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Abstract. We consider questions of characterizing a stochastic
process & = (X,, t = 0) by the properties of the first two conditional
moments. Our first result is a new version of the classical P. Lévy
characterization theorem for martingales. Next we deal with a charac-
terization of processes without continuous trajectories. We consider
a special form of the initial state. Namely, we suppose that the r.v.
X, has a polynomial-normal distribution (PND), ie. the density of
X, is the product of a positive polynomial and a normal density.

1. INTRODUCTION

We consider questions of characterizing a stochastic process & = (X,, t = 0)
by the properties of the first two conditional moments.

Let X, = (X0, X}, --., X},) denote a (d + 1)-dimensional random vector
for0 <t, <... <t;. We shall consider a special form of the initial state. Name-
ly, we suppose that the r.v. X, has a polynomial-normal distribution (PND), i.e.
the density of X, is the product of a positive polynomial and a normal density.
Such a density is called by Evans and Swartz [4] a polynomial-normal density.
For simplicity we use the symbol PND not only for densities but also for the
class of r.v.’s with PND densities. We investigate the class PND using Hermite
polynomials. It is known that every polynomial can be represented as a linear
combination of Hermite polynomials. ,

Thus we will consider the r.v. X with density of the following form:

(11) f(x) = \/;fn‘sPZI(x’ 52)exp(_2%i>r

where

21

p2!(x= 52) = Z cra_rHr(x/‘s)

r=0
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8 A. Plucinska

is a positive polynomial in x of degree 2! (I > 0), ¢, are parameters, H, is the
Hermite polynomial of degree r, and é > 0.
The distribution given by (1.1) will be denoted by

PND (21, 62, Czl), where C21 (Co, veay sz).

Let £ =(X,,t>0) be a zero mean Gaussian Markov process with
non-degenerate distributions. It is known (see for example Timoszyk [9] and
Adler et al. [1]) that its covariance function is the product k(s,?)
=EX,X)= 0@y @ for s<t. We suppose that v (z) # 0.

We construct a stochastic process & = (X,, t > 0) in such a way that
various properties of Gaussian Markov processes are preserved but the one-
-dimensional distributions of & are PND.

Namely, we define a polynomial-Gaussian Markov process (PGMP) in the
following way:

'/f(t) &
2 =(X,,t> Xo—Xp),t20],
where X, ~ PND(2l, k(0, 0), C5;) and X,, X are independent.
Define

9@ =0/ ).

It is evident that g is an increasing function.
The density of the one-dimensional distribution of & has the following
form (see Plucinska and Bisinska [7]):

1 x2
(1-3) f(x) = Pll(xs k(t’ t))f(x) = le()C, k(t, t))————exp{——_},
2nk(t, 1) 2k(t, 1)
where

2 oy e x
(L4) Pafx, kt, 1)) = Le [.pz(O)(p(t)] H'(ﬂ/k(t t)>'

The aim of this paper is to give some characterizations of PGMP based on
properties of conditional moments. For simplicity we use the symbol PGMP
not only for processes but also for the class of suitable distributions (analogi-
cally to PND).

Our first result is a new version of the classical P. Lévy characterization

~theorem for martingales.

Next we consider a characterization of processes without continuous tra-
jectories.

We use conditioning with respect to the past o-field #, = ¢(X,,:w < 5) of
the stochastic process . We shall also use o-fields that allow some insight into
the future, namely, we put

Fu=0X,iw<sorw=u), s<u.
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We are going to prove the following propositions.

ProrosiTiON 1.1. Let & =(X,,t > 0) be a square-integrable stochastic
process with continuous trajectories and EXy < oo for n=1,2,... Suppose
there exist a positive definite function k(s, t) = @ ()Y (t), s < t, and a positive
polynomial P,; of the form (1.4) such that for all s<t

Y (t)
(L.5) E(X,|F) = e )X
(1.6) : Var(X,| %) is non-random,

and for some t >0

_,_20 ©/29) Pu(y, K, 1)
0D Bl =) = G+ o0V O -0 OF 0L 5

Then & is a PGMP and its densities are given by (2.2).

The next proposition concerns characterizations of processes without con-
tinuous trajectories.

PROPOSITION 1.2. Let ¥ = (X,, 0 <t < T) be a square-integrable stochas-
tic process such that (2.3), (2.4), (2.6), (2. 7) hold, there exists a polynomial P,, of
the form (1.4) such that for some t > 0 formula (1.7) is satisfied, and EX% < oo for
n=1,2,... Then & is a PGMP and its densities are given by (2.2).

For convenience of the reader we state here the classical P. Lévy charac-
terization theorem.

THEOREM 1.3. If a stochastic process & = (X,, te[0, 1]) has continuous
trajectories, is square-integrable and

E(thgrs)zxss Var(X,!ffs)=t—s, Xo,=0,

then & is the Wiener process.

If we put Y (t) = 1, ¢ (t) = ¢, Py = const in Proposition 1.1, we get Theo-
rem 1.3. The condition X, = 0 in Theorem 1.3 is essential. In some papers (e.g.
Bryc [2], Theorem 8.2.1) this condition is omitted; that is a mistake.

In our considerations condition (1.7) is essential. It concerns some con-
ditioning of the initial state with respect to the future. It is similar to the
conditioning of the parameters with respect to the future.

Characterizations of distributions by their posterior conditional expecta-
tions are considered by various authors. For example, mixtures of normal or
gamma densities f (x| Q) with respect to the parameter Q are considered by
Cacoullos and Papageorgiou [3]. In the present paper instead of the parameter
Q we have the initial state X,.
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2. PROPERTIES OF PGMP

We shall use Propositions 2.1-2.4 given in Pluciiska and Bisinska [7].

PROPOSITION 2.1. If X ~ PND (21, 6%, C,)), then the moments are given by
the formulas

X 6 "nl forn=1,...,2l,
@1) EH, (6) {0 for n> 2l

PROPOSITION 2.2. The sum of two independent r.v.’s with polynomial-normal
distribution has a polynomial-normal distribution.

PropOSITION 2.3. Let & be a PGMP. Then for everyd 2 1,0<t; <... <1y,
the density function of the vector X; = (X,,, ..., X,) has the following form:

~/ det o
(2 )d,'z

= le(xl, k(tls tl))f(xd)’

2.2) falxg) = ¥—5Pa(xy, k(ts, 1)) €Xp { —3(x,, xd)}

where

] )
k 15 b1 "\Jo )V ()
Pau(xs, ke, 1) = Z |:'/]2(0)(P(t1) " @ (t) ¥ (1)

k(t, t) = @)Y (t), xs = (X1, ..., Xa)€R%, f is the density of the d-dimensional
normal distribution /" (0, #), # = [@ )Y () 1<i<j<a> F = A . The dis-
tribution given. by (2.2) will be denoted by

PND,(2l, A, C,).

PRrOPOSITION 2.4. Let the density of X,; be given by (2.2). Then the charac-
teristic function of X, has the following form:

. 21 . 1 d -
(p(Cd) = EexP [l (Cda Xd)] = Z Cr ("1)’ €Xp I:_E Z k(tr’ ts) Cr Cs]a
r=0 rs=1
where
1

k(0, 0)
It is evident that ¢, = 1.
We are going to prove the following proposition.

ProrosITION 2.5. The conditional moments of PGMP for s < t < u are given
by the formula

n="——[(1 kO, t))+...4+{sk(0, ts)].

@3) E(X,| %) = %xs,
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_9@W—gO ¥,  9@0—g() ¥

2.4 N Fow) = s w
e AT BT WA R T

_ 220 ¥ _ 0/0y) Pul(y, k(t, 1)
25 EX|X.=y qo(t)y+ll/(t)[g(t) g(s)] Pals kG 1)
(2.6) Var (X, | %, is non-random,
2.7 Var (X,| %,,) is non-random.

The proof of Proposition 2.5 will be based on Lemma 2.1 below. First we
introduce some notation.
Let us put

Y=XN0, Y=XN0.
Then for s<t
E(XY)=4g0s)

Next we change the time. Taking into account that g is an increasing

" function we introduce the new processes

F=Z,t=0, F=(Z,t=0),
where
Zi= Y1440, Z~, = il_l(H-a)a 9(9“1 (x)) =X, 9—1(“) = 0.
It is evident that for s <t
k(s,t)y=E(Z,Z)=3OY () = s+a,

ie. Y (t) =1, $(s) = s+a. It is obvious that (Z,—Z,, t > 0) is the Wiener pro-
cess.

Proposition 2.5 for the process
(2.8) F=(Z,t20=Z—Zy+Zo, t =0),

where (Z,, t > 0) is a zero mean Gaussian Markov process with covariance
function k(s, t), takes a simpler form, which we name Lemma 2.1.

LemMA 2.1. Let & = (Z,,t = 0) be a PGMP given by (2.8). Then the con-
ditional moments for s <t <u are given by

(29) E(Ztlfg?s) = Zs’
~ — t—
@.10) EZ|#)=""lz+ 57,
u—=s u—Ss
s+a (6/az)ﬁ2,(z, t+tx)
11 —r) = —
@.11) EZdZi=2) = at(t=9 g 2o
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(2.12) Var(Z,|#) =t—s,
(213) Var (Zr I 'ﬁs,u) = '(u__t)(—t_i):
u—s=s

where %, =6(Z,: w<5), %, =0(Z,: w<s or w=u), and

- 2 z
(214) Pz, t+a) = c,(t+oc)"’2H,( )
Proof of Lemma 2.1. First observe that by definition (i.8) we have
(2.15) Z—Z,=27,—Z,
—t t— ~ -t —5 =
(2.16) Ay Ny Ry Ny Ry
u—s u—s u—s u—s

Taking into account that (Z,—Z,, t > 0) is the Wiener process and for-
mulas (2.15), (2.16) we get (2.9), (2.10), (2.12) and (2.13).

Now we are going to prove (2.11). Taking into account (2.2), (4.1}(4.4),
substituting

[+o s+o t—s
G Y e e 8V frow yoame KA P

and integrating by parts, we get

_ t+ao 1
TV 2r(s+9)(t—5) Pyulz, t+)

2 ex x x2  (z—x)? z2
xf,go(sm)'ﬂH'( s.|_a)eXp{_2(s+a)—2(t—s)+2(t+oc)}dx

s+ o) (t—s) 1 2 ¢ (u—w)?
~\ 2n(+9) Fz,(z,t+a),;0(5+a)'/2juH'(cu)6Xp{_ 2 }d"

s+ a)(t—5) 1 i’: c,
- n(t+a) Pylz, t+a) S, (s+o)'?

(t+a)(t—s) d z s+o z
"[\/ s+a EH’(',/—M)*\/(t+a>(t—s>ZH'<‘ t+a)]

(d/dZ)ﬁz,(Z, t+a)
Pz, t+a)

E(Zs | Zt=z)

s+a
=z—+(—5)
t+o

Formula (2.11) is thus proved. This completes the proof of Lemma 2.1.
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Proof of Proposition 2.5. First observe that by definition (1.3) we
have

N’

l’l,(t X, = X~t_llliX~sy

Y (s (s
gW-gO YO, 90-9&) ¥,
g —g Y (s) " gw—gE) Y@ "
g -9 YO 5 9(—90) V) »
gW—gOYE) " gW—g@OP@ "
Taking into account that X is a Gaussian Markov process and (2.18),

(2.19) we get formulas (2.3), (2.4), (2.6) and (2.7). Formula (2.5) follows easily
from (2.11). =

N

(2.18) X,—

-
—

2.19) X,—

o

-

3. PROOFS OF PROPOSITIONS 1.1 AND 1.2

First we prove a simpler version of Proposition 1.1.

LeMMA 3.1. Let Z = (Z,, 0 <t < T) be a square-integrable stochastic pro-
cess with continuous trajectories and EZ} < oo, n=1, 2, ... Suppose that there
exists a polynomial P, of the form (2.14) such that for s <t

(3.1) E(Z.|Z)=Z,
(3-2) Var(Z,|Z)=t—s,
and for some t >0

o z+t(a/af)ﬁ”(z’ H‘Oﬂ).
+a PZI(Z: t+0€)

(33 E(Zo|Zi=2) =

Then &% is a PGMP.

Proof of Lemma 3.1. The difference between Theorem 1.3 and Lem-
ma 3.1 concerns the initial state Z,. The assumptions connected with the con-
ditional distributions of Z, | Z, , ..., Z, _, are identical. Thus in virtue of Theo-
rem 1.3 the conditional distributions of Z, | Z,,, ..., Z, _, fort; <...<t, are
Gaussian. We must only find the distribution of Z,.

Since Z,—Zy ~ N(0, t), EZ} < w0, and Z,, Z,—Z, are independent, we
have EZ} < o0, ’

Let us write

0 ~ ~
E;le(Z, t) = Py(z, t).




14 A. Plucifiska

Taking into account (4.1}(4.4) for every natural n we have

(34 E [zo H, ( \/tZ_-:-_o_t) P(Z.,t + oz)]

= EI:H,. (\/%_—a) Py(Z,, t+0)E(Z,| Zt)]

Z, \2 o ( Z, )[ o ﬁgl(Zt,t+a):!
= EH, H, Z4tom————
<\/t+a)rzo(t+°‘)r/2 t+a)lt+a"  Py(Z, t+o)
Z, 2 ¢
=EH, z
(\/t+a>rzo (t+ay”?
Z t
Al () ()| ()
t+o t+o t+o t+o t+o
Zt )2! c,
= EH, _
(ﬂ/t+oc rgo(tﬂﬂ)” ,
YA
x{—a—H,+1(——'—>+r t+aH,_1( )}
AR A t+4o o

21

¢ o min{n,r+1) I‘+1 (ntr+1)2—Fk
Ll & W)
yA min{n,r+1) n 1
<t )8 ()

(n+r+1)/2—k Z
X (—d‘) EHpir-1-2 (—O)]
4o \/&

On the other hand, the left-hand side of (3.4) can be represented in the
following form:

(35 E [zo H, (J%> Py(Z,, t+ cx)]

=E {ZO E [H,, (\/—%> Po(Z,, t+a) | ZO]}
B 21 c, min(m,r} o n+r)/2—k ZO
- L 5 )T ()

0
21 mm(n r) o n+r)/2—k
r= 0(t+d)'/2 < )( )(t—l—a)

XI:EHn+r+1 2k(\/—)+(n+r 2k)EH - 2k(\z/o—>:|
a
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In view of (3.4) and (3.5) we have

=0 K=o t+rx)’ ke k k
Z, V4
[EHn+r+1 Zk(\/—)+(n+r 2k)EHn+r 1- Zk(\/o—)]
o

21 min(n,r+1)

_ S & ek [P r+1 E Zo
DN A VW L W
2! min(r,Fr—1) ¢ n r— 1 Z
_ v r—1)2-k ! E . i} -0,
r;O kgo (t+°‘)r—1hka 7k (k>( k ) Hoer-a- 2k(\/&) °

The left-hand side of (3.6) is a polynomial in (t+a)~!. The equation (3.6)
must be satisfied for every t. In particular, the constant term (independent of ¢)
must disappear. Thus in view of (3.6) for n =0 we get

EH, (\Z/%) =—C\/L&.

From (3.6) for n > 1 we get

(3.7 rgoc,oc(l"}’zr!(r)[EH,,_H.I(\Z/_)+(n rEH,_,_ 1(5%):'
' 1-r)/2 ZO
-3 e (r+1)!( +1)EH,, - (ﬁ)

VA id nl(n—2r+1) Z
=ol?2EH 0 P i il * S 0
* "“(\/E)Jr,‘j“oc' (—r+ D! 7T
_Cn+1(n+1)!d—n/2 = 0.

We now prove by induction on n that

Z
(3.8) EH, (70_) =co "t forr=1,...,n n<?2l
o

We have already settled the case of n = 1. Suppose that (3.8) holds for some » with
n+1 < 2l. Then taking into account (3.7) and substituting m = n—2r+1 we get

" —2r+1 VA i
a-np T oy 20 ) = g2 -2 _
(39) r§1cra (n—1+r)' n—r+1(\/;) o ,-;l(n r+1)c,c,, r+1
n—-1

-nj2
Z MCn+1-my2Cm+1+my2 = & "2 8.

m=1-—n

—_ a—n/Z
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We define
B (1, ) = MCut 1 ~my2 Cort 1 4my2-
Evidently, h(n, m) = —h(n, —m). Thus
(3.10) S, =0.
It follows from (3.7)3.10) that

Z
0) =10 "2 (1),

Ja
where n < 21.
Now we take n = 2l Then by (3.7) we have

d 2 Z " 21 Z
0= Z e a2 I)Eﬂzl r+1( 0> Z Cr“(l_')lzr!( )EHZI r+1( >
r=0 r \/& r=1 r— 1 \/&

G.11) . EH,,+1(

Z n 2 20-2r+1 Z
=0‘1/2EH21+1(—0 +(2N! Z coalt” zr+1)/2—r+,Esz+1 r( 0)
Ja @I—r+1)! Ja
12 ZO - 2l—-1
=a'?EHy 4, +@2D)ta Y. MC@it1-my2 C@i+1-my2
=1-21 _

=a'l? EH21+1<

).

RO

Thus

yA
EHZ,H( °> =0.

Ja

Now let n=2I+1, ..., 4l. Then by (3.7) we have

Zo )+n' a "2

Ja
n_2 n—2r+1 Z
o= 2r+ /2 EH,_, “o
x[,; «* (n—r+1D)! “(ﬁ)
2 n—2r+1 Zo
+ c,oc‘l"+")/2——E<H,,_, (_ _o.
. r=n—221+1 (n_r+1)' i \/& -

We now prove by induction on N that

(3.12) coat’? E<H,l+1

(3.13) E(H,<ﬁ>> =0 for r=2I+1,...,N, N <4l

Ja
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The case N = 2[+1 is already settled. Suppose that (3.13) holds for some
N with N+1 < 4. We substitute m = n—2+1. Then by (3.11)}3.13) we get
Z n—1
(3.14)  coa'*E (HN+ 1 (——0—>)+N! a2 N MCut1+myzCot1-myz2 = 0.

\/& m=—(n—1)

We repeat the considerations given in (3.9} and (3.10). Then, by (3.14),

EHN+1 (_Z_()) = O.

Ja
Thus (3.13) holds.
Analogously we show that

EH,(é) =0 for r>4lL

Ja

Finally, all the moments are as in (2.1). By the Carleman criterion the
moment problem has a unique solution (see Pluciniska [6]). Then

Zy~ PND (21, a, Cs)),
and therefore & is a PGMP. m
Proof of Proposition 1.1. It is evident that
X, =y ({t) Zys+a)-
Therefore Proposition 1.1 is an immediate consequence of Lemma 3.1. =

Proof of Proposition 1.2. We use Theorem 1 of Plucinska [5] and :
Theorem 2.1 of Wesolowski [10]. By these theorems all the conditional dis- |
tributions X, |X,,, ..., X, _, are Gaussian. Using the methods of Lemma 3.1 '
we show that X, ~ PND. Proposition 1.2 is thus proved. =

4. APPENDIX

For convenience of the reader we give some formulas for Hermite polyno-
mials taken (after some easy transformations) from the book of Prudnikov et
al. [8]:

x x x d x
(41) H, . (;) = ;Hr(;)—\/;EH,(;), v>0,

1 [ ) !
@2) N j[WH,(cu)]exp{—(“ 2”) }du | ;

dl:
- (1—c2)'/2ﬁﬂ,(—%—2), <1, k=0,1,2.
—C

2 — PAMS 231 s
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Let (X,,t>0) be a zero mean Gaussian Markov process,
E(X.X,))= EX?=v,, EX? =v, for s <t. Then

X, _
(4.3) E(H,. (ﬁ ' Xs) = x1>
IS Sy 7% IS 2V N A (x_)
- Zﬂ(Uz—Ux)IHr(\/fg)exp{ 2(”2—"1)}dx (”2) Hr v/
_ X X
44) E{H,|—=)H,|—=]]|X,
@4 ( (f) (f)' )

min(m,n) m n (vl)(m+n)/2—k ( Xs )
= k! — H, .. .|—}
L EE) e
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