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BEELMAN'S INCLUSIONS AND EXCESSIVE MEASURES 

Abstract. The paper is concerned with Bellman's inclusions for 
the value function ofthe optimal stopping for a Markov process X on 
a complete separable metric space E. The author investigates a connec- 
tion between seemingly unrelated objects; excessive measures, differen- 
tial inclusions and optimal stopping. Conditions are given under 
which an evolutionary Bellman inclusion has a strong or weak solu- 
tion in the Hilbert space L2 (E, p), where p is an excessive measure 
for X. The solution is identified with the value function of a stopping 
problem. The stationary Bellman inclusion is treated as welI. Specific 
examples of diffusions with jumps and idmite-dimensional diffusions ' 

are discussed. Excessivity of the measure p plays an essential role in 
the development. The results are then applied to pricing American 
options both in finite and infinite dimensions recently investigated by 
Zhang [32], Mastroeni and Matzeu [20], [21J, and Gqtarek and Mu- 
siela [Ill. 

Let ( E l  Q) be a metric, complete and separable space equipped with a a- 
-field of its Bore1 subsets d = (E) and P, (x, r), t 2 0, x E E, r E C, a transition 
function of a Markov process X. Assume that X(t, x), t 2 0, X E  E, is the 
process X starting from x, defined on a probability space (8, 5, P) with fil- 
tration (g). Let a, rp and $ be real functions on Em For an arbitrary (%)- 
-stopping time z and SE[O, + CQ) define functional~ 

r 

and let V be the corresponding value function: 
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A heuristic, dynamic programming argument leads to the foIlowing Bellman's 
inclusion: 

for the function I? The inclusion is considered in a Hilbert space S = I? (E, p), 
where p is an w-excessive measure, w 2 0, for the transition function (PJ. 
A locally finite measure p on E is w-excessive for (PJ (see €131) if 

(4) P F p ( r ) < e w t p ( r )  for all t 20, ~ E B ,  

where the measure P:p is given by 

In particular, invariant measures for (PJ are w-excessive for arbitrary o 2 0. 
The 0-excessive rneasures are called shortly excessiue. A measure fi is EocaEEy 
Jinite if there exists an increasing sequence of open sets (U,) such that 

+ m  

U  + n € N  and U U , = E .  
n = l  

It turns out that excessive measures are natural weights for the equation (3), see 
Section 2. Moreover, for arbitrary finite measure v and w > 0, the measure p: 

is w-excessive. 
In (3) the symbol d stands for a proper version of the characteristic 

operator of the Markov process, aIxq is the subgradient of the indicator func- 
tion Ixp of the set 

The Bellman inclusion (3) is usually written in a different way and inter- 
preted as an evolutionary variational inequality; see [3]. One needs then how- 
ever a bilinear form, defined on a subspace on %, which determines the opera- 
tor &. In the case of general state space E the construction of the bilinear form 
can be done only in special cases (see [19]) and in the present paper we do not 
assume its existence. 

Rather complete, analytic and probabilistic theories of optimal stopping 
are available for diffusion processes on open subsets of Euclidean spaces Rd or 
for Markov processes on locally compact spaces; see [3], [9] and [16]. For 
financial applications, see [15] and [24]. However, only few papers are dealing 
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with analytic questions for more general spaces and more general processes. 
Diffusions with jumps are the object of recent papers [32], [20] and [21]. In 
[7] a class of infinite-dimensional Bellman's stationary inclusions on a Hilbert 
space was studied. The case of an infinite-dimensional Ornstein-Uhlenbeck 
process is investigated in a recent paper [ll]. More general infinite-dimen- 
sional processes are treated by viscosity methods in [12]. Processes on Banach 
spaces E are studied in [2] under the condition that the transition function 
defines a C,-semigroup on the space C,(E). It is a strong condition rarely 
satisfied even if E = R1. 

The initial motivation of the present study was to extend an Existing ana- 
lytic theory of optimal stopping to infinite-dimensional spaces, where a natural 
equivalent of the Lebesgue measure does not exist. We believe however that the 
approach to Bellman's inclusion based on the concept of excessive measures 
simpli6es several classical proofs and allows to treat situations not covered 
by existing theories. We derive and extend some of the recent results on 
optimal stopping of diffusions with jumps (see [32], [20], [21]) and of infinite- 
-dimensional diffusions (see [I 11, [12]). We prove the existence of strong solu- 
tions to (3) in the case of general state space and regular data and identify the 
weak solutions as value functions. 

It is known that excessive functions play a fundamental role in the theory 
of optimal stopping (see e.g. [251). We hope that the present paper demon- 
strates that excessive measures are useful in the analytic characterization of the 
corresponding value function. We also believe that a close connection between 
seemingly unrelated objects: excessive measures, differential inclusions and op- 
timal stopping is of independent interest. 

The paper is concerned with existence of solutions and their continuity 
only. This is a first step to resolve more practical questions: how regular are the 
solutions and how can they be approximated? Thus the situation is similar to 
that with viscosity solutions (see Lions [IS]). Additional work should be done 
to find effective ways of calculating the solutions. 

The paper is organized as follows. In Section 2 we establish the existence 
of strong solution to (3) provided functions a, rp and @ are regular enough. 
A similar existence result is obtained also for a stationary Bellman's inclusion: 

on the value function Vcorresponding to the problem of maximizing the func- 
tional: 

with respect to all stopping times z. We use here classical results on maximal 
monotone operators and also the excessivity of the measure p. It is shown in 
Section 3 that if data q and $ are only continuous but satisfy some growth 
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conditions the function V given by (2) is a weak solution to (3). To prove the 
convergence of an approximating sequence, results on maximal monotone ope- 
rators are used as well as the penalization technique due to Bensoussan and 
Lions f33. Section 4 is devoted to financial applications. In fact, the problem of 
stopping optimally an Mite-dimensional forward process or, in the financial 
language, the problem of pricing interest rate derivatives (see [Ill, [12]), was 
a starting point for the present paper. 

Probabilistic theory of optimal stopping on metric compIete separable 
spaces has beeh recently discussed in paper [29], to which we will often refer. 
The present paper is a rewritten version of the preprints [28J and [30]. For 
proofs that some specific measures are w-excessive, both in fmite and in infinite 
dimensions, we refer to [30] and [31]. 

2. STRONG SOLUTIONS OF BELLMAN'S IN[SLUSIONS 

By Bb(E) and Cb (a we denote the spaces of bounded Bore1 and bounded 
continuous functions on E, respectively. In this section we start with two semi- 
groups P, and R, of linear operators acting on Bb(E) of the form: 

We will need the following assumption: 

(A.1) (i) For each t 2 0, x EH, Pt (x, s), Rt (x, a )  are nonnegative measures 
such that for a constant a:  

(ii) FOP arbitrary qn E Cb (E), functions P, cp (x) and R, cp (x), t 2 0, x E E, are 
continuous. 

In the next section the following semigroups will be defined by probabilis- 
tic formulae: 

t 

R, q (x) = E (exp { j a (X (s ,XI)) q (X ( t  , XI)), t 2 0, x E E, v E Bb (El, 
0 

where a is a function on E, bounded from above by the number a. We will 
require also that: 

(A.2) A locally$nite measure p on E is w-excessive for the transition func- 
tion P,. 

The assumptions (A.1) and (A.2) are satisfied for all examples of interest. 
We have the following basic theorem the proof of which can be found in [30]. 
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THB~RBM 1. Under the assumptions (A.l) and (A.2) the semigroup (R,) has 
a unique extension to a C,-semigroup of positiue operators onto &f = I.? ( E ,  p), 
such that 

(7) I& $18 G exp ( ( 4 2  +a) t} I$/&, t 2 0, $ E 2k7. 

The extended semigroup will also be denoted by (R,). 
Let dp be the infi~tesimal generator of (RJ. For arbitrary cp E H denote by 

Xp the following closed and convex subset in X: 

XF = {$€&': l,h 3 cp]. - 
Then the indicator function ZXp of Xv is given by 

and the subgradient of the function 1% is a multivalued mapping 81,- defined 
on the domain D (aIxq) = Xp by the formula (see [ 5 ] )  

(8) aJ~~(llr) = ( t ~ g :  ( 5 ,  g-$) d 0 for all  EX^), 

Our aim in this section is to show that under natural conditions the following 
evolutionary inclusion: 

dV 
(10) ;i;(t, x ) ~ P v ( t ,  x)-aI,(V(t, x)), V(0, x) = $(x), rsE,  t $ 0, 

has a unique strong solution. 
One says that a locally Lipschitz continuous X-valued function V(t), 

t 2 0, is a strong sohtion, to the inclusion (10) if, for all t 2 0, 
V(t) E Kq n 9 (9), V (0) = $, and the inclusion (10) holds for almost all t 2 0 
and p-almost all x E E .  

If cp EX, $ s Xv and there exist functions $, 2 cp,, n E N, converging in 
2k7 to + and q, respectively, for hich the inclusions (10) have strong solutions T K',, n E N ,  -converging uniformly on bounded intervals of R: to a continuous 
functions then V is called a weak solution of (10). Weak solutions might be 
not unique. One gets the uniqueness imposing additional conditions on the 
approximating sequences (cp,) and ($,). 

The following theorem is the main result of this section: 

THEOREM 2. Assume that (A.l) and (A.2) hold. If the functions q and $ me 
in 9(9) and t,b 2 cp, then the inclusion (10) has a unique strong solution. 

P r o  of. The theorem will be a consequence of a result on maximal mono- 
Zone operators (see e.g. [5 ] )  and of a lemma. 

Let be a transformation from a set D (A) c # into the set of non-empty 
subsets of a Hilbert space 2 and let w be a real number. The transformation 
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A' is said to be o-maximal monotone if the operator f wI is maximal mono- 
tone (see [Sly p. 106, and [87, p. 82). If Af is w-maximal monotone, then, for 
arbitrary A E (0, l/w+), the image of  I + K A  is the whole A! and, for arbitrary 
y €A?, there exists a unique x ~ D ( d )  such that 

The unique element y is denoted by f A  (x) and the family of transformations 
fl, AE(O,  1/~'), is called the resolvent of M. Operators AA = (I-yA), 
A ~(0, 1/0+), are called Yosida approximations of A. If A" is a maximal mono- 
tone operator on #, then the sum A!+N is w-monotone 5ut not always 
o-maximal monotone. 

The following result is due to Brk& et al. [ 6 ] :  

THEOREM 3. Assume that operators A and JV, defined on subsets of a HiE- 
bert space &',.are w-maximal monotone and maximal monotone, respectively. i f  
for arbitrary y E X ,  arbitrary A > 0 and arbitrary S ~ ( 0 ,  l /wf)  there exists a so- 
lution xf: of the problem 

y E x + S (Ax + & X) 

such that for each 6 E (0, l /w+) the finctions NA xi, R > 0, are bounded as 1 + 0. 
Then the operator A+ A", with the domain D (A) n D (A"), is o-maximal mono- 
tone. 

First we derive from Theorem 3 the following crucial proposition: 

PROPOSITION 1. Assume that an operator 9 is an infinitesimal generator of 
a Co-semigroup of positive linear operators (RJ on a Hilbert space A? = L' (El p) 
such that for some y E R1 

If (p ED (9), then the operator 

is y-makimal monotone. 

P r o  of. It is well known that a linear operator - 9 is y-maximal mono- 
tone if and only if it generates a Co-semigroup of linear operators satisfying (11). 
Let A = - 3 and JV = aIxq. Then JV is maximal monotone (see [ 5 ] )  and 

M ~ ( v )  = -n-l(rp-q)+, a > 0 ,  V E X .  

The proposition is now a consequence of Theorem 3 and of the following 
lemma. EI 

LEMMA 1. I f  6 E (0, l/y+), A > 0, t,b E X ,  then, for arbitrary $ E i%?, the fol- 
lowing equation: 
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has a unique solution vl such that 

l l~-l~v-vA)+llx G l l [ ~ - l ~ ~ - $ ) - ~ ~ l + l l ~ .  
Proof. Define W, = (a1- $p)-l, n > +. Then the basic equation is equiv- 

alent to 

v = 91i9(d-1$+R-1(rp-v)f) 

or, by the resolvent identity, to 

Since the norm of the operator Bl,&+ is at most (6-I - y  + and the real 
function z 4 A -  ((a- 2)' + z) is Lipschitz with constant A -  l ,  the transformed 
equation (14) has a unique solution by the contraction mapping principle. Since 
q E 9(9), there exists a function q E JP such that 

or, again by the resolvent identity, 

v = g l / a + i j a ( ~ + J 1 - ~  ~ 1 -  
Since vn satisfies (141, we get, by subtraction, 

as required. H 

To complete the proof of Theorem 2 it is enough to use Proposition 1 and 
recall (see [5 ] )  that if an operator A = - 9 + 81% is y-maximal monotone, 
then the differential inclusion 

has a unique strong solution z(t, x), t 2 0, and for arbitrary XED(& the 
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inclusion (15) has -- a weak solution denoted also by z ( t ,  x), t 2 0. Moreover, the 
operators S (t): D (A) + D (A), t 2 0, are given by 

S(t)x=z(t,x),  t > O ,  X E D ( & ) .  H 

It is of interest to notice that we have implicitly shown the existence of 
a solution to the following stationary inclusion: 

on the vaIue function V for a stopping problem on an infinite time interval (see 
the Introduction). In fact, we have the following result: 

THEOREM 4. if the assumptions (A.1) and (A.2) are satisfied with a < -o 
and the function q~ is in 9 (9), then the inclusion (16) has a unique strong solution. 

P r o  o f. Define B = S -((a + a)/2) 1. Then 3 generates a C,-semigroup 
satisfying the inequality (11) with y = 0. Consequently, the operator 

is maximal monotone. In particular, for arbitrary R > 0 the inclusion 

has a unique solution $ E D ( Y )  u Xq. However, (17) is equivalent to 

Taking 1/h = -(w+a)/2, we obtain the result. ra 

3. WEAK SOLUTIONS AS VALUE FUNCTIONS 

In this section we consider again the' family of Markov processes X(t,  x), 
t 2 0, x E E, parametrized by the initial condition x E E. Our main theorem 
identifies the value function as a weak solution to the Bellman inclusion. As in 
the Introduction, (8, 9, P) is a probability space and (St) is an increasing 
family of o-fields. The a-fields St, t 2 0, are assumed to be complete, and the 
E-valued (Ft)-adapted stochastic processes X(-, x) are Markovian with respect 
to a transition semigroup (P,) and a-fields (St) in the sense that 

(18) E ($ (X (t + k, x))  I %) = P, $ (X (t, x)) P-a.s. 

for arbitrary $ E Bb (E) and t, h >, 0. Although the a-fields (St) may be different 
for different processes, the semigroup (P,) is fixed once for all. 
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Denote by D the space of all E-valued right-continuous functions having 
left-haqd limits, defined on the interval [0, + a), equipped with the Skorokhod 
topologies (see [4], Chapter 3, and [16]). Denote by ( E )  the space of all 
probability measures on (E, 8) equipped with the topology of weak conver- 
gence. The spaces D and At (E )  are also metric separable and complete. By Px 
we denote the distribution of the process X(., x) on D. We wiIl need the 
following assumption: 

(A.3) For arbitrary x E E, 

and the mapping x 4 P x  from E to &(D) is continuous. 

The assumption (A.3) is equivalent to the continuous dependence of the 
laws of the Markov processes X(-, x), X E E ,  on the initial condition and is 
satisfied in many interesting cases. It the space E is locally compact, it is 
sufficient to assume that, for arbitrary y, E C o  (E) ,  Pt rp (x), t 3 0, x E E, is con- 
tinuous and, for each t > 0, P,  rp (x) E Co (E) .  This condition is very close to our 
assumption (A.1). It is possible, however, to construct examples showing that 
the assumption (A.1) does not imply the continuity of the value function for 
continuous data (see ~261). 

On the functions q, $ and on the (discount) function ol we impose con- 
tinuity and growth conditions, usually satisfied in applications. 

(A.4) (i) Functions rp a d  $ are continuous and bounded on bounded sets 
and q < $. 

(ii) For an arbitrary compact set K c E and arbitrary T > 0: 

E (sup sup (Ip (X ( t ,  + ICI, (X ( f  5 41)) < + - 
XEK t ~ [ O , f l  

(iii) For arbitrary T >  0 them exists a function [ES such that 

(iv) The function a is continuous and bounded from above by a constant a ,  

In this section, for a function g, 

We can now state the main result of the present section. 

THEOREM 5. Under the assumptions (A.2HA.4) the value function V ( t ,  x), 
t 2 0, x E El is continuous and is la weak solution of the Bellman inclusion (10). IJ; 
in addition, q, $ E D  (9), then V is the unique strong solution of (10). 



P r o  of. The fact that V is continuous has been established, in the present 
generality, in [29]. The proofs of the remaining parts of the theorem use the 
penalization technique (see [3] and [27]) and will be divided into several steps. 

Step 1. Functions q and $ are in C, (E) n D (9). 
Consider first the so-called penalized Bellman equation 

in its integral form 

(20) 
1 v~(t) = R,)+-J R , ( ~ -  v~(t-s))+as, t 2 O. 
A 0  

Note that the transformation 1 + (rp - 1)' satisfies the Lipschitz condition both 
in 2 and in Cb(E). By an easy contraction argument the equation (20) has 
a unique solution in C([O, TI, X), first for small T and then for all T >  0. 
By a similar argument the equation (20) has also a unique solution in 
C ([o, q, Cb (E)) for arbitrary T 2 0. It is clear that if rp E C, (H) n X ,  then 
both solutions coincide. 

Let A > 0 be an arbitrary positive number and u(t), t 2 0, an (%)-adapted 
process taking values in the interval [0, l/A]. Define functionals 

S 

+."P (I("(W0, x))-u(0))dfl) $(xb. XI)) 
0 

and consider the following value function: 

where the supremum is taken with respect to all processes u(t), t 2 0, (%)- 
-adapted, having values in the interval 10, l/A]. 

We need the following result: 

FROPOSITION 2. Assume that the conditions (A2HA4) hold and rp, $ E Cb (E), 
+ 2 rp. Then 

(i) VA(s, x) = K(s, x) for all A > 0, s > 0, X E E ;  
(ii) T/,(s,x)fV(s,x) as AJO for s>O, XEE. 

P r o  of. We adapt the proof from [2fl to the present, more general situation. 

The following lemma is a generalization of the first part of Lemma 1 from 
[27] with a similar proof. 
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LEMMA 2. Let (x,) ,~ ,, (u,), and (at), , , be progressively-measurlrble real 
processes such that x and u are bounded and a is buundedfiom above and Eucally 
integrable. If T E [0, + a11 and ( W J , ~ ~ , , ~  is a right-continuozss process such that, 
for each t E [0, fl, 

T s 

w, = E (1 exp {I a, dr) a ds ( %) P-a.e., 
t t 

then, for each t E [Oy T I ,  
T s 

w, = E (J exp {j (a, -u,) dr) (x, + us W,) ds [ &) P-ax. - 
t t 

Let f (s, X) = (9) (XI- VA(sy XI))+, s 3 0, X E  E, where VL is a.solution to the 
equation (21). Then, for a fixed T > 0 and all t€[O, TI, X E E ,  

T 

(23) J ( R , - ,  f ( T -  a, - ) ) ( x )dc  = I(VA(T-t, x)-RT-*$(x)). 
t 

D e h e ' x ,  = f (T-t, X(t, x)), a, = a ( X ( t ,  x)), u, = u(t), and 
T 

w, = ~ ( ~ e x p i a . d r } x , d s i % ) ,  tc[O, T I ,  XEE. 
t t 

By (23) we have 

Applying the lemma with t = 0 we obtain 

However, by the Markov property, 
T s 

(25) E (l [exp {J (a (X (T, x)j - u (r)) dr) u (4 R T -, $ (X (s, x))] ds) 
0 0 

' T s T 

= E ((J o exP { - 1 ~ ( r )  dr)) ~ X P  (J o! (x (r ,  z)) dr) $ (X (T, x))) 
0 0 

Consequently, by (24) and (25), 

CVA(T, x)-R,$(xll  
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Therefore, 

If u (s) E [ O ,  1/21, s E [0, TI, then vA (T, x) 2 jT (u, x). Moreover, if 

then VL(T, x) = j,(ii, x), so part (i) of the proposition holds true. 
We pass to the proof of (ii). By part (i), the function K(s, x), A > 0, is 

decreasing in A > 0. To show that V(T, x) 2 K(T, x) it is convenient to in- 
troduce a new probability space (d, &, P)  with 

where B[O, t], t~ [0, +a], denotes the a-field of subsets of [O, + 001, gene- 
rated by Bore1 subsets of [0, t]. Let, in addition, 

8 ( t , x , u i ) = ~ ( t , x , o )  for d = ( ~ , u ) ~ f i .  

Then 2 is a Markov process with respect t6 a-fields (&@B LO, t]) and with 
respect to the initial transition semigroup (PJ. Moreover, a random variable 
3: fi -, [O, + oo], defined as 

is an (&)-stopping time. Since 

we have V(T, x) 2 K(T, x). 
Let, finally, z be a stopping time with only a finite number of values 

t l < t z c  ... < t N = T  If natural n is such that t j+ l /n< t j+ l  for 
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j = 1, 2, ..., N-1, define 

Since functions q and $ are continuous and bounded and the process X is 
right-continuous, we obtain 

This and the fad that V(T, x) 3 F/,(T, x) imply easily (ii). H 

We go back to the proof of Theorem 5 and dehe & = -9 and A'" = aIXlp. 
Then the Yosida approximations JV; are given by the formula 

Moreover, the penalized equations (19) are of the form 

and the solutions VL(t),  t 3 0, form a continuous semigroup of transformations 
$ + S"t)$, t 2 0, on H. By Theorems 1 and 2, the operator A?+M is 
((w +a)/2)-maximal monotone and the value function V is identical with the 
strong solution of the equation 

Let S (t), t 2 0, be the semigroup determined by (27). We need a version of 
Benilan's theorem [ I ]  : 

THEOREM 6. Assume that the assumptions of Theorem 2 hold. Then, for 
arbitrary x E D (A? + 4, SA (t) x + S (t) x ungorrnly on bounded subsets of 
LO, + 03). 

P r o of. One shows (see 151, p. 35) that for arbitrary 6 E (0, l/w +) the limit 
x: = ~ ~ I I I ~ + ~ x !  is the unique solution of the inclusion 

This means that, for arbitrary 6 ~ ( 0 ,  l/w+) and y E%', 

The result follows now from Benilan's theorem (see Theorem 4.2 in [5 ]  
or El]). 

From Lemma 1 and Benilan's theorem it follows that S" + S$ uniformly 
on bounded intervals of R:,  as functions with values in 3. Since S" = F/, 

8 - PAMS 21.1 
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and converges to the value function V pointwise, V is the strong solution of 
Bellman's inclusion (10). 

In the remaining part of the proof all elements from Af' having continuous 
versions are identified with those versions. 

S tep  2. Functions cp and t,b are in Cb(E). 
For natural n > 4 w + a, define 

The functions 

are in D (9) and q, + q, t,b, $ as n + + c~ both in &' and uniformly on 
compact subsets of E. However, under the continuity condition the following 
compact confmement property holds (see 1291): 

For an arbitrary compact set K c E, T > 0 and E > 0 there exists a com- 
pact set L c E such that 

P(X( t ,x )€L  for all ~ E [ O , T ] ) B ~ - E  for all X E K .  

Therefore, the corresponding continuous functions (K) converge to the 
value function V uniformly on compact subsets of [0, + oo) x E. This in turn 
implies that t/,, regarded as #-valued functions, converge uniformly on bound- 
ed intervals of R: to K 

S t e p  3. Functions q and $ satigy the assumption (A.4). 

By Step 2 it is enough to show that there exist sequences (q,) and ($,) of 
functions from Cb (E) such that q, + cp and $, -, $ as n -+ + oo in Z, q, < $,, 
and the corresponding value functions T/,, n~ N, converge to V; as #-valued 
functions, uniformly on bounded intervals. Moreover, V is the value function 
corresponding to the data (cp, $1. 

Choose q,, $,,  EN, identical to q, $, on balls B, with a fixed center 
xo and radius n and such that on E: 

We show first that the corresponding value functions K,  EN, con- 
verge uniformly on compact subsets of [0, + ao) x E to the value function cor- 
responding to q,  $. Let T be a fixed positive number, K a fixed compact subset 
of El and (L,) an increasing sequence of compact sets (L,) such that, for all 
x E K ,  

P ( x ( ~ , x ) E L , ~ o ~  all t ~ [ O , ~ l ) > l - l / n ,  n = l , 2  ,... 
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Without any loss of generality one can assume that L, c 3,. Functions 
are continuous by Step 2 and 

t 

K(s, x) = sup~(exp(S%(x(o ,  x))dc)  [ r p n ( X ( ~ ,  x))x,<,++n(X(s1 x))~,=,]). 
r4s 0 

! Define a random variable 

and events 

A, = {X(a, X)EL~, for some a€[O, T I ) .  

Note that for a constant C and for arbitrary s E [ O ,  TI, x E K: 

Ix(s, X ) - ~ ( S ,  ~11 C ~ ~ P E ( I P ( X I ~ ~  x))l~A,) s cE(t~~, ,) .  
s d s  

By the assumption (A.4), 5 is an integrable random variable and, by the con- 
tinuity condition (see Step 21, P(A,) + 0 as n 4 a. Consequently, E (TxA,) L) 0 
as n + co and 

sup sup IK(s, x)-V(s, x)rl -+O as 4 +m. 
XEK te[O,T] 

This proves the uniform convergence on compact subsets of [O, + a) x E. To 
complete the proof note that 

Fix E > 0 and let L c E be a compact set and no a natural number such that, 
for n 2 no, SE[O, TI, X E L :  

5 C"x)P(dx) < e l  IF/,(s, x)-v(s, x)l < E. 
L C  

Then 

sup IKts, 4-V(s, x)I2p(dx) < e2(4+p(L)). 
sETO.rl E 

This completes the proof. 

4. APPLICATIONS 

4.8. American options in finite market. Assume that a financial market 
consists of d random assets with prices Y (t) = (Y, (t), . . ., &(t)), t 2 0, satisfying 
equations of the form 
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where the process [(t), t 2 0, with the components (t), . . ., Cd(t), is a general, 
homogeneous in time process with independent increments on Rd with the drift 
vector, the covariance matrix and the jump measure denoted by 4 Q" and v", 
respectively. We will assume that the jump measure v" is concentrated on 
- 1, + oo)d f o avoid negative prices. The solution Y(t) = Y(t, y), t 2 0, y E Rd+ , 

is then given by the Doleans-Dade formula 

Y ( t ,  y) = ex[t.x), t 2 0, 

where 

X ( t ,  x) = x+Z(t), x = Iny, 

and Z (t), t 2 0, is a new, homogeneous in time process- with independent 
increments on Rd, with parameters a, Q and v. Explicit relations between pa- 
rameters characterizing ( and Z can easily be written down. The following 
result was proved in [30] (see also [31]). 

PROPOSITION 3. (i) If r > d, IC > 0, and 

then the measures p and jl on Rd and R:, 

are w-excessive for processes X and respectively, for suflcientiy large w. 
(ii) I'for some y > 0 

then the measures p and p on R~ and Rd,, 

are w-excessive for processes X and I: respectively, for suficiently large w. 

It follows from the above propositions that the general theory, developed 
in the previous sections, can be applied to the price process I.: To be more 
specific let us recall that real functions 4 defined on ~ d ,  are called, in finance, 
contingent claims and one of the objects of the financial theory is to find the 
rational price of 4 defined by the formula 
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The function is called the upper price of an American option and the number 
R stands for the interest rate constant. If d = 1, K is a positive constant and 
@ (y) = ( y  - K)' or @ (y) = (K  - y)', y > 0, the corresponding options are 
called call and put options, respectively. If d = 2, b is a positive constant, 
4 bl, ya) = (yl - by2)  +, yl, yz  > 0, the option is called the Margrabe option. I f  
d is arbitrary, b l ,  . . ., bd 2 0 and 4 is either 

then the options are called basket call and busket put options (see [23]). 
Instead of characterizing the functions vas solutions to appropriate Bell- 

man's inequalities in the spaces I.? (R: , A, where ,t? are excessive measures from 
Proposition 3, it is equivalent to study the function 

where 
q ( x ) = @ ( e x ) ,  XER:. 

Denote by (P,) the transition semigroup on I? (Rd, p) corresponding to X. Its 
generator d is given, on twice continuously differentiable functions q, by the 
formula 

We introduce the following assumption: 

(AS) Thefimction ip is twice continurnsly diferentiable and, for k, I = 1, . . ., d ,  

Using Itb's lemma it is possible to show that if p is o-excessive for (P,) and 
(AS) holds, then q is in the domain of the generators A. The corresponding 
Bellman inclusion can be written in the form 
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THEOREM 7. Assume that, for some natural r > d, 

j 1x1'~ (dx) < + 00. 

Rd 

(i) If tp is a continuous and bounded function, then the function given 
by (321, is  a weak solution in L2 (Rd, l/(l+ jx(3) of the inequality (34). 

(ii) If, in addition, rp satisfies (AS), then V is the unique strong solution 
of (34). 

Proof. We apply Theorems 4 and 5. The assumption (A.l) is trivially 
satisfied because ol = -R. By Proposition 3 the measure p(dx) = (1 dx is 
a-excessive for sufficiently large o. Thus (A.2) holds. Since X (t , x) = x + Z (t), 
t 2 0, x E Rd, where Z has trajectories in D (0, + co), the condition (A.3) holds 
as well. Moreover, in the present situation rC, = q, so if q is bounded, the 
assumption (A.4) is aiso satisfied and the proof of part (i) of the theorem is 
complete. If in addition rp satisfies (A.51, then q E D (d) and, therefore, by the 
second part of Theorem 4, the part (ii) holds as well. H 

THRORBM 8. Assume that 

E (exp (sup IZ (t)()) < + co and J e71Xl v (dx) < + m 
t S 1  R d 

for some y > 2. 
(i) If rp is a continuous function such that, for a constant c > 0, 

then V given by (32) is la weak solution in I? (Rd, eplxl dx) of the inequality (34). 
(ii) I '  in addition, cp satisfies (AS), then V is the unique strong solution 

of (34). 
Proof. We proceed in the same way as in the proof of the previous 

theorem. We check, for instance, that (A.4) holds. Note that, by our assump- 
tions, for arbitrary r > 0 and T, 

so (A.4) (i) holds. Since, for a constant c,, 

~ ( s u p l q ( X ( t , x ) ) l ) < c + c , e l ~ I ,  X E R ~ ,  
f d T  

and 

the assumption (A.4) (ii) holds as well. This way the proof is complete. ea 
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Remark 1. The condition y > 2 must hold if functions like 
rp(x) = (ex-K)', x €R1,  are to be covered by the theorem. Results similar to 
those of Theorem 8 have been obtained earlier by Zhang [32] and Mastroeni 
and Matzeu [20] by different metbods and under the additional assumption 
that the jump measure v was finite. 

4.2. American options in infimite market. Denote by @(t,  0, t 3 0, > 0, 
the price at moment t of a bond expiring at moment t  + 5, and by X(t, 51, t 2 0, 
c > 0, the so-called forward rate function related to 9' by the formula 

Equivalently, 

Following Heath et al. 1141 and Musiela [22] we assume that the process X is 
a solution of an evolution equation of the form 

where W ( t ) ,  t 2 0, is a real Wiener process defined on a probability space 
(a, F? P). The real-valued function a is the so-called volatility function of the 
bond market. The solution to (35) with the initial function x will be denoted by 
X ( t ,  x ,  r )  or, shortly, X ( t ,  x). It is mathematically convenient and economical- 
ly meaningful to consider the equation (35) in the space H 1  = H1 ( [ O ,  + m ) )  of 
all absolutely continuous functions x :  R: + R1 such that 

The set H 1  equipped with the norm ().II1 is a Hilbert space. Let S(t) ,  t 2 0, be 
the left-shift semigroup on H1 given by the formula 

s ( t ) ~ ( r )  = x ( t + r ) ,  t 2 o, r 2 o, X E H I .  

The generator A of S is the first derivative operator, 

with the domain D (A) = H2 (LO, + m ) )  consisting of all functions x such that 
x E H1, x' is absolutely continuous, and x" E L2 (0, + a). The state equation (35) 
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can be written in the form 

where a (0 = s (0 j: a (q) d t ~ ,  1 3 0, and W is a real-valued standard Wiener 
process (U = R1, Q = 1). 

If functions a and a belong to H1, then the equation (35) has a unique 
solution X. The solution is a generalized Ornstein-Uhlenbeck process discus- 
sed in an earlier section. If d is the generator of the transition semigfoup (P,) 
extended to I? (H1, p), where p is an w-excessive measure, then, for XED(A) 
and smooth p: H1 -, R1, 

Fix now two increasing sequences of positive numbers T1 < < . . . < T, < T 
and b,  , bz,  . . . , b, and define 

The rational price of the American payer swaption (see Gqtarek and Musiela 
[ll]) is a function V(t, x), t E LO, TI, x E H1, given by the formula 

't 

(38) V(t, x) = s u p ~ ( e x p { - - ~ ~ ~ ( s ,  x, 0)ds) q ( X ( z ,  x))). 
r<t 0 

Compared with Gqtarek and Musiela (see [I l l )  we use the positive process 
X+ (s, x, 0), s 3 0, instead of X ( s ,  x, 0), s 2 0. This is done also in economical 
literature to avoid negative rates. Taking into account Theorems 4 and 5 we 
arrive at the following result: 

THEOREM 9. Assume that a, a€ H1. Then the swaption price Vgiven by (38) 
is a weak solution of the following inclusion: 

(39) 
av 
-(t, X)€dV(t, x)-x+ (0) V ( t ,  x)-alSp(V(t, x)), 
at 

Replacing cp by its smooth approximation we see that the corresponding 
V is the unique strong solution of (39). 

Remark 2. Using the concept of viscosity solutions Gqtarek and Swiech 
proposed in [12] an alternative characterization of the swaption price. 
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