PROBABILITY AND MATHEMATICAL STATISTICS Vol. 23, Fasc. 2 (2003), pp. 389–411

ON THE EXISTENCE OF MOMENTS OF STOPPED SUMS IN MARKOV RENEWAL THEORY

Gerold Alsmeyer

Abstract: Let $(M_n)_{n\geq 0}$ be an ergodic Markov chain on a general state space X with stationary distribution π and $g: X \to [0, \infty)$ a measurable function. Define $S_0(g) = 0$ and $S_{(g)} \stackrel{def}{=} g(M_1) + \ldots + g(M_n)$ for $n \geq 1$. Given any stopping time T for $(M_n)_{n\geq 0}$ and any initial distribution ν for $(M_n)_{n\geq 0}$, the purpose of this paper is to provide suitable conditions for the finiteness of $E_{\nu}S_T(g)^p$ for p > 1. A typical result states that

$$E_{\nu}S_T(g)^p \le C_1(E_{\nu}S_T(g^p) + E_{\nu}T^p) + C_2$$

for suitable finite constants C_1, C_2 . Our analysis is based to a large extent on martingale decompositions for $S_n(g)$ and on drift conditions for the function g and the transition kernel P of the chain. Some of the results are stated under the stronger assumption that $(M_n)_{n\geq 0}$ is positive Harris recurrent in which case stopping times T which are regeneration epochs for the chain are of particular interest. The important special case where $T = T(t) \stackrel{def}{=} \inf\{n \geq 1: S_n(g) > t\}$ for $t \geq 0$ is also treated.

2000 AMS Mathematics Subject Classification: 60K1S, 60G42, 60G40.

Key words and phrases: Markov random walk, stopped sum, Harris recurrence, regeneration epoch, drift condition, *l*-dependence, martingale, Burkholder's inequality.

THE FULL TEXT IS AVAILABLE HERE