 1 R* ¢|y—x|“= for |y| <r. By Proposition 3.2
(i) and (iv) we get

Ut (y*) = Cit R |y*—x|*"¢  for |y*| > r

(3.3) Cia =

Since supp(4) = F,, it follows from Proposition 3.2 (iv) that supp(4f) = B;.
Thus p= A;,C,,R*%A* satisfies conditions (i) and (ii) in Proposition 3.1.
Hence wj, = u. Consequently,

x atC \ ly_x e A‘ac
UCDB'_(y*)— ;{d : UA*(Y*)_Adsza< Rz l) I,.(y)=|_y*_d‘“‘|:;—j: r(y)

Finally,
(34) Uws, () = Caqu(x, ) I,(*), xeB,, yeR".

Furthermore, if [y| <r, then [y*| > 7.

. We are interested in deriving a more direct expression for Uwj, (v), y € B,.

Having (3.4), we can see that it remains to compute I,(y) for |y| >r.
After the inversion x—x* with center at yeB; and radius

R = (|y|>*—r*»)'?, for the integral I,(y) we obtain the expression

Adadx Ad ,,dx*
L0) = b = (P -7y L
Y |x|$r(r2_|x|2) 12 Ix—.VId ¢ Ix-]‘.s,.(rz—lx*lz) 12 lx*—y'd
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We introduce spherical coordinates (x¥, ..., x}) - (@, ¢,, - .-, ¢4—1) with origin
0 and principal axis Oy. Then

be* —y1* = (@*—2lyl @ cos ¢, + ).
Hence
L(y) = Aa.(y?—r3)¥?2m HI n* 0d6
k=10
r d—1 n send—2
e sin’" % ¢, do,
X do.
o g(rz—ez)""2 (j) (@ —21yl¢ cos ¢, + [y
We will put

(0]

TP P —
sin " sin" 2 ¢, dop,

-]l

O'——ﬁH

For a>1 we have

f sin’"2 ¢, do, _ @ 1
o (1—2acos ¢, +a?)¥?* ¢ a® 2(a*>-1)

This relation is verified in the Appendix in [8]. Consequently,

et 1™ sin?~2 ¢, d¢p,

L) = A (¥ —13)"*c a2 d

: j( ?—g?)? d£(1—2(|y|/9) cos ¢ +(1y1*/e?)*?

r gd~1 1 CD.: 1
= Ay (y*—r*)"*c 5 3 —— do

. g(r2 22 " ¢ (Y~ H(¥*/eH-1)

Finally, we obtain
WP-ry2r

(35) Ir(y) = Ad,awd |y|d—2

where |y| > r.
Now, set a = |y|>—r* and put b = (r>—¢?)/a in (3.5). Hence

do,
L= (=) °

Ad,a w, r2/a _ ab)(d“ 2)/2

1
2 |“j b“/2(1+b) @,

(3.6) L) =

where |y| > r.

By the definition of I, we easily get I, (z/r) = I,(2), ze R®. This permits us
to concentrate on the case r = 1. Now we are able to prove some technical
estimates of the integral I,.

LeMMA 3.3. Let us put I1(y)=1,(y) and a = |y|*—1. For |y| = 1 we have

1

3.7 1) < T
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If in addition a < 1, then
1 a*? 1 a*l?
perr s Rl 01 < 2
Caalyl Caaly ly
where C; =C,(d, «) and C, = C,(d, o) are the constants.
Proof From (3.6) we have
A © 1 0y % 1
d’aati)dz .‘. 2 db— L da—J; .[ 2
2y1"7% 5 B2 (b+1) 20072 1) b2 (0 +1)
. A,,.acb"d‘ if" 1—(1—ab)¥d~242
20172 5 bBRB+Y
Notice that J,, J,, J, are positive. Inequality (3.7) follows immediately from
(3.3) and (3.9).
Let a < 1. We have

A0 © 1 1 Ag 0, a*?
10)< T —J, < J, —22— db = S — .
xJ1 2 1 2|y|d 2 1.‘/.“ 2ba/2+1 Cd,az |y|d 2 20 |y|d 2

On the other hand,

(3.8)

|d—2_ Id—Z’

db

(3.9) I(y)=

db=J,—J,—1J,

J < Ad,a CUd o 1 _ Ad.a (Dd a“/Z

2= 2|y|d-2 Ja pr2+1 - o |y|d—2'

It is easy to check that
(1—ab)¥=212 > 1—(d—1)ab/2 for be[0, 1/a].
Hence
Ag,0,d—11Y"  ab Ag0,d—1) Y a
Syt 2 L er) P S Tt ) o
) 0 (b+1) |yl
_ Ai0,(d-1) a*?
420 [y4=2"

db

Consequently, using (3.9) we obtain the left-hand inequality in (3.8).
Let us write

fGe, ) = (2 =y + 02 = IxP) (2 — Iy)2

and

(3.10) g (x, y) =

where x, ye R’
The function I,(y): R? - R depends only on |y|. To s1mp11fy the notation,
we will use the same letter I, to denote the function I,: [0, co] — R, defined by

I(ly) = 1,(») for yeR".

2

%9 _ (rz (=) (r2—|y|2)>”2
x| Ix—y*
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By the definition of the Green function and (3.4) we have

G,(x, y) = u(x, y)—Uwi, (y) = u(x, y)—Caotu(x, Y I,(y*), x, yeB,
where |y¥*| = g,(x, y) by Proposition 3.2 (iii). Hence

(311) Gr(x9 y) = ]leﬁ [1 _Cd,a: I,(g,.(x, y))] * X, yEB,.,
which with (3.3), (3.6) and (3.10) gives a more direct formula for the Green
function for a ball.
In particular, from (3.11) it follows directly that G, is symmetric.
" We can now formulate our main theorem for the Green function for a ball.
The analogous theorem for the classical Green function is proved in [5]. Also
the proof of our theorem follows that in [5].

THEOREM 34. Let us put d(x) =r—|x| for xeB,. There exist constants
A, =A,(d,a) and A, = A,(d, o) such that

1 0%2 (x) %2 (y)) G,(x, y)
A, min , g 4
! (Ix—yl"‘“ x— y|? Agq
a2 af2
<min( 1H,A25 (x)5d (y))
lx—yl |x—yl

for all x, yeB,.

Proof. It is a simple matter to check that g, (x/r, y/r)=r"1g,(x, y).
Since I, (z/r) = 1,(z), ze R?, it follows that G, (x, y) = r*~% G, (x/r, y/r). Hence it
is not difficult to observe that it is sufficient to prove our theorem for r = 1.

Let r=1. We put G(x,y) = Gy(x, ), 1) =1,0), f(x, ) =f1 (&, ),
g=4,(x,y)and a=g>—1.

Let us first prove the right-hand inequality. The inequality with the first
term under the min is obvious. So, to get the right-hand inequality it is suffi-

~ cient to consider the case:

a2 /2
A5P@IR0)
, |x—l
Set A, > 4%/2. Consequently, we have
$®50) _ |

Ix—y?
Hence "
A==y _ 46(x)5(y)
=g°—1= < — < 1.
|x—yI? Ix—yl?

By (3.11) and Lemma 3.3 we obtain

G(x, y) 1 < 1 a*/? )
3.12 < — 1+ Cy, Ci—— |.
312 A ey gz T e G
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We have
L ey TRy
lgl*~2 f(x, y?

Since f(x, y) = |x—y|, the numerator in (3.13) is less than
@d=2) f(x, Y73 (f %, ) —lx—y) S @=2) f (x, p)'~*(f(x, y*—Ix—yI?)
<4(d=2) f(x, y)'"* 3 (x) 5 ().
Substituting this into (3.13) and using f(x, y) > [x—y| again we obtain
1 _46d-25()30) _ 425" (5 (y) 612 (x)31 "2 (y)

(3.13)

1— X - @ -
lgl*~? x—yI? lx—y| x—yI?
< 4d—2) 58" (x) 52 (y)
lx_y|a41—a/2 '
It remains to estimate the third term in the brackets in (3.12). We have
aa/2 5(1/2 (x) 6a/2 (y)
CiuCig=3 < €y, Cia¥? < Cy, Cy 20 —1—_
b gl T e T ey
By (3.12) we get
G(x, y) 672 (x) 32 (y)
—<(2*(d-2)+2°C,,C,)) ———
Agq (2@-2+2"CoC) |x —y*

keeping in mind that we assumed at the beginning that 4, > 4%2,
We now turn to the left-hand inequality. We will consider two cases: a > 1
and a < 1.

Let a > 1. Then, since a = g*>—1, we get g > \/5 By Lemma 3.3 we have
I(g) < Cz}llg|*>~% Therefore

Asa 1 Agy 1
G(x,y) = ’_a<1— _>> ’_a(l— — >
2 = ) P e\
Let a < 1. Then, since a = g>—1, we get g < \/5 From Lemma 3.3 we
have

1 a*?
I(g) < ——C —,
T Cualglt™2 TPgltm?
Consequently,
A, 1 a*/?
G(x,y) = o (1— —+C,Cay —i—s >
~ x—ylf lglt=2 " 72T g2
Ad,a v aa/Z

P S PP ¢ ot G/ ¥ i
2 2 =yt x—yI* '
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Since 1—|x|2 = 1—|x| = d(x), we finally obtain
1 Ay,
J20 2 =l

4. Green function for C''! open sets. In this section we will use the fol-
lowing notation. D denotes a bounded open set with a C'+! boundary, G (x, y)
the Green function for D, and &(x) = dist(x, éD).

A function F: R? - R is called C*-! if it has a first derivative F’ and there
exists a constant A such that for all x, ye R? we have |[F' (x)—F ()| < A|x—y|.

~ We say that a bounded open set D < R? has a C**! boundary if for ¢ach
x€ 0D there are: a C** function F,: R*~! — R (with a constant 4 = A(D)), an
orthonormal coordinate system CS, and a constant n = n(D) such that if
y =0y, ..., ¥o) in CS, coordinates, then

DAB(x, n) = {y: ¥, > F,(y1, -+ ¥n-1)}NB(x, 1).

We point out that the set D is not necessarily connected. However, it follows by
the definition above that if D, and D, are two different connected components
of D, then dist(D,, D,) = 1.

Now we will present some important properties of a bounded open set
D with a C'' boundary. They may be found in [9].

A normal internal vector n_ exists at each point zedD. It is also known
that there exist positive constants s, = s, (D) and r, = r, (D) such that for any
z, wedD, [n,—n,| < sy|z—w| and for any zedD, 0 <r <r,, there exist two
balls B and B3 of radius r such that

B;<D, B;cR\D, and {z} = 0BindB;.

Gx,y) 2 C,Cua 62 (x) 62 (y).

In particular, by the outer cone condition, all points of 6D are regular
for D-.
The main results of this section are Theorems 4.3 and 4.5 — the lower and

- the upper bound estimates of the Green function for D.

At first we prove the lower bound estimate. We follow the approach
designed in [9] for the classical Green function. However, there are major
changes in proofs.

For the sake of brevity we set a constant A’ = 4, 4A;,, where A4, is such as
in Theorem 3.4. ‘

LEMMA 4.1. There exists a constant C, = C,(d, a, D) such that for any
x, yeD we have
G(x,)
572 (x) 6" () > C;.
Proof. Set r =r,/5. Let x* and y* be the points on 0D such that
|x—x* =6(x) and |y—y*| =6(y). If 6(x)<r, set B(a,r)=BY, and if
d(x)>r,set B(a, )= B(x,r).If6(y) <r,set B(b,r) = By ,and if 6 (y) > r, set
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B(b, r) = B(y, r). Notice that xe B(a, r) < D and ye B(b, r) = D. We also have
M? min(r L) and w?min(r L)
é(x) > diam (D) a(y) > diam (D)
By Proposition 2.5 (i) we get
Gx,y2=2 [ G,y P,(x—a, u—a)du.

B(a,r)c
Using the symmetry of G(u, y) and again Proposition 2.5 (i) we get
Gx, =" [ G, wP(y—b,v—b)P,(x—a, u—a)dvdu.
B(a,r)c B(b,r)c
For ueD we have
P,(x—a,u—a) (r*—|x—al?)"?
B (u—aP —r P u—x 5 ()

1 r*
>~ min(r?, — __)—¢.
(diam (D) n(’ (diam (D))““) ‘
Similarly, if ve D, we have
P,(y—b, v—b)
5% (y)

Since r = r,/5, it is not difficult to notice that there exists a ball B(z, r)
such that

B(z,r) = DnB(a, r¥nB(b, r).
Let us write B = B(z,r) and dg(u) = dist (u, B). If u, ve B(z, r/2), we have
Op(w) = lu—v|/2 and dgz(v) = [u—v|/2.

By Theorem 3.4 we obtain

G, 1 > Gy, u)?A’min( L 5?2(")5?2(“))> 4

v—ult=* jo—ul? Z 2 p—ufe

for all v, ueB(z, r/2). Hence

G(x, y)
8% (x) 6% ()

A

dvdu.

zc |G, wdvdu > — —
BB 2 B(z,r/2) B(z,r/2) |u—v|

The last integral is positive and depends only on d, «, r.

LeMMA 4.2. Let x, yeD satisfy the inequalities
r

max (309, 60) < 2=yl and byl < {5t
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" Then the inequality

52 ()82 (7)

G(x’ y)> CZ Ix__yld

holds for a constant C, = C,(d, a, D).

Proof. Let x* and y* be the points on éD such that |x —x*| = d(x) and
ly—y*| = 6(y). Set r =r,, B, = BY = B(o,, 1), B,=BY = B(o,, 1). Thus,

Ix*—y¥ < [x—yl+6(x)+(y) < Slx—yl,
0y = 0,| < X* — y*[ 41 [ —nya] < (1474 50) [x* —y¥|

S(14rysg)x—yl < r/2.
Since d(x) < r/S and o,, x, x* lic on the same line, we have B(x, 6(x)) < B,.
Similarly, B(y, é(v)) < B,.

Set h = dist(y, 0B,). There are three kinds of situations.

Case 1. yeB,, h = é(y)/4.

Let us write g (u) = dist (u, 0B,). By Theorem 3.4 we obtain

1 o652 (x)o%2 ()'))
=y~ x—y* )

But 6p_ (x) = 6(x) and Jp,(y) = h = 5(y)/4. We also have |x—y| > d(x)/2 and
[x —y| = 0 (y)/2. Therefore the right-hand side of (4.1) is greater than or equal to

52 () 5% (y)
Ix—y*

) <
<

@.1) G(x,y) > Gy_(x, y) > A’min(

Alz—a

Case 2. y¢B,, h = 6(y)/4
Set P = {ucR": h/2 < |u—y| < h}. Of course, P c B;. By Theorem 2.5 (i)
for xeB, = D we get

(42 G(x,y) = [ P(x—0,, u—0,)G(u, y)du

B
= j‘ Pr(x—ox’ u—ox) GBy(u, y)du
PnBy

_ P —lx—o > 1

. PnB, (u—o > =% |x—
Let ue PnB, and write dp (u) = dist(u, 0B,). We have
lu—yl > h/2 = 6(y)/8 = 65, (y)/8,
0p, (U) < lu—y|+05,(y) <9u—yl.
By Theorem 3.4 we obtain

uld GBy (ua y) du.

1 6wy (y)> S A S wF0e)

G u, = A min "
(1, ) (w—yP“ ) T u—yp
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Notice that r>—|x—o,|*> > ré (x). Since x e B_, it follows that h < |x—y| < r/10.
If uePnB,, we also have

Ix—ul < [x—yl+ly—ul <|x—yl+h <2]x—y,
lu—o ] —r <lu—yl+|y—o.—r=lu~yl+r+h—r <2h,
lu—o,+r <2h+2r <3r, |u—o,*—r*<6rh.
Thus the right-hand side _of (4.2) is greater than or equal to
a r28%(x) 1 A SY2 ()62 (y)
o »ia, 672 212 paiZ od Ix_yld 720/2 Iu—yl"
_ A Py 1 i 532 (u)
TP E T |y K pas, li— yld

It remains to show that there exists a constant ¢ = c(d, &) such that

1 5,{2 u)
43
“3) wr P!B lu— .V|d
To do this, introduce spherical coordinates (g, ¢4, ..., ¢;—1) with origin y and
principal axis yo,. Let us consider
S={u=(0, @1, ..., pa-1): 2 <@g <h, 0< @, < 1/6}.

Obviously, S < P.

Let bedB(y, h) be the point which lies on the line yo, between y and o,.
Since h<r/10 and |y—o|=r—0(y) =r—r/5, such a point exists. If
u=1(0, @, ..., Ps—1)€S, we have

lu—b|* = |y—bl> +|u—y|*—2|u—ylly—bl cos ¢; = h*+¢> —2hg cos ¢,
< h? 4% —2hg cos (n/6) = h*+¢>—/3h.

It is easy to notice that the function f(g)=h>+¢>—./3hg defined for
o€ [h/2, h] takes its maximum at the point #/2. We have f(h/2) = c, h?, where

¢, = 5/4— \/3/2 Notice that 0 < ¢, < 1. Hence [u—b|? < ¢, h*. Consequently,
lu—o,| < lu—b|+|b—o0,| = [u—b|+r—h—5(y)
< hyJe,+r—h=r—h(1—cy).

Therefore

r—lu—o, > —h(1=Jcy)) = h(1—\Jc,) > 0.

Hence we infer that S < B, and 5By(u) =r—lu—ol =h(1— \/cl) for ueS. Let
us put ¢, = (1—/c,) (¢, > 0). We have '
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1 5 5#2 (u) j‘ ¢z/2 ha}Z
T o, Tt >
h =n/6 n n 21 1 . .
=ci> [ [ [...] [ 50 'sin® 20, ...sinps_, dp,_1 ... do, dg.
W2 0 0 oo@

But
j dg Inh—In(h/2) =1n2 >0

h/2
and (4.3) is proved.
Case 3. h<d6(y)/4 (yeB, or y¢B,).
Set B, = B(y, 6(y)/2). Of course, B, = B,. By Theorem 2.5 (i) for
xeB, <D we get

(4.9) G(x,y)= | P,(x—o,, u—0,)G(u, y)du

= _’. P,(X—Ox, u_ox)GBy(ua y)du
chnBl

_ o P=lx—o,

uBf,nB1 (lu - 0x|2 —-r

Notice that r>—|x—o,* >rd(x). Let ueBinB, and let us write Sy (u)

= dist(u, B,). We have

2)«/2 Ix_uld GBy (u’ y) du.

05, (y) = 8(y) > |u—y|

and
0p,(u) = dist(y, B ) —|u—y| > 6(y)/2 > lu—y|.

By Theorem 3.4 we get

) 1 0% (u) 642 A
Gg,(u, y) > A'min (lu_yld—a’ Bylil)fiﬁ (y)> = —yf=
If ueB“nBl, we also have
|x—ul < |x—yl+ly—ul < [x—yl+d(y)/2 < 2Ix vl
lu—o,| <lo,—yl+lu—yl<r+h+d()2 <r+d(y),
lu—o0,1>—r* = (lu—o,|+7)(jlu—o,l—r) < 3ré (y).
Thus the right-hand side of (4.4) is greater than or equal to
rel? 542 (x 1 A
C:B;,{BI 62 (») 3“’£ r)“’2 eyl ju—y
6%2 (x) 1
Pe— 1" 6%2(y) pgnp, lu—yI"~"

=A'ci27437%2 du.
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It is enough to show that there exists a constant ¢ = c¢(d, a) such that

@45) s ).

B%nB; |u - yl

To do this, introduce spherical coordinates (¢, ¢,, ..., ®s— ) With origin y and
principal axis yo,. Let us consider

P={u=1(0, @1s-.» Pa—1): /2h <@ <8()/2, 3n/4 < 9, < 7}.

Clearly, P = B,. We will show that P < B;. If u = (¢, ¢4, ..., pa—1)€P, we
have :

(4.6) lu—0,* = ly—o,* +lu—y>~2|y—o,|lu—ylcos ¢,

2 [y—o.* +lu—y|>~2|y—o,llu—yl cos (3n/4).
If ye B, then |[y—o,| =r—h, and if y¢ B_, then |y—o,| = r+h. We also have
h<d(y)4<r. So |[y—o,| 2r—h > 0. Thus, the right-hand side of (4.6) is
greater than or equal to

(r—h>+0>+./2(r—h)e.

But ¢ >,/ 2h. Hence this is greater than

(r—h)2+2h%+2h(r—h) =r*+h% = 2.
It is obvious that ./2h < /25 (y)/4, since in the case 3 we have h < ()/4. Thus

1 1

———du > | ————du
BSnB; l“‘ﬂd * ilu—yl" *

a(y)/2 n @ 2n 1

T
= ven
/. Jiaj;y)m 31':[/4 ‘g ‘([ E[)

-2

0 tsin?"2¢, ...sin@,_,dps_q ... do, do.

Qd—a

But
syy2 - B _
Qa—-l dQ — a—l(z a_9 3a/2)5a(y)’

Va4
which gives (4.5) and completes the proof.
 We are now in a position to show the lower bound inequality of G (x, ).

THEOREM 4.3. There exists a constant C = C(d, o, D) such that for any
x, yeD we have

I——:—C‘F_—a ij‘lx—ylgmax(@,a—gﬁ),
G(x,y)= * 552 512 Py
C O ()o"G) y ) if |x—yl> max(ﬁ, ﬂ)
Ix—yl 272
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Proof. If |x—y| <d(x)/2, take B=B(x,d(x)) and write dp(u)=
dist(u, B°). Then ye B < D and

d5(y) = dist(x, BY)—|x—y| = 6 (x)— 5 (x)/2 = 5 (x)/2 = Ix .
By Theorem 3.4 we obtain

G(x’ _V)>G (x’ y)>AI mln( —e’ = —.
= \p = Ix__yld |x_yl,1 |X—y|d 2

1 oF> (x) o0* (J’)> A
If |x—y| < é(y)/2, the proof is the same. 4
I max(5(x), 6(») < 2[x—y| and [x—y| <1y 107 (1+r450) "%, we apply
Lemma 4.2.
When |x—y| > 1,107 (1+ry5s,)" %, then by Lemma 4.1 we have
Id

G(x,y) x—yld > C,ré
8%? (x) 62 (y) 1091 47g50)*

Now we are going to prove the upper bound estimate of the Green func-
tion for D. The classical proof of the upper bound estimate in [9] is based on
the explicit formula for the harmonic function in the ring (say r < [x| < 2r),
which is 0 on dB(0, r) and 1 on dB(0, 2r), and the fact that the support of the
harmonic measure for an open set coincides with its boundary. We were unable
to adapt these arguments to our case. Instead, we exploited direct estimates of
the kernel P,(x, °).

LEMMA 4.4. Let us choose neN such that (n+1)a/2n) <1. Let keN,
0<k<n—1,and m=0 or a/2. Assume that for each le N, 0 <1< k we have
for all x,yeD

547 (x) 5 (5)
1 |x_y|d—a+m+la/(2n) s

@.7) G(x,y) < A

with constants A;= A,(n, m, 1, d, a, D) (0 <1< k). Then inequality (4.7) holds

“for 1 = k+1 with another constant Ay, = Az+1(n, m, k+1,d, a, D).

Notice that for « < 1 we can choose n = 1. Once we prove this key lemma
we are able to prove the upper bound estimate of G(x, y).

THEOREM 4.5. There exists a constant C = C(d, a, D) such that for any
x, yeD we have
c 5«/2 (x) 5a/2 (y))

. Adu
G(x, y) < min e
(x. ) (Ix—yl" @ [x—yl

Proof of Theorem 4.5. We know that inequality (4.7) holds for
=0 and m = 0. Using Lemma 4.4 n times, we see that the inequality holds
for I=n and m = 0. Since G(x, y) = G(y, x), we obtain

5 (y)

G(x’ y) < A [x_yld—am’

x, yeD,
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with a constant 4 = A(d, x, D). So, inequality (4.7) holds for | =0 and
m = a/2. By using Lemma 4.4 again, the inequality holds for | = n and m = a/2
for a constant C = C(d, a, D). This proves Theorem 4.5.

Proof of Lemma 44. There are three kinds of situations.

Case 1. §(x) = 7. ‘

From (4.7) we have

G <4 5m (y) - Ao (dlam (D))(k + 1)a/(2n) 5(k+ 1)a/(2n) (x) 5m ()7)
(x, y) < 4o lx__yld—a+m = rgc+1)u/(2n) Ix__yld—rz+m+(k+1)a/(2n)'

Case 2. 8(x) <1y, |x—y] < 45(x).
From (4.7) we have

o™ (y)

lx“yld—¢+m

5(k-'|- 1)a/(2n) (X) 6m (y)

lx_yld—a+m+(k+ a/(2n) *

G(x, y) < AO < A04(k+1)zz/(2n)
Case 3. 6(x) <ry, [x—y| > 45 (x).
Set r = min(ry, |x—y|/4). We will use in the sequel the following easy
inequality:
CO
Ix—yl’
where C, = max (4, diam(D)/r,). Let x, be the point on dD such that
|x—xg| = d(x). Set

Bi*=B(x,,r)=D and B3*=B(x,,1r)c RA\D.

<

1
r

Obviously, y¢ B(x,, r), since |[x—y| = 4r. Points x,, x,, X, x, lie on the same
line and since d(x) < min(ry, [x—y|/4) =r, we have xeB(x,,r), and x lies
between x, and x;. Therefore, by Theorem 2.5 (ii), we obtain

4.8) Gx,y)= [ G(u, )P, (x—x,, u—x,)du.

B(xi,r)¢

Let us consider four sets:
P = B(xy, )\(B(x;, "UB(x;, 1), R = B(x,, 2r)\(B(x,, "UB(x,, )UP),
S = B(ya 2 |x—_v|)\(B(x1, ?')UB(XZ, T‘)UPUR), T= B(y’ 2|x__y|)c

It is immediate that B(x,, r)° = B(x,, )OPURUSUT. We also have
G(, y) =0 on B(x,, r). We will estimate the integral in (4.8) separately on
P, R, S, T. Estimate on P is the most difficult.

At first we will do this on R, S, T. Now we prove an easy lemma.

LEMMA 4.6. If u¢(PUB(x,, VUB(x,, 1)), then |u—x| > r\/§/2.

Proof. Let us consider the triangle ux,x,. The point x lies between x,
and x,. Since |u—x,| > r, [u—xo| = r and |x, —x,| = r, it is easy to notice that

11 — PAMS 17.2
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the angle <« x, ux, < n/3. Hence one of the angles ¥ x, x,u and ¥ x,x,u
must be > n/3. We may and do assume that & x,x, u > n/3. Now we will
consider the triangle xx, u. Denote angles ¢ = ¥ xx, u > n/3 and ¢ = X x, xu.

If ¢ > m/2, then Ju—x| > [u—x,| > r. If ¢ < /2, then sing > ,/3/2. We have
u—x| _Ju—x,|
sing  siny

Hence [u—x| > sing|u—x,| > r\/t’;/?,.
Notice that r+|x—x,] <2r<2(r+|u—x,|) and r—|x—x,| = ¢ (x). Hence

@9 [ G, y)P,(x—x,, u—x,)du

RuSuT
1 (r—lx—x,?** 1
< Ay cdom - L du
° ®) RuguT lu—y =" (x| =12 Ju—x|*
1 1 1

< C 5a/2 x) 6™ — du,
1 ( ) (y) RU£UT |u_y|d a+m (lu__xll_r)alz |u_x|d

where C, = A, 8242,

Now we will estimate the integral on the right-hand side of (4.9) separately
on R,S, T B

Let ueR. Then, by Lemma 4.6, ju—x| > r\/3/2. Recall that r < |x—y|/4.
We have
lu—yl 2 Ix—yl—Ix—x;]—lx; —ul Z |x—y|—3r = |x—y| =3 |x—yl/4 = |x—y|/4.
Hence

1 1 1 244d-atm 1

I d—atm 22 10U < d—a+mj zdu.
r =Yl (lu—x (| —1)"* lu—x| 39518 |x —yl g (lu—x;|—r)"

- We have

1 < __t d er _ 1 -
u Uu=aw @
R (|“.—x1|—7')a/2 h B(x1,2M\B(x1,r) (lu—x4| _r)a/2 I r (Q—r)alz

1

dg.

After substituting t = g—r, this is equal to

r w2 ;2 C§2 1
t4ryldt < At g 4 0
@ | ) - 2—o)|x— y|*?
Hence : ‘
1 1 1 C
4.10 du S —— s
(4.10) i[ Ju—y*= ™ (u—x,| —1)*? lu—x|* “ |x—yld-u2+m

with the comnstant C, = C,(m, «, d, D).
Now let ueS. We continue estimating the integral on the right-hand side
of (4.9). By Lemma 4.6, if ueS, then |ju—x|>r./3/2. We also have
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|lu—x,|—r = r. Hence
1 1 1 24 Catal2 1
." d—a+m a/2 ddus' df2 . d+af2 d—a+mdu'
s lu—yl (lu— x| —1)"* ju—x| 3% x—yl s lu—yl

We have
1 1 w25 ™
e du < R N e
.£|u—J1|d ahm B(y,2|x—yl) |M—.V|d w¥ a—m
Hence
-1 1 1 C
4.11 . du < 3 )
@) T e o e S e

with the constant C, = C;(m, a, d, D).
Now let ue T. We keep on estimating the integral on the right-hand side
of (4.9). We have

[u—x| = lu—y|—|y—x| = [u—yl|/2

and
[u—2xy|—r 2 ju—yl—ly—x|—I|x—x;|—r > lu—y|—|ly—x|—2r
2 [u—yl—lx—yl—|x—yl/2 > lu—yl/4.
Thus
1 1 1

@12 i lu—yl* =%+ (u—x,| —r)*/? Iu—xl"du

<242 —I_—du =C, —IT——

o — |u_y|2d a/2+m |x_y|d a/2+m

with the constant C, = C,(m, a, d, D).
Finally, by (4.9)(4.12), we get
4.13) | G, y)P.(x—x, u—x,)du
RuSLT
50:/2 5m
~ <CLCHCy+C) T

x_yld—-a/2+m RN

< Ci(C,+C3+C)) - e+ 1af(2n) (x) 6™ (y)

= 4(n—k-—1)a/(2n) lx_yld—a+m+(k+ 1)a/(2n) *

since in the case 3 we have 44 (x) < |x—y|.
Now we are going to estimate the integral in (4.8) on the set P. Let us
recall that
P = B(x,, D\(B(xy, YUB(x,, 1)).

We have r?—[x—x,|*> < 2ré(x). If ueP, then

=yl = 1y —x|=lx—Xo| = o —ul = [y—x|=2r =[x —y|—|x—yI/2 = |x—yl/2.
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We also have
_ lu—x| > dist(x, 6B (x,, 1)) = 8(x).
From (4.7) it follows that

(4.14) [ Gu, y)P.(x—xy, u—x,)du
P

FIWm () (2 —|x—x, ) 1
|u _yld—a+m+ka/(2n) (|u _x1|2 _ r2)a/2 |u _ x|d

< Ageq f
P

"2 (%) 3™ (y) 1
Ix _ yld —a+m+ka/(2n) 61/2 —(k+ 1)aj(2n) (X)

- Ak Cg 2d 21/2

5ka/(2n) (u) ra/2 d
3 fu— xR EEDAEN (|y —x [Py T2 u

k+ 1)af(2n) () 5 ka/(2m) %2
_c.? (x)0™ (¥) [ 0%/ (u) r i

- v5 lx_yld—m+m+ka/(2n) P |u_x|dfa/2+(k+1)a/(2n) (lu_xllz_rz)a/z ’

Where CS = Ak Cg 2d+l1/2.

We will estimate the integral on the right-hand side of (4.14). To do this,
introduce spherical coordinates (¢, ¢, ..., ¢s—1) With origin x, and principal
axis xgx;.

Consider the triangle ux,x,. We have

lu—x,% = u—xo|* + %o — ;1> =2 ju— x| |Xg — 4| cOS @;.
Since |x,—x,| =r and |u—x,| = g, we get |
(4.15) lu—x,|* = @ +r*—2grcos ¢,.
For 0 <o <r let B(g) be the angle satisfying 0 < f(¢) < n/2 and
(4.16) r? = g2 +r?—2¢grcos B (o).

Letu= (g, ¢, ..., @a—1)€B(x,, r). The angle f(¢) has the following property.
If n> ¢, >p(), then ueB(xy, r)\B(x,,r), and if B(g) > ¢, >0, then
ueB(x,, r). Indeed, if = > ¢, > B(g), then cos ¢, < cos f(g). From (4.15) and
(4.16) it follows that

lu—x,|> = 0> +r2—2grcos @, > 0> +r>—2grcos f(g) = r*.

By similar arguments, if n— (o) = ¢, =0, then ue B(x,, r)\B(x,, r), and
if 1 > ¢, > n—pf(g), then ueB(x,, r). Hence u = (g, ¢, ..., p;—1)€P if and
only if

(4.17) 0<g¢<r and Bl@<¢, <n—p0)
From (4.16) it is immediate that
(4.18) cos B (o) = o/(2r).
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Thus, if ue P, we have cos f(g) < 1/2. Hence |

4.19) /2> B >n/3 and sinf(o) = \/3/2
Now, we need the following easy fact:

(4.20) mwsiny =22y for ye[0, n/2].
Using this and (4.18) we obtain

4.21) : ng/(2r) = nsin(n/2— B (o)) = n—2P (o).

Now, we are ‘going 0 estimate terms in the integrand on the right-hand
side of (4.14). Let ueP. We can simply replace J(u) by o. Indeed,

(422) O (u) < dist{u, B(x,, 1)) = [u—x,|—r < |u—x0|+|x0—x2|%r =0.
By (4.15), (4.16) and (4.19) we obtain-
(423) Ju—x,*—r* = ¢*—2grcos (9 — B() + B (0) S
= ¢*—2¢rcos f (o) cos (<p1 B (0))+2ersin f(g)sin (¢, — B (0))
> 2orsin B(9) sin (¢, —B(0)) > ersin(p, — B(0))-
Let us put t = |x—x,|. We have
e — 3% = fu—3of? + b —Xof? — 2 juu— x| [x —%o| cO8 0,
= 0% +1t*~20tcos ¢, > g +1t*>—2pt cos B (o)
=@ +t2—@%t/r = 0> +1t2—gt = 39%/4.
Thus _
4.24) lu—x| = o/2.
Now we estimate the integral on the right-hand side of (4.14). From (4.17)
and (4.22)(4.24) it follows that
ka/(2n of2
“29) | ,u__xlf_:,(zfiull,a,m, (lu_xrlzl;rz)a/z du

rx—plg) n n 2x 2d af2+{k+ l)m/(Zn)
: ka/(2n
S.‘- j‘ j.[ j ghem ot G Dl
0 pl@ O 00
rei d=1 id—2 .
X ———— e sin" Y, ...SinQu-2d@s—; ... do, do
0*?r*? sin*? (¢, — B (0))
i n'—f(o) 1
< CG 22N i d(Pl d@:
o s @' sin** (g, —B(0)

with a constant C, = Cg(d). Substitute ¢ =¢,—f(0), and then use (4.20)
for @e[0, n—28(0)] = [0, n/2] (see (4.19)). The right-hand side of (4.25)
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is equal to
r —2f(e) 1 w2 C, " 1 ©—28() 1
C ———————dpdp € 6 ——dod
6 g g oI g2 pag 272 £ PETIED) g o7 pag

nalz C6 r (n_zﬁ(g))l—a/zd
= a/2 (1—a/2) g Q1 Fa/(2n) :
By (4.21), this is less than or equal to

nCs " 1 g'™%2 nCe¢ 1 7 1
22— ({ Q17 pI=al do = Q—a) ri o2 (j) o™+ al(2n) de.

Using our first assumption in Lemma 4.4 that (n+ 1) o/(2n) < 1, we see that the
expression above is equal to

nCs 1 it aem _ _C1
R—-a)(L=[(n+1)o/2n)]) r' 2 e n)’
with a constant C, = C,(d, «, n). Hence by (4.14) we have

2 5(k+ 1)a/(2n) (x) 5m (y)
i[ G, y)P,(x—x,, u—x,)du < C5C, cyen o — yjg T mF G Dl

This with (4.8) and (4.13) proves Lemma 4.4.
The following corollary is an easy extension of our main results:
COROLLARY 4.7. Let a function F be defined by the formula
. 5!:/2 x 6:1/2 5(1/2 x
Fe,y) = min (lx—yl"‘“’ T g BT
6:1/2 (y) 6«1/2 (x) 6«1/2 (y)>
() x—y=*  x—y* )

_ Then there exist constants C; = Cy(d, «, D) and C, = C,(d, «, D) such that for
all x, yeD we have

C,Fx,»<G(x, )< CF(x,y).

The next theorem is known as “3G Theorem”. It is an easy consequence of
Theorems 4.3 and 4.5 and Corollary 4.7. The proof of this theorem is the same
as in the classical case (see [5]).

THEOREM 4.8. There exists a constant C = C(d, «, D) such that
G, 9GO, 2 _ - ulx )ub,2)
G(x,2) u(x, z)

As a simple corollary to Theorem 4.3 and Corollary 4.7 we can obtain
some estimates of E*(z;). We will use the following formula (cf. [6]):

(4.26) E*(tp) = | G(x, y)dy.

for all x,y,zeD.
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PROPOSITION 4.9. There exist constants ¢, =c,(d,a,D) and c,=
¢,(d, a, D) such that

¢, 0% (x) < E*(1p) < ¢, 6%%(x), xeD.
Proof. By (4.26) and Corollary 4.7 we have

1
E*(1p) = [ G(x, y)dy < C,0%*(x) | | =
plx—¥l

1 _2C, (diam (D))*?
o

: d—aj2
B(x,diam(D)) |x—yl*=

< C, 07 (x) 52 (x).

Now we prove the left-hand inequality. Set D, = {yeD: 4(y) > a}.
Choose a constant a = a(D) such that D,, has a positive Lebesgue measure
m(D;,). We will consider two cases: d(x) <a and d(x)>a

Case 1. 6(x) < a.

In this case B(x, d(x)/2) and D,, are disjoint. If ye D\B(x, 6(x)/2), we
have

2lx—y|26(x) and 3|x—y|Z6(x)+Ix—yl = 5().
Thus, by Theorem 4.3, there exists a constant ¢y = c4(d, a, D) such that
5% (x) 62 ()
Gx,)=2c3 —————
( y ) 3 I x — yld

for ye D\B(x, d(x)/2). Hence

E(t) = [ Gx, Ny 3 ¢y | SO0, Qa7 m(Dyy)

‘ > 52 (x).
o = Y7 Gamo)y O &

Case 2. 6(x) =2 a
By Theorem 4.3 we have G(x, y) > C|x— yl"“’ for yeB(x 8(x)/2). Hence

' ' C Ca“‘/2
E*(tp) =§ G(x, y)dy > — Ay =—.6"(x) >
o I B(x.é[x),rz) [x — yl* “2

- 62 (x).

"It is natural to ask whether the estimates of the Green function obtained in
Theorems 4.3 and 4.5 hold for more general sets than bounded open sets with
a C*! boundary. We are not going to give necessary and sufficient conditions
under which these inequalities hold. However, we point out some counter-
examples. If we take a ball without its center (say D = B(0, 1)\{0}), the Green
function for D equals the Green function for B(0, 1) and the upper bound
estimate does not hold near 0. So, in Theorem 4.5 we must assume some
regularity conditions on the boundary of a set. What is more, if we take the
difference of a ball and a cone (with a sufficiently narrow opening and with its
vertex inside the ball), the upper bound estimate does not hold either. On the
other hand, the lower bound estimate does not hold for a (bounded) sufficiently
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“narrow” cone. Therefore, Theorems 4.3 and 4.5 are not true if we replace
bounded open sets with a C''! boundary by Lipschitz domains.
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