PROBABILITY AND MATHEMATICAL STATISTICS Vol. 23, Fasc. 2 (2003), pp. 217–228

ALMOST SURE CONVERGENCE OF THE DISTRIBUTIONAL LIMIT THEOREM FOR ORDER STATISTICS

Liang Peng Yongcheng Qi

Abstract: Let $X_n, n \ge 1$, be a sequence of independent and identically distributed random variables and $X_{n,1} \le X_{n,2} \le \ldots \le X_{n,n}$ denote the order statistics of X_1, \ldots, X_n . For any sequence of integers $\{k_n\}$ with $1 \le k_n \le n$ and $\lim_{n\to\infty} \min\{k_n, n-k_n+1\} = \infty$, if there exist constants $a_n > 0, b_n \in R$ and some non-degenerate distribution function G such that $(X_{n.k_n} - b_n)/a_n$ converges in distribution to G, then with probability one

$$\lim_{N \to \infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} I\Big(\frac{X_{n,k_n} - b_n}{a_n} \le x\Big) = G(x) \quad \text{for all } x \in C(G),$$

where C(G) is the set of continuity points of G.

2000 AMS Mathematics Subject Classification: 60G15, 60F0S

Key words and phrases: Almost sure convergence, distributional limit theorem, order statistics.

THE FULL TEXT IS AVAILABLE HERE