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Abstract. In the paper we consider the problem of estimating 
stochastic intensity of a point process from multiplicative intensity 
model using the method of sieves of Grenander [6]. Basic properties of 
the histogram sieve estimator including wnsistency and asymptotic nor- 
mality are proved. Our approach extends results obtained in LeSkow 
and R B h h k i  [13]. 
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1. Introduction The paper develops and generalizes results obtained earlier 
by Leikow and Rbiariski [13] and Leikow [ lo ] .  We deal here with the exist- 
ence and asymptotic distribution problems for an estimator constructed by the 
method of sieves in the multiplicative intensity model. 

Let us start with a short description of the model introduced by Aden [I]. 
Let (a, P, 9) be a probability space on which a sequence of point processes 
(N, (t), t E [0, 11, n E N )  is defined. We assume that the processes are adapted to 
their filtrations (Fa,,, t E 10, I], n E N). We consider such models for which 
a stochastic intensity g(t) of the process N,(t) ,  t~ [0,  11, exists and can be 
defined in the following way: 

We assume that the point processes N,(t), t~ [O, 11, belong to the class of 
multiplicative intensity models. Therefore, the intensity function ol,(t) has the 
form 
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where Y, (t) is a nonnegative process, left-continuous with right-hand limits (or, 
more generally, predictable), and observable, and or, is the unknown nonnega- 
tive function to be estimated. 

In 1983, Ramlau-Hansen [I61 presented the k e d  estimator for clo by 
smoothing the Nelson-Aalen estimator. The consistency and asymptotic nor- 
mality of the estimator has been proved. Later, Leikow and Rtriafiski [I31 
applied Grenander's idea of sieve estimation constructing histogram maximum 
likelihood estimator via histogram sieve. The consistency and asymptotic nor- 
mality of the estimator has also been proved. However, the assumptions used 
were hard to prove, especially the mixing condition and separation from zero 
for the expectation of x* Similar conditions are assumed in later papers of 
Leikow [ll], 1121. The estimator constructed in Leikow and R6ianski [13] is 
a type of aggregating data procedure which may be appropriate in some ap- 
plications. 

In the paper, the consistency and asymptotic normality of the maximum 
likelihood estimator based on histogram sieve has been proved under rather 
mild conditions similar to those in Ramlau-Hansen [16]. It is worth noting 
that the conditions contain the cases and assumptions considered by Leikow 
and Rozariski [I31 and Leikow [lo]. 

In Section 2 the sieve method is described and the maximum likelihood 
estimator is derived. Section 3 contains theorems on consistency and asymp- 
totic normality of the estimator. In Section 4, proofs of the results presented in 
Section 3 are given. Section 5 is devoted to simulation results. 

2. Sieve maximum likelihood estimation. Let 9" = (el OI E A) be the set of 
probability measures corresponding to the point processes ( N ,  (t), t E [0, I], 
n E N), where the processes N ,  are defined as 

and M,(t) is a martingale with respect to the filtration {P",,). For instance, the 
set A may be a subset of the LP, [0, 11. It is known (Andersen et al. [2], Karr 
[8], Liptser and Shiryayev 1141 or Prakasa Rao [15]) that for each n the family 
P' is dominated. As a dominating measure one can choose the probability 
measure B corresponding to the Poisson process with intensity 1. The density 
of 9; with respect to B is of the following form: 

In the sequel, the logarithm of the right-hand side of (2.1) will be denoted by 
L,(a). Following Grenander [6], the family S(n)  of subsets of the space A is 
called a sieve if S (n) is increasing in n and Un S (n) is dense in A. In the paper, 



The sieve method o f  estimation 9 1 

we assume that the family S(n) is a histogram sieve, that is: 

where 1 ,,,,,, denotes the indicator of the set B,,,(,,, 

~ 1 , r n t .  = (s, $1 for E = 2, . . ., m(n), BI,,(~) = [or  4, m 14 

while xl 2 0, x, xi2 > 0 ,  s E [0, 11. - 

The sequence {m(n))  denotes the speed of the growth of the sieve S(n).  
Note that the sequence defines the partition of [0, I] into subintervals 
of the length l/m(n). 

Under the assumption that both processes Y,(s) and N,(s), S E  [0, 11, are 
observable the maximum Iikelihood estimator 6, based on the sieve Sjn) is 
defined by the following equation: 

(2.3) L, (4) = max L, (a). 
=wn) 

The likelihood function L,(a)  on the histogram sieve S (n) is merely a function 
L,(x,, . .., xmIn,) of m(n) variables. Therefore, we obtain the following 

LEMMA 2.1. The maximum likelihood estimator &,, based on the histogram 
sieve S (n)  is of the following form: 

wh3-e C~,rn(") = {JB, ,m(n)  Y,(u)du > 01, I = 1 ,  .. -, m(n). 
Let s E [0, 11 be fixed and choose I (n, s) E (1, . . ., m(n))  such that 

s~Bqn,s),m(n). Putting Bm(n) = Bl(n,s,,m(n) and Cm(n, = C,(,,sl,rn(n, the estimator an (s) 
may be written in the following form: 

dn (s) = 
Nn (Bm(n)) 

!Em(n) Y, (u) d~ l cm(n) .  

3. Consistency and asymptotic normality of the Ustogram sieve estimator oi,. 
Let us assume that the following conditions hold: 

( C . l )  There exist S > 0 and a function y: 10, 11 --+ R + ,  positive and con- 
tinuous at s such that 

sup IY , ( t ) /n-y ( t ) lZO as n - t o o ,  
te[s-d,s+d] 

where 3 denotes the convergence in probability. 
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(C.2) The function xo(s) is continuous on [0, 11. 

(C.3) The speed of' growth of the sieve m, = n112. 

THEOREM 3.1. If the coditions (C.lHC.3) hold, then the maximum lihlihood 
estimator &(s) defined in (2.4) and (2.5) is weakly consistent for each SE [ O ,  11, 
that means di,(s) converges to a. (s) in probability for any S E  [0, 11 as n 4 a. 

Assume additionally that the following condition is satisfied: 

((2.4) There exist 6 > 0, a > $ and a positive constant C(olo, s) such that 

Under the assumptions above it is possible to obtain the asymptotic dis- 
tribution of 6,. 

THEOREM 3.2. k t  ( s l y  . . . , sp) be an arbitrary finite collection of points 
from the interval LO, 11. If the conditions (C.lj(C.4) are fulfilled, then the se- 
quence of random vectors 

converges in distribution, as n + oo, to the p-dimensional normal distribution with 
zero expectation and the covarianm a'], where I is the unit diagonal matrix and 
the i-th component of the vector CTE RP, cri = a0 (sJ/y(si), i = 1, . . ., p .  

REMARKS AND EXAMPLES. 

(i) All the results presented in previous sections can be immediately gene- 
ralized to the case of multivariate point processes with multiplicative intensity 
model. In this context it is possible to describe the competing risks model 
through a marked multivariate point process as a multivariate point process 
belonging to the multiplicative intensity models (see Andersen et al. [2], pp. 
77-78, and Example 111.1.5). 

(ii) Theorem 3.2 implies that for any fixed s E [0, 11 the limit distribution 
of n1I4 (4, (s) - a. (s)) is normal with zero expectation and variance a, (s)/y (s). 

(iii). Estimation of the hazard rate function in a model without any censoring. 
Let ( X I ,  . . ., X,), n E N,  be a sequence of identically distributed, nonnega- 

tive random variables with distribution function F, density function f and 
hazard rate function ao(t) = f ( t ) / ( l - ~ ( t ) ) .  One can assume that the random 
variables Xi are i.i.d. as considered in Ramlau-Hansen [16] and Aalen [I]. Let 
N,(t) = z;=, 1 (Xk < t). Then the stochastic intensity of the process N,(t) is of 
the form a,(t) = uo (t)  x := ,  1 ( X ,  2 t). In this case all the assumptions of our 
theorems are satisfied and one can construct the consistent and asymptotically 
normal histogram sieve estimator of xo. 

(iv) Censoring. 
Assume that the random variables X I ,  X,, . . ., X,, n E N ,  are as above 

and let {?;:I be a sequence of censoring random variables, that means we either 
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observe Xi or we only observe that Xi is larger than z. In this censorship 
model, the censoring times are assumed to be an i.i.d. sequence and they 
are also assumed to be independent of the (Xi]. Introducing the 0-1 valued 
random variables Di called censoring indicators we observe the random varia- 
bles (zi ,  Di), where Ti = Xi if Di = 1 and zi < Xi if Di = 0. Let 

n n 

%(t)= C l ( z i > t )  and N,(t)= C 1 ( z i < t , D i = l ) .  
i= 1 i =  l 

The intensity function ol,(t) of the process N,(t) is of the form 

and one can construct the histogram sieve estimator d ,  of a,,. 

(v) Hazard rate estimation for dependent data. 
In this case the random variables {XI, . . ., X,) are not assumed to be 

mutually independent as in (iii) or (iv). However, they have a common dis- 
tribution function F, density function f and hazard rate function c~, .  Further- 
more, we assume that the sequence {Xi) is $-mixing as considered in Leikow 
and R6iahski [13]. Let us write N,( t )  = z:=, 1 (X, < t). One can show that 
the point process N,(t) has the stochastic intensity of the form 

A 

'%(t) = c($ (l)) Ol0 lt) (xk 2 l). 
k= 1 

Therefore, once again the histogram sieve estimator may be applied. We can also 
consider the possibility of censoring the dependent survival data (XI, . . ., X,) 
introducing independent censoring times as in (iv). 

(vi) Type I1 censoring (Andersen et al. [2], Example 111.2.2). 
Let XI,  X,, . .., X, be i.i.d. as in (iii). In this case, the censoring random 

variables = X,(,), where X,(,) denotes the time of r (n)-th failure. Observe that 
in this example the censored random variables z,, z2, . . ., 2. are dependent. 
Nevertheless, we are still in the frames of the multiplicative intensity model. 

(vii) Observe that if the conditions (A.Ij(A.4) from Leikow and Rbiahski 
[13] hold,. then the conditions (C.lHC.4) are in force. 

(viii) Hazard rate estimation for exchangeable random variables. 
Let {XI, . . . , X,) be a sequence of identically distributed and conditionally 

independent random variables given some a-algebra A4. Under these assump- 
tions (Xi) forms a sequence of exchangeable random variables. Putting now 
fli (t) = 1 (Xi < t) and N, (t) = z=, mi (t) and using consideration concerned 
with combining conditionally independent components (Andersen et al. [2], Sec- 
tion 11.4.3) we see that the process N,(t) has the multiplicative intensity form. 

(ix) Periodic obseruations. 
Let us construct the sequence mi (t), t E 10, 11, i~ {1,2, . . ., n), n~ N, 

from a single realization of the point process {N(s) ,  S E  LO, n]) in the follow- 
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ing way: 

W,( t )  = N ( t + i - 1 ) - N ( i - I ) ,  x( t )  = Y ( t + i - 1 ) .  

Assume that the process N ( t )  is of the multiplicative intensity model, the un- 
known function a. is periodic with known period equal to 1, and the sequence 
{mi ( t ) )  is $-mixing. Under weaker conditions than in Leikow [ZO] a maxi- 
mum likelihood estimator of the function or, may be constructed. As in (v), we 
infer that the process N ,  ( t )  = x:=, fli (t) belongs to the multiplicative intensity 
model and the conditions (C.lHC.4) are in force. Consequently, all the results 
concerned with the pointwise consistency and asymptotic n&mality of the 
histogram estimator oi, based on a single realization N ( t )  follow from Theo- 
rems 3.1 and 3.2. Details will be given in a forthcoming paper. 

(x) The assumption (C.3) can be changed. 
Namely, the sequence m, = n1I2 can be replaced by any sequence m,, tend- 

ing to infinity slower than nu2. Under this assumption we get the consistency 
of the estimator d ,  (s). To obtain the limit theorem concerned with the asymp- 
totic distribution of the estimator di,(s) we need to impose some additional 
assumption on the smoothness of the estimated function a, and use the nor- 
malizing sequence (n/m,)'lz. For instance, assuming that the function a, is 
differentiable at s and m, is such that n1I2/mn + a3 and n/m; + 0, we see that 
oi, (s)  is asymptotically normal 

It is also possible to consider the problem of choosing optimal mn which 
minimizes the mean integrated squared error of the estimator. Some results 
connected with this problem will be presented in another paper. 

According to the assumptions of the multiplicative intensity model 
and the Doob-Meyer decomposition the process N,(t)  can be decomposed into 

where M,(t)  is a martingale with respect to the filtration g,,,,. 
To prove the consistency and asymptotic normality of the estimator &,, (s) 

let us write the difference din (s) - a0 (s), s E [0,  11, in the following form: 

where M ,  (B,(,,) is the increment of the martingale Mn on the interval B,(,,. In 
the sequel the following lemma will be useful: 

LEMMA 4.1. The sequence n-'12 M,(B,(,,) 3 0  as n -+ m. 
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P r o  of. Let us consider the sequence of martingales nL1I2 Mn (t), t E [O, I]. 
The sequence is also a sequence of random elements of 9 ([O, I]) (the space of 
right continuous functions having left-hand limits with Skorohod topology). By 
Rebolledo's theorem (Rebolledo [17]) the sequence n-'IZ M,, (.) is convergent 
in distribution in 9 ([0, 11) to an element (-1 which is a continuous Gaussian 
martingale with independent increments for which 

t 

l3a2 ( t )  = j OL (u) y (u) du. 
0 

Further, using Theorem 5.5 from Billingsley [4j on weak convergence of 
a sequence of continuous mappings of random elements we obtain 

where Brntn )  = (tm(n,(s), tm(n)+  1 (s)], tm(ml (s) 7 s, tm(n, + I (s) L s. 
Proof  of Theorem 3.2. By the conditions (C.1HC.3) we have 

and 

which together with Lemma 4.1 implies that (4.1) converges to zero in proba- 
bility. 

P roo f  of The  orem 3.2. To prove Theorem 3.2 we will first show the 
convergence of one-dimensional distributions. One can write 

(4.2) nlt4 (6, (s) - ol, (s)) 

We have shown that the denominator of (4.2) converges in probability to y (3). 

Let us note that by the condition (C.4) the second term in the numerator of 
(4.2) converges to zero in probability. 

By previously mentioned Rebolledo's theorem (Rebolledo [17]) the se- 
quence n-li2 M,, ( a )  is convergent in distribution in D ([0, l l )  to an element a(.) 
which is a continuous Gaussian martingale with independent increments. Let 
us denote by Q, and Q the measures generated by n - l i 2  M , ( - )  and a(.) in 
D ([0, I]), respectively. 

Let d denote the following class of subsets of D([O,  11): 

d = (A c D([O, 11): A = 0 {x: x(tk(s)) < xk) r~ 0 {x: x(tl(~)) < y l ) ) ,  
k 1 
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where (tk(s)) and {tl(s)} are finite or infinite subsets of the sets {t,(,,(s))) and 
(tm(n,+, (s)) for arbitrary real numbers {xk} and { y , } ,  respectively. From Theo- 
rem 3 in Topsee [18] it follows that the d is the Q-uniformity class. Thus we 
have 

It is easy to see that the a-algebra u ( d )  generated by the class d is also the 
Q-uniformity class. 

Let F,, and G,  denote the distribution functions of n-lp M,,(B,(,,) and 
(Bml,,), respectively. Since 

where a(&) is the Q-uniformity class, we obtain 

Obviously, 

n1I4 (W (B,(,))) 9 U as + , 

where U is a random variable normally distributed with zero expectation and 
the variance equal >to u,(s) y (s). Thus, from (4.3) it follows that also 

Now, we have proved that the numerator of (4.2) converges in distribution 
to the random variable U and the denominator of (4.2) converges in probability 
to Y (s). 

This shows the asymptotical normality with zero expectation and the 
variance equal to cto (s)/y(s). Applying Slutzky's lemma and the Cramer-Wold 
device we conclude the assertion of the theorem. 

5. Simulation results. In ojder to illustrate the behaviour of the histo- 
gram sieve estimator we have made some computer experiments. Namely, 
in our numerical example n = 500 independent lifetimes XI, .. ., Xn were 
generated from the Weibull, log-normal, gamma and Gompertz distibutions 
which are chosen because of their popularity in analyzing survival data (see, 
for example, Weibull [19], Feinleib [5], Horner [7], Klein and Moeschberger 
[9]). The corresponding hazard rate functions and parameters used in simula- 
tion are summarized in the table below (I denotes the incomplete gamma 
function). 
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- 

Additionally, simulated lifetimes were censored by n independent censoring 
times TI, . . ., T, generated from an exponential distribution with mean 1. If we 
define Ti = min ( X i ,  a and the indicator of censoring Di = 2 (Ti = Xi),  
i = 1, . . . , n, then the counting process N, (a) is given by 

Distribution 

Weibull 

~og-normal 

Gornpertz 

Gamma 

This process counts the total number of observed deaths in [O, t ]  and has the 
intensity process a. given by a. (t) = a, (t) I.', (t), where Y,( t )  = zy=, 1 (2; 3 t) is 
the number of individuals "at risk" just prior to t. 

Figures 1 4  show the histogram sieve estimator of the hazard rate func- 
tion constructed for all considered distributions on the interval [O ,  11 and for - 
m(n) = J n  = 22. We have also drawn 95% pointwise confidence intervals 
based on asymptotic normality and the variance estimator &,, (s) = ndi, (s)/l.', (s). 

F O ~  each figure the true underlying hazard rate function is denoted by 
a solid line, histogram sieve estimate is denoted by a dotted line, and confi- 
dence intervals are marked as a dash-dot line. 

Hazard rate 

y@te-l 

P I  
&ut(l-@(clnt-#)/u)) 

B.& 

aflta-' exp (-At) 

r@)(l-I(lt3 PI) 

Fig. 1. ~ i s t o b a m  sieve estimator for the Wei- Fig. 2. Histogram sieve estimator for the 
bull distribution log-normal distribution 

Parameters 

y = 2 ,  ~ = 0 . 5  

P = O , o = l  

B = 0.2, a = 2 

n = l ,  p = 2  

7 - PAMS 21.1 
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The accuracy of constructed pointwise intervaIs was investigated in terms 
of empirical coverage. Table 1 contains results of empirical coverage for selec- 
ted points and different choices of the sequence m(n) obtained for the Weibull 
distribution. Apart from the sequence m(n) = f i  we used in simulation 
m(n) = n4I9 and m(n) = nZt5 which satisfy the conditions given in Remark (x). 

Fig. 3. Histogram sieve estimator for the gam- Fig. 4. Histogram sieve estimator Tor the 
ma distribution Gompertz distribution 

TABLE 1. Empirical coverage b r  the Weibull hazard rate function. Nominal coverage is equal 
to 95% 

BEFERENCES 

[I] 0. Aalen, Nonparamehic inference for a fmily  of counting processes, Ann. Statist. 6 (4) (1978), 
pp. 701-726. 

[2] P. Andersen, 0. Borgan, R. Gi l l  and N. Keiding, Statistical Models Based on Counting 
Processes, Springer, New York 1993. 

[3] P. K. Ander sen and 0. B organ, Counting process models for l f e  history, Scand. J. Statist. 12 
(19851, pp. 97-158. 

[4] P. Billingsle y, Convergence of Probability Measures, Wiley, 1968. 
[S] M. Feinleib, A method of analyzing log normally distributed survival data with incomplete 

follow-up, J .  Amer. Statist. Assoc. 55 (1960), pp. 534-545. 
161 U. Grenander ,  Abstract Inference, Wiley, New York 1981. 
[7] R. D. Horner,  Age at onset of Alzheimer's disease: Clue to the relative importance of etiologic 

factors? Amer. J. Epidemiology 126 (1987), pp. 409-414. 
E8] A. F. Karr,  Point Processes and Their Statistical Inference, M .  Dekker Inc., New York 1986. 



The dew: method of estim~tion 99 

[9] J. P. K le in  and M. L. Moeschberger,  Survival Analysis: Techniques for Censured and 
Truncated Data, Springer, New York 1998. 

[lo] J. L e i  k o  w, Histogram maximum likelihood estimator of a periodic function in the multiplicative 
intensity model, Statist Decisions 6 (1988), pp. 79-88. 

[ll] J. Leikow, A note on a kernel regularization of a histogram estimator in the multiplicative 
intensity model, Statist. Probab. Lett. 7 {1989), pp. 395-400. 

1121 J. Lebkow, Sieve-based maximum likelihood estimatorfor almost periodic stochastic processes 
models, Probab. Math. Statist. 14 (1) (1993), pp. 11-24. 

[13] J. Lei  kow and R Rbia l i  s k i ,  Histogram m x i m u m  likelihood estimator in the multiplicative 
intensity model, Stochastic Process. Appl, 31 (1989), pp. 151-159. 

[I41 R. L ip t  se r  and A. S h i rya  y ev, Statistics oj Random Processes, Polish edition, Warszawa 
1981. 

- 

[15] B. L. S. Pr ak  a sa  Rao, Semimartingale and Their Statistical Inference, Chapman 1999. 
[la H. R am1 a u - H an  s en, Smoothing counting process intensities by means of kernel function, 

Ann. Statist. 11 (19831, pp. 453466. 
[17j R. R e b  o 11 e d o, Central limits theorems for local mmtingales, Z. Wahrscheinlichkeitstheorie 

verw. Gebiete 51 (1980), pp. 269-286. 
[lS] F. Topsae, On the connection between P-continuity and P-unfomity in weak convergence, 

Teor. Veroyatnost i Primeneb 12 (2) (19673 pp. 279-288. 
[19] W. Weibull,  A statisdical distribyion of wide applicability, 1. Appl. Mech. 18 (1951), 

pp. 29S297. 

Institute of Mathematics 
Wrochw University of Technology 
50-370 Wroclaw, Poland 

Received on 23.5.2000; 
reuised uersion on 11.10.2000 




