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BELLMAN’S INCLUSIONS AND EXCESSIVE MEASURES
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Abstract. The paper is concerned with Bellman’s inclusions for
the value function of the optimal stopping for a Markov process X on
a complete separable metric space E. The author investigates a connec-
tion between seemingly unrelated objects: excessive measures, differen-
tial inclusions and optimal stopping. Conditions are given under
which an evolutionary Bellman inclusion has a strong or weak solu-
tion in the Hilbert space I?(E, y), where p is an excessive measure
for X. The solution is identified with the value function of a stopping
problem. The stationary Bellman inclusion is treated as well. Specific
examples of diffusions with jumps and infinite-dimensional diffusions
are discussed. Excessivity of the measure u plays an essential role in
the development. The results are then applied to pricing American
options both in finite and infinite dimensions recently investigated by
Zhang [32], Mastroeni and Matzeu [20], [21], and Gatarek and Mu-
siela [11].

1. INTRODUCTION

Let (E, g) be a metric, complete and separable space equipped with a o-
-field of its Borel subsets & = #(E) and P,(x, I'),t = 0, xe E, I'€ &, a transition
function of a Markov process X. Assume that X (¢, x), t >0, xeE, is the
process X starting from x, defined on a probability space (2, &, P) with fil-
tration (%). Let a, ¢ and Y be real functions on E. For an arbitrary (%)
-stopping time t and se[0, + o) define functionals '

(1) Az, x)=E(exp {ga(X(a, x)da} [ (X (z, %)) Ye<s+ ¥ (X (¢, X)) Ae=s])»
and let V be the corresponding value function:

) V(s‘, x) = sup %4 (7, x).

T<s
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A heuristic, dynamic programming argument leads to the following Bellman’s
inclusion:

3) %—I:(t, x)edV(t, X)+a(x) V(t, x)—0Lx, (V (¢, X)),

V©,x)=y(x), xeE, t=0,

for the function V. The inclusion is considered in a Hilbert space # = I?(E, p),
where u is an w-excessive measure, @ > 0, for the transition function (P,).
A locally finite measure u on E is w-excessive for (P,) (see [13]) if

4) PruN<e”ul) forall t>0, I'eé,

where the measure Pfu is given by

P¥uI) = iPt(x, I)p(dx).

In particular, invariant measures for (P,) are w-excessive for arbitrary w > 0.
The 0-excessive measures are called shortly excessive. A measure p is locally
finite if there exists an increasing sequence of open sets (U,) such that
+ o0
p(U,) <+, neNand |JU,=E.
n=1
It turns out that excessive measures are natural weights for the equation (3), see
Section 2. Moreover, for arbitrary finite measure v and w > 0, the measure u:
+ o
p= [ PHvdt,
0
is w-excessive.
In (3) the symbol o/ stands for a proper version of the characterlstlc
operator of the Markov process, 0l is the subgradient of the 1nd1cator func-
tion Ix of the set

={yeH: ¥ > o}

The Bellman inclusion (3) is usually written in a different way and inter-
preted as an evolutionary variational inequality; see [3]. One needs then how-
ever a bilinear form, defined on a subspace on s, which determines the opera-
tor /. In the case of general state space E the construction of the bilinear form
can be done only in special cases (see [19]) and in the present paper we do not
assume its existence.

Rather complete, analytic and probabilistic theories of optimal stopping
are available for diffusion processes on open subsets of Euclidean spaces R? or
for Markov processes on locally compact spaces; see [3], [9] and [16]. For
financial applications, see [15] and [24]. However, only few papers are dealing
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with analytic questions for more general spaces and more general processes.
Diffusions with jumps are the object of recent papers [32], [20] and [21]. In
[7] a class of infinite-dimensional Bellman’s stationary inclusions on a Hilbert
space was studied. The case of an infinite-dimensional Ornstein—Uhlenbeck
process is investigated in a recent paper [11]. More general infinite-dimen-
sional processes are treated by viscosity methods in [12]. Processes on Banach
spaces E are studied in [2] under the condition that the transition function
defines a Cy-semigroup on the space C,(E). It is a strong condition rarely
satisfied even if E = R%. -

The initial motivation of the present study was to extend an existing ana-
lytic theory of optimal stopping to infinite-dimensional spaces, where a natural
equivalent of the Lebesgue measure does not exist. We believe however that the
approach to Bellman’s inclusion based on the concept of excessive measures
simplifies several classical proofs and allows to treat situations not covered
by existing theories. We derive and extend some of the recent results on
optimal stopping of diffusions with jumps (see [32], [20], [21]) and of infinite-
-dimensional diffusions (see [11], [12]). We prove the existence of strong solu-
tions to (3) in the case of general state space and regular data and identify the
weak solutions as value functions. '

It is known that excessive functions play a fundamental role in the theory
of optimal stopping (see e.g. [25]). We hope that the present paper demon-
strates that excessive measures are useful in the analytic characterization of the
corresponding value function. We also believe that a close connection between
seemingly unrelated objects: excessive measures, differential inclusions and op-
timal stopping is of independent interest. :

The paper is concerned with existence of solutions and their continuity
only. This is a first step to resolve more practical questions: how regular are the
solutions and how can they be approximated? Thus the situation is similar to
that with viscosity solutions (see Lions [18]). Additional work should be done
to find effective ways of calculating the solutions.

The paper is organized as follows. In Section 2 we establish the existence
of strong solution to (3) provided functions «, ¢ and Y are regular enough.
A similar existence result is obtained also for a stationary Bellman’s inclusion:

) Oe AV (x)+a(x) V(x)— 0Ly, (V(x)

on the value function V corresponding to the problem of maximizing the func-
tional:

©) # (e, %) = E(exp {(i)a(X(a, %)) do} ¢ (X (¢, ) Zo< 4.0

with respect to all stopping times 7. We use here classical results on maximal
monotone operators and also the excessivity of the measure u. It is shown in
Section 3 that if data ¢ and  are only continuous but satisfy some growth
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conditions the function V given by (2) is a weak solution to (3). To prove the
convergence of an approximating sequence, results on maximal monotone ope-
rators are used as well as the penalization technique due to Bensoussan and
Lions [3]. Section 4 is devoted to financial applications. In fact, the problem of
stopping optimally an infinite-dimensional forward process or, in the financial
langunage, the problem of pricing interest rate derivatives (see [11], [12]), was
a starting point for the present paper.

Probabilistic theory of optimal stopping on metric complete separable
spaces has beenrecently discussed in paper [29], to which we will often refer.
The present paper is a rewritten version of the preprints [28] and [30]. For

" proofs that some specific measures are w-excessive, both in finite and in infinite

dimensions, we refer to [30] and [31].

2. STRONG SOLUTIONS OF BELLMAN’S INCLUSIONS

By B,(E) and C,(E) we denote the spaces of bounded Borel and bounded
continuous functions on E, respectively. In this section we start with two semi-
groups P, and R, of linear operators acting on B,(E) of the form:

P:co(x)=£Pr(x,dy)rp(y), Rtfp(x)=£Rt(x,dy)<p(y), ¢€eB,(E), xcH.

We will need the following assumption:

(A.1) () For each t =0, xeH, P,(x, *), R, (x, *) are nonnegative measures
such that for a constant a:

P(x,E)=1, R,/(x,IN<e*P,(x,I, T'ecA(E).
(ii) For arbitrary ¢ € C,(E), functions P, (x) and R, (x), t > 0, x€E, are
continuous.

In the next section the following semigroups will be defined by probabilis-
tic formulae:

P,¢(x)¥E(¢(X(t, x)), t>0, xeE, (peB,,'(I.i'),
R;¢(x) =E (exp {fa(X(s, N} e(X( %), t=0, xeE, ¢eB;(E),

where o is a function on E, bounded from above by the number a. We will
require also that:

(A.2) A locally finite measure u on E is w-excessive for the transition func-
tion P,.

The assumptions (A.1) and (A.2) are satisfied for all examples of interest.
We have the following basic theorem the proof of which can be found in [30].

RN -}
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THEOREM 1. Under the assumptions (A.1) and (A.2) the semigroup (R,) has
a unique extension to a Cy-semigroup of positive operators onto # = I?(E, p),
such that

7 IR: Yl < exp{(@/2+a)t} Ylse, (20, pei.

The extended semigroup will also be denoted by (R,).
Let % be the infinitesimal generator of (R,). For arbitrary ¢ € # denote by
A, the following closed and convex subset in #:

Hp={YeH: ¥ > o}.
Then the indicator function I, of £, is given by
0 if yei,
L, ) = , »
0= Ve

and the subgradient of the function I #, 15 a multivalued mdpping 01, defined
on the domain D (0l,) = £, by the formula (see [5])

®) 0Ly, () = {Ees#: (& n—y) <0 for all neit,},
©) Bl ) ={¢es: £<0, and if Y(x) = p(x), then &(x)=0}.

Our aim in this section is to show that under natural conditions the following
evolutionary inclusion:

(10) i—z/(x, x)e,?V(t,.x)—BIfw(V(t, x), V(,x =yx), xeE, t >0,

has a unique strong solution.

One says that a locally Lipschitz continuous #-valued function V(¢),
t>0, is a strong solution, to the inclusion (10) if, for all t>0,
V(tye A ,n 2(L), V(0) =y, and the inclusion (10) holds for almost all ¢ > 0
and u-almost all xeE.

If pest, Yye A, and there exist functions Y, > ¢,, ne N, converging in
# to Y and ¢, respectively, for which the inclusions (10) have strong solutions
Vs, ne N, converging uniformly on bounded intervals of R} to a continuous
functions ¥, then V is called a weak solution of (10). Weak solutions might be
not unique. One gets the uniqueness imposing additional conditions on the
approximating sequences (¢,) and ().

The following theorem is the main result of this section:

THEOREM 2. Assume that (A.1) and (A.2) hold. If the functions ¢ and Y are
in (&) and Y = @, then the inclusion (10) has a unique strong solution.

Proof. The theorem will be a consequence of a result on maximal mono-
tone operators (see e.g. [5]) and of a lemma.

Let # be a transformation from a set D (.#) — & into the set of non-empty
subsets of a Hilbert space # and let @ be a real number. The transformation
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M is said to be w-maximal monotone if the operator .# + wlI is maximal mono-
tone (see [5], p. 106, and [8], p. 82). If .# is w-maximal monotone, then, for
arbitrary 1€(0, 1/w™), the image of I+ A.# is the whole 5 and, for arbitrary
ye s, there exists a unique xeD(#) such that

yex+ A (x).

The unique element y is denoted by _#, (x) and the family of transformations
F A€(0, 1/w™), is called the resolvent of 4. Operators M = ATI(I - &),
4€(0, 1/w™), are called Yosida approximations of 4. If 4" is a maximal mono-
tone operator on 3, then the sum .# 4.4 is w-monotone but not always
w-maximal monotone.

The following result is due to Brézis et al. [6]:

THEOREM 3. Assume that operators # and A, defined on subsets of a Hil-
bert space H#,.are w-maximal monotone and maximal monotone, respectively. If
for arbltrary y€H, arbitrary A > O and arbitrary 6€(0, l/a)+) there exists a so-
lution x5 of the problem

yeX+o(Mx+ N, %)

such that for each 6€(0, 1/w™) the functions N, x5, 4 > 0, are bounded as 1 — 0.
Then the operator M + A, with the domain D (#) n D (N'), is w-maximal mono-
tone.

First we derive from Theorem 3 the following crucial proposition:

PROPOSITION 1. Assume that an operator £ is an infinitesimal generator of
a Cqy-semigroup of positive linear operators (R,) on a Hilbert space # = I? (E, )
such that for some yeR!

(11) IReYle < e”Wlw, t20, yeit.
If peD(X), then the operator
(12) —Z+0ly,

is y-maximal monotone.

Proof. It is well known that a linear operator —Zis y-max1ma1 mono-
tone if and only if it generates a Cy-semigroup of linear operators satisfying (11).
Let # = —% and A" = 0l,. Then 4" is maximal monotone (see [5]) and

Nl = =" e—-m*, A>0, net.
The proposition is now a consequence of Theorem 3 and of the following
lemma. =
LemMa 1. If 6€(0, 1/y%), A > 0, Y € #, then, for arbltrary Y e, the fol-
lowing equation:

(13) ¥ =0—8(Lv+i L (p—n)*)
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has a unique solution v, such that

A7 (@ —v2) |l < NI (@ —¥)— L 01" [lse-
Proof. Define #, = (6I—%)" !, ¢ > y™*. Then the basic equation is equiv-
alent to

V=210 W+Ai (e—1)")
or, by the resolvent identity, to
(14 v=Rys+ 120 W)+ Rypsu12 (A7 (0 —0) " +0).

Since the norm of the operator %544, is at most (6 "' —y*4~!)~! and the real
function z — A7 ((@—=z)* +z) is Lipschitz with constant 4™', the transformed
equation (14) has a unique solution by the contraction mapping principle. Since
e D (L), there exists a function nes# such that

o=Ryn, 0 lo—ZLo=mn,

or, again by the resolvent identity,
¢ =Rysr12+A71 ).
Since v, satisfies (14), we get, by subtraction,
0,—0 = R+ 1,0 Y —n)+ 2" Ryps1nllo—0v)" —(@—v2)].
Consequently, ’
Q—1; < 9?1/5+1/1(VI—5_1'P)+‘

In particular, '

(0—v)" < Rypprin—071Y)",
and

1At (‘P—Uz)+|| <47! ”9?1/”1/1('1_5_1 ‘/’)+ [l

A7t +
<m”(5_1(¢—¢)—3ﬂ)_ [
<|le~to—w)—£n)" |,

as required. @ ‘

To complete the proof of Theorem 2 it is enough to use Proposition 1 and

recall (see [5]) that if an operator # = — % 40l is y-maximal monotone,
then the differential inclusion

d _
(15) ;(f) +.#2(550, z(0) = xeD(A),

has a unique strong solution z(t, x), t = 0, and for arbitrafy xeD(#) the
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inclusion (15) has a weak solution denoted also by z(t, x), t = 0. Moreover, the
operators S(t): D(#)— D(#), t =0, are given by '

St)yx=1z(@t,x), t=0, xeD(H). =

It is of interest to notice that we have implicitly shown the existence of
a solution to the following stationary inclusion:

(16) 02V (x)—0l4, (V ()

on the value function V for a stopping problem on an infinite time interval (see
the Introduction). In fact, we have the following result:

THEOREM 4. If the assumptions (A.1) and (A.2) are satisfied with a < —w
and the function @ is in 9 (%), then the inclusion (16) has a unique strong solution.

Proof Define ¥ =% —((w+a)/2)]. Then ¥ generates a Cy-semigroup
satisfying the inequality (11) with y = 0. Consequently, the operator

—g+(w;“)1+azm
is maximal monotone. In particular, for arbitrary A > 0 the inclusion
(17) 0e.//+,1(—$.//+(‘”;“)://)+aI%(¢)

has a unique solution y €D (%)u X,. However, (17) is equivalent to

1 o+a
_<z+ 2 )llle,?nlz—ajfw(W).

Taking 1/A = —(w+a)/2, we obtain the result. =

3. WEAK SOLUTIONS AS VALUE FUNCTIONS

" In this section we consider again the family of Markov processes X (¢, x),
t >0, xeE, parametrized by the initial condition x€ E. Our main theorem
identifies the value function as a weak solution to the Bellman inclusion. As in
the Introduction, (Q, &, P) is a probability space and (%) is an increasing
family of o-fields. The o-fields &, t > 0, are assumed to be complete, and the
E-valued (#,)-adapted stochastic processes X (-, x) are Markovian with respect
to a transition semigroup (P,) and o-fields (%) in the sense that

(18) E(y(X(t+h, x))| #) = P,y (X (t, x)) P-as.

for arbitrary y € B, (E) and t, h > 0. Although the o-fields (%) may be different
for different processes, the semigroup (P,) is fixed once for all.
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Denote by D the space of all E-valued right-continuous functions having
left-hand limits, defined on the interval [0, + o), equipped with the Skorokhod
topologies (see [4], Chapter 3, and [16]). Denote by .# (E) the space of all
probability measures on (E, &) equipped with the topology of weak conver-
gence. The spaces D and .# (E) are also metric separable and complete. By P*
we denote the distribution of the process X (-, x) on D. We will need the
following assumption:

(A.3) For arbitrary xcE,

P(X(,x)eD)=1
and the mapping x — P* from E to .4 (D) is continuous.

The assumption (A.3) is equivalent to the continuous dependence of the
laws of the Markov processes X (-, x), xe E, on the initial condition and is
satisfied in many interesting cases. It the space E is locally compact, it is
sufficient to assume that, for arbitrary p e Co(E), P, o (x), t > 0, x€E, is con-
tinuous and, for each t > 0, P, ¢ (x)e Co(E). This condition is very close to our
assumption (A.1). It is possible, however, to construct examples showing that
the assumption (A.1) does not imply the continuity of the value function for
continuous data (see [26]).

On the functions ¢, ¥ and on the (discount) function « we impose con-
tinuity and growth conditions, usually satisfied in applications.

(A4) (i) Functions ¢ and \ are continuous and bounded on bounded sets
and @ < V.
(i) For an arbitrary compact set K — E and arbitrary T > 0:

E(leelrl() :[101];] (lo (X @, %)+ (X &, x))[)) < +o00.
(iii) For arbitrary fl,“> 0 there exists a function {e# such that
E(,Z‘J% (o(X@ 0)+ (X 0)) <), xeE.
(i), The' functi'on & is continuous and bounded from above by a constant a,
a(x) <a, xekE.

In this section, for a function g,
t
R.g(x) = E(exp {fa(X (s, X))} g(X (¢, x))), t>0, xeE.
0

We can now state the main result of the present section.

THEOREM 5. Under the assumptions (A.2}HA.4) the value function V (t, x),
t 2 0, xeE, is continuous and is a weak solution of the Bellman inclusion (10). If,
in addition, @, Yy eD(ZL), then V is the unique strong solution of (10).
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Proof. The fact that V is continuous has been established, in the present
generality, in [29]. The proofs of the remaining parts of the theorem use the
penalization technique (see [3] and [27]) and will be divided into several steps.

Step 1. Functions ¢ and  are in C,(E)nD(Z).

Consider first the so-called penalized Bellman equation

19 dd—zl(t, x) = LV, x)+%(cp— Vi, x))+,

V20,x)=y¢(x), =xeE, t>0,

in its integral form
, iy
(20) VA = R,¢+IJRS(¢— Vi(i—s)'ds, t>0.
0

Note that the transformation { — (¢ —{)* satisfies the Lipschitz condition both
in # and in C,(E). By an easy contraction argument the equation (20) has
a unique solution in C([0, T], #), first for small T and then for all T> 0.
By a similar argument the equation (20) has also a unique solution in
C([0, T1, Cy(E)) for arbitrary T > 0. It is clear that if ¢ € C,(H)n 5, then
both solutions coincide.

Let 4 > 0 be an arbitrary positive number and u(z), ¢t > 0, an (%,)-adapted
process taking values in the interval [0, 1/A]. Define functionals

Q1) J(u %)= (j[exp{y( (X (0, x))—u(0))do} u(t) (X ¢, x)) | dt

+exP{§( (X (o, x))—u(o))da} Y (X (s, x)))
and consider the following value function:
(22) Vi(s,x)= sup J,(u, x),
- O0<u(-)S1/4

where- the supremum is taken with respect to all processes u(t), >0, (%)-
-adapted, having values in the interval [0, 1/4].
We need the following result:

PROPOSITION 2. Assume that the conditions (A2)+A4) hold and ¢, Y € Cy(E),
V= ¢@. Then

@) V*(s, x)=Vi(s,x) for all A>0, s>0, xeE;

@) Vi(s, x)TV(s,x) as 4]0 for s> 0, xeE.

Proof. We adapt the proof from [27] to the present, more general situation.

The following lemma is a generalization of the first part of Lemma 1 from
[27] with a similar proof.




Bellman'’s inclusions and excessive measures 111

. LEMMA 2. Let (x)iz0, (U)o and (o), be progressively-measurable real
processes such that x and u are bounded and o is bounded from above and locally
integrable. If Te[0, + 0] and (W04 is a right-continuous process such that,
for each te[0, T],

T

=E(fexp {} o, dr} x,ds| &) P-ae.,
t t
then, for each te[0, T],
=E (} exp {i (o, —uy) dr} (xs+us W) ds| #,) P-ae. -
t 1
Let £ (s, x) = (@ ()= V*(s, x)) ", s = 0, xe E, where V* is a solution to the

equation (21). Then, for a fixed T > 0 and all te[0, T], x€E,

(23) f(Ro—t f(T— 0, ))(x)do = A(VH(T—t, X)— Ry ¥ (x)).
Define x, = f(T—t, X (t, x)), & = «(X (t, x)), u, = u(t), and
= E(fexp {-js"oz,dr} X ds |‘97:), te[0, T], xeE.

By (23) we have
w,=A[(V*(T—t, X(, x))) Rr_ (X %)), te[0, T].

Applying the lemma with ¢t = 0 we obtain
T s
(4 ALVH(T, x)— Ry (x)]1 = E ([ exp {f [« (X (r, x))—u(r)]dr} [u(s) W,
) 1] 0

+((p (X (s, x))—V*T—s, X (s, x)))+] ds).

However, by the Markov property,
@s) (j[exp {j( (X (T, 0)—u@) dr} u) Rr—s (X (s, x)]ds)
((I exp {— I u(r)dr})exp{fa(X (r, 2))dr} ¥ (X (T, x)))

(exp{_f( X, x) —u(@))dr} ¥ (X (T, x)))+ Ry ().

Consequéntly, by (24) and (25),
ALVA(T, x)— R (x)]

: -—lE(exp {j’( (X, x)) u(r))dr}n// (X(T, x))) AR (%)
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+E(E exp {i (2 (X (ry x))—u(r))dr} {/lu () o (X (s, x))
—du(s)[@ (X (s, x))—V*(T—s, X (s, x))]
+(e(X (s, x)—VA(T—s, X (s, %)) } ds).

Therefore,
VAT, x) = Jr(u, x)+E{} E(q; (X (s, x))—V*(T—s, X, x)))+

—u(s)(@(X (s, x))—V*(T—s, X (s, x)))] ds}.

If u(s)e[0, 1/4], se[0, T], then V*(T, x) = J;(u, x). Moreover, if

14 if (X (s, x)) = VAT —s, X (5, x)),
a(s) = {0 if o(X(s, x)) < V*(T—s, X(s, x)),

then V*(T, x) = J,(d, x), so part (i) of the proposition holds true.

We pass to the proof of (ii). By part (i), the function V,(s, x), A > 0, is
decreasing in A > 0. To show that V(T, x) = V,(T, x) it is convenient to in-
troduce a new probability space (2, &, P) with

Q=0x[0, +0], dP(w, )= exp{—/jlu(s, w)ds} u (A, w)dAdP (w),
0

¥ = F®B[0, + 0],

where B[O, t], te[0, + c0], denotes the o-field of subsets of [0, + 0], gene-
rated by Borel subsets of [0, t]. Let, in addition,

X, x,d)=X(t,x,0) for d=(1 w)el.

Then X is a Markov process with respect to o-fields (#®BI0, t]) and with
respect to the initial transition semigroup (P;). Moreover, a random variable
£: @ — [0, +oo], defined as

fAh,w)=4, weR, 1€(0, + ],
is an (%,)-stopping time. Since
Jr(u, x) = E(exp { a(X (0, x))do} [ (X (£, X)) xe<r+¥ (X, X)) xe=1])>
0
we have V(T, x) = V,(T, x).

Let, finally, 7 be a stopping time with only a finite number of values
ty <ty <...<ty=T If npatural n is such that ¢;+1/m<t;,, for
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j=1,2,..., N—1, define

N—-1

U, () =1 Y, x(Op+1m(s), 5€[0, T].

i=1

Since functions ¢ and ¥ are continuous and bounded and the process X is
right-continuous, we obtain

Jr(z, x) = hm Jr (g, X).
This and the fact that W(T, x) > V, (7, x) imply easily (ii). =

We go back to the proof of Theorem 5 and define # = —% and A" = 0l .
Then the Yosida approximations .4 are given by the formula

Nym=2""o—-n", Ai>0, ne.
Moreover, the penalized equations (19) are of the form
(26) dvidit+ 4V + ¥,V =0, V*0)=y(x), xeE,

and the solutions V2(t), t > 0, form a continuous semigroup of transformations
¥ —S*(t)y, t >0, on s#. By Theorems 1 and 2, the operator 4 + .4 is
((w+a)/2)-maximal monotone and the value function V is identical with the
strong solution of the equation

@7 —dV/dte MV+ NV, V(0) =y (), xeE.

Let S(f), t = 0, be the semigroup determined by (27). We need a version of
Benilan’s theorem [1]:

THEOREM 6. Assume that the assumptions of Theorem 2 hold. Then, for
arbitrary xeD(M+N), S*()x —> S(t)x uniformly on bounded subsets of
[0, + c0).

Proof. One shows (see [5], p. 35) that for arbitrary ée(0, 1/w+) the limit
= lim,,x} is the unique solution of the inclusion

yex+5(M(x)+ A (x)).
This means that, for arbitrary de(0, 1/w*) and ye#,
(I[+6(M+N) Ly (I+6(M+N)" 1y as A0

The result follows now from Benilan’s theorem (see Theorem 4.2 in [5]
or [1]). &

From Lemma 1 and Benilan’s theorem it follows that $* — Sy uniformly
on bounded intervals of R%, as functions with values in . Since S*y =V,

8 — PAMS 21.1
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and V; converges to the value function V pointwise, V is the strong solution of
Bellman’s inclusion (10).

In the remaining part of the proof all elements from 5 having continuous
versions are identified with those versions.

Step 2. Functions ¢ and Y are in Cy(E).
For natural n > $w+a, define

+ o0
4,n= [ e ™R,nds, net. .
0

The functions ]
@n =ngn(Pa !//n,=ngnw= n> (co+a)/2,

are in D (%) and ¢, — ¢, ¥, > ¥ as n— +oo both in # and uniformly on
compact subsets of E. However, under the continuity condition the following
compact confinement property holds (see [29]):

For an arbitrary compact set K < E, T > 0 and & > 0 there exists a com-
pact set L — E such that

P(X(t,x)eL for all te[0, T)=1—¢ for all xek.

Therefore, the corresponding continuous functions (V) converge to the
value function V uniformly on compact subsets of [0, + c0) x E. This in turn
implies that V,, regarded as #-valued functions, converge uniformly on bound-
ed intervals of RY to V.

Step 3. Functions ¢ and  satisfy the assumption (A.4).

By Step 2 it is enough to show that there exist sequences (¢,) and () of
functions from C, (E) such that ¢, — ¢ and y, > as n > + 0 in #, @, < ¥,
and the corresponding value functions V,, ne N, converge to V, as s#-valued
functions, uniformly on bounded intervals. Moreover, V'is the value function
,correspondmg to the data (¢, ¥).

Choose ¢,, ¥,, ne N, identical to ¢, ¥, on balls B, with a fixed center
xo and radius »n and such that on E:

oo < lol, Wal <W|, neN.

We show first that the corresponding value functions V,, neN, con-
verge uniformly on compact subsets of [0, + oo) x E to the value function cor-
responding to ¢, Y. Let T be a fixed positive number, K a fixed compact subset
of E, and (L,) an increasing sequence of compact sets (L,) such that, for all
xekK,

P(X(t, x)eL, for all te[0, T)=>1—-1/n, n=1,2,...
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Without any loss of generality one can assume that L, = B,. Functions V,
are continuous by Step 2 and

V(s x) = sup E(exp {f o (X (3, %) da} [0 (X (7, %)) te<s + ¥ (X 5, %) 1ems])-
LEX] 0
Define a random variable
¢ =sup sup |y (X, %),
xeK te[0,T]
and events -
A, = {X (0, x)e L, for some c€[0, T7}.
Note that for a constant C and for arbitrary se[0, T], xeK:
Va5, X)—V (s, )| < Csup E(jY (X (z, X)) xa,) < CE (¢x4,)-
By the assumption (A.4), ¢ is an integrable random variable and, by the con-

tinuity condition (see Step 2), P(4,) — 0 as n — co. Consequently, E(¢x,)— 0
as n— oo and

sup sup |V,(s, x)—V (s, x)r| =0 as— +o0.
xeK te[0,T]

This proves the uniform convergence on compact subsets of [0, + o) x E. To
complete the proof note that

[Va(s, x)—V (s, x)l < {(x), s€[0,T], xeE.

Fix ¢ > 0 and let L = E be a compact set and n, a natural number such that,
for n = ny, s€[0, T], xeL:

JCxpdx) <e,  [Vals, )= V(s, %) <e.
Le

Then
sup [ |Va(s, )~V (s, 0P p(dx) < e (4+u(L)).

se[0,T1E

This completes the proof. m

4. APPLICATIONS

4.1. American options in finite market. Assume that a financial market
consists of d random assets with prices Y (t) = (Y, (2), ..., Yz(t)), t > O, satisfying
equations of the form

(28) dY.(t) = Y (e —)d (),
(29) L0 =y>0, k=1,2,...d, t>0,
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where the process {(t), t = 0, with the components {; (t), ..., {4(?), is a general,
homogeneous in time process with independent increments on R? with the drift
vector, the covariance matrix and the jump measure denoted by 4, § and ¥,
respectively. We will assume that the jump measure v is concentrated on
(—1, + 00)? to avoid negative prices. The solution Y(¢) = Y(t, y), t > 0, ye R%,
is then given by the Doleans-Dade formula

Y(t, y) =€, t20,
where
X, x)=x+Z(t), x=Iny,

and Z(t), t =0, is a new, homogeneous in time process with independent
increments on R with parameters a, Q and v. Explicit relations between pa-
rameters characterizing { and Z can easily be written down. The following
result was proved in [30] (see also [31]).

PRrROPOSITION 3. (i) If r>d, k > 0, and

(30) [ I'v(dy) < + oo,

Iyl >1
then the measures p and ji on R® and R%,

1 ' 1 4 1
b= —ax, gy =—r— (11 L)y,
pE) = e @) 1+K|1ny|'<kl:[1.}’k) Y

are w-excessive for processes X and Y, respectively, for sufficiently large w.
@) If for some y >0

(31) [ @Yy < +oo,

lyl>1

then the measures p and ji on R? and R%,

. d -
pd) = e dx,  ji(dy) = e " ( [T l) &y,

k=1Yk
are w-excessive for processes X and Y, respectively, for sufficiently large w.

It follows from the above propositions that the general theory, developed
in the previous sections, can be applied to the price process Y. To be more
specific let us recall that real functions ¢ defined on R% are called, in finance,
contingent claims and one of the objects of the financial theory is to find the
rational price ¥ of ¢ defined by the formula

7, y)=supE(e ®¢(Y(t, ), t>0, yeR4.

TSt
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The function ¥ is called the upper price of an American option and the number
R stands for the interest rate constant. If d = 1, x is a positive constant and
@) =@—-K)* or $(y)=(K—y?*, y>0, the corresponding options are
called call and put options, respectively. If d =2, b is a positive constant,
&1, 2) = 1 —by2)*, ¥1, y2 > 0, the option is called the Margrabe option. If
d is arbitrary, b,, ..., b; > 0 and @ is either

W1, s Y = b1 y1+...+bsya—K)*
or

W15 .- )’d)=(K—(b1Jf’1+---+de’a))+, =

then the options are called basket call and basket put options (see [23]).

Instead of characterizing the functions ¥ as solutions to appropriate Bell-
man’s inequalities in the spaces I? (R, , fi), where ji are excessive measures from
Proposition 3, it is equivalent to study the function

(32) V(t,x) =supE(e ®op(X(t, x) =V €), xeR,
Tt
where
@(x) =), xeR%.
Denote by (P,) the transition semigroup on I? (R, ) corresponding to X. Its
generator &/ is given, on twice continuously differentiable functions ¢, by the
formula

6)  Ap()=<a, Dy +;tr QDo)
* II (@(x+y)— @ ()—<De (x), y)) v(dy)
yi<1
+' '_[ 1(qo(x+y)—qo(x))v(dy), xeR.

We introduce the following assumption:
'(A.5_) The function ¢ is twice continuously differentiable and, for kl=1,..,4d,

o o

IZ2(R?, p).
’axk’xkax;e R, p

Usiﬁg It6’s lemma it is possible to show that if u is w-excessive for (P,) and
(A.5) holds, then ¢ is in the domain of the generators A. The corresponding
Bellman inclusion can be written in the form

(34) %(r, X)eAV (¢, X)—RV (t, x)—0L¢, (V (¢, X)),

V(©0,x)=¢(x), xeR% t=0.
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THEOREM 7. Assume that, for some natural r > d,
§ 1xI"v(dx) < + 0.
Rd

() If ¢ is a continuous and bounded function, then the function V, given
by (32), is a weak solution in I?(R%, 1/(1+|x[)) of the inequality (34).

(i) If, in addition, ¢ satisfies (A.5), then V is the unique strong solution
of (34). o

Proof. We apply Theorems 4 and 5. The assumption (A.1) is trivially
satisfied because o = — R. By Proposition 3 the measure u(dx) = (1+|x|) " 1dxis
w-excessive for sufficiently large w. Thus (A.2) holds. Since X (¢, x) = x+Z (2),
t >0, xeRY, where Z has trajectories in D (0, + c0), the condition (A.3) holds
as well. Moreover, in the present situation ¥ = ¢, so if ¢ is bounded, the
assumption (A.4) is also satisfied and the proof of part (i) of the theorem is
complete. If in addition ¢ satisfies (A.5), then ¢ € D (%) and, therefore, by the
second part of Theorem 4, the part (ii) holds as well. =

THEOREM 8. Assume that
E(exp{sup|Z(®|}) < +o0 and [ e™v(dx)< + 0
t<1 Rd
for some y > 2.
() If @ is a continuous function such that, for a constant ¢ >0,
lp(x)| <c(l+e™), xeR?,

then V given by (32) is a weak solution in I? (R®, ¢'*| dx) of the inequality (34).
(i) If, in addition, ¢ satisfies (A.5), then V is the unique strong solution
of (34).
Proof. We proceed in the same way as in the proof of the previous
theorem. We check, for instance, that (A.4) holds. Note that, by our assump-
tions, for arbitrary r> 0 and T,

E (sup sup o (X (¢, )))) < + oo,
|x|<rt<T
so (A.4) (i) holds. Since, for a constant c,,
E(sﬁp lo(X (¢, ))) < c+cie®,  xeR4,
t<T

. and

[ ePle M dx < + o0,
Rd

the assumption (A.4) (ii) holds as well. This way the proof is complete. =
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Remark 1. The condition y>2 must hold if functions Ilike
o (x) = (e*—K)™, xeR!, are to be covered by the theorem. Results similar to
those of Theorem 8 have been obtained earlier by Zhang [32] and Mastroeni
and Matzeu [20] by different methods and under the additional assumption
that the jump measure v was finite.

4.2. American options in infinite market. Denote by #(t, (), t =0, { >0,
the price at moment ¢ of a bond expiring at moment ¢+, and by X (¢, {),t = 0,
{ > 0, the so-called forward rate function related to # by the formula

[4
P, {) = exp{—[ X (¢, n)dn}.
0
Equivalently,
X6 0= —a%lnmr, 0, 30,050

Following Heath et al. [14] and Musiela [22] we assume that the process X is
a solution of an evolution equation of the form
0

¢
(35) dX(t, 0= [—B—CX(I, O+ (I) a (1) drl] dt+a () dW1(),

X0,0=x©@, (=0,t20,

where W(t), t = 0, is a real Wiener process defined on a probability space
(Q, &, P). The real-valued function ¢ is the so-called volatility function of the
bond market. The solution to (35) with the initial function x will be denoted by
X (¢, x, {) or, shortly, X (¢, x). It is mathematically convenient and economical-
ly meaningful to consider the equation (35) in the space H! = H' ([0, + o0)) of
all absolutely continuous functions x: R} — R! such that

lixlly = (1x ()] jm I (2 d0)'” < + o0,

. 0 i
The set H' equipped with the norm ||-]|; is a Hilbert space. Let S(z), ¢ = 0, be
the left-shift semigroup on H' given by the formula

SOxQ) =xt+), t=0,>0, xeH.
The generator A of S is the first derivative operator,
d

40 =

x@), (=0,

with the domain D (4) = H?([0, + o)) consisting of all functions x such that
xeH', x' is absolutely continuous, and x” e I? (0, + co). The state equation (35)
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can be written in the form
(36) dX =(AX+a)+adW, X(@0)=x,

where a({) = o ({) j'f)o'(n) dn, { 20, and Wis a real-valued standard Wiener
process (U = R, Q0 = 1). ‘

If functions ¢ and a belong to H, then the equation (35) has a unique
solution X. The solution is a generalized Ornstein—-Uhlenbeck process discus-
sed in an earlier section. If <7 is the generator of the transition semigroup (P,)
extended to I? (H', u), where u is an w-excessive measure, then, for xe D (4)
and smooth ¢: H* - R!,

2 (x) =3{Dp(x)0, 6>+<D, p(x), Ax+a).

Fix now two increasing sequences of positive numbers T) < I, < ... < T, < T
and by, b,, ..., b, and define

m Tk
37) p(®)=(1-Y beexp{f x©d})", xeH'.
k=1 0

The rational price of the American payer swaption (see Gatarek and Musiela
[11]) is a function V (¢, x), te[0, T], xeH', given by the formula

(38) V(t, x) = sup E(exp {— j'X+(s x, 0)ds} ¢ (X (z, x))).

TSt

Compared with Gatarek and Musiela (see [11]) we use the positive process
X* (s, x,0),s >0, instead of X (s, x, 0), s > 0. This is done also in economical
literature to avoid negative rates. Taking into account Theorems 4 and 5 we
arrive at the following result:

THEOREM 9. Assume that a, 6 € H:. Then the swaption price V given by (38)
is a weak solution of the following inclusion:

G9) %/(t, X)edV(t, X)—x* O V(t, 9~y (V, %),

V0,x)=o¢(x), xeH'.
Replacing ¢ by its smooth approximation we see that the corresponding
V is the unique strong solution of (39).

Remark 2. Using the concept of viscosity solutions Gatarek and Swiech
proposed in [12] an alternative characterization of the swaption price.
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