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Abstract. In this paper we present two large deviation results for 
weighted compound sums L:, aiXi, where Xis  are i.i.d. (possibly 
lattice) random variables, a;s are non-negative real numbers, and N is 
a Poisson variable. These results are generalizations of approximations 
for non-weighted compound sums and for non-compound weighted 
sums. 
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I. INTRODUCTION 

The problem of approximating large values of a compound sum c:, X i ,  
where the Xis are i.i.d. and N is a discrete random variable, has been initially 
motivated by the description of the total claim amount of an insurance com- 
pany over a fixed time period (see 161). In cIassical setups, N is a Poisson or 
a Polyi variable (see for instance [5] and [lo]). Among generalizations of the 
compound Poisson sum, the finite mixture model (see [I]) and a model that 
incorporates. inflation on Xi's (see [13]) have been developed. 

In this paper we present an approximation for the probability 

P (Er= aiXi > y), where the Xi's are i.i.d. random variables, y and afs are 
non-negative real numbers, and N is a Poisson variable independent of the 

N Xi's. Hence we have to study the weighted compound sum Y = xi=, aiXi. In 
this paper, two approximations for this weighted compound sum are given. 
The first one is an approximation for the probability P ~ r =  a, Xi > y) when 
y + m. It is a generalization of the compound sum approximation found in 
151, obtained for all ais equal to 1. The second one is an approximation for the 

N probability P (z:=, ai Xi > e C=, a$ when E (N) + m. It is a generalization of 
the non-compound weighted sum approximation found in 131 and [2]. 
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In order to establish our theorems, we classically use an "exponentially tilted" 
variable (see [10], p. 11, for a general definition of tilting). We denote by 
#rr(t)  = E(efu) the Laplace transform of a random variable U,  we let 4 = &, 
where X is a variable with the same distribution as the X,'s, and Q (t) = I#'@)/$ ( t )  
for t~ R. We recall that Q is an increasing function, and we denote by Q - I  the 
inverse of Q with respect to composition. For all h's such that #+-,(/I) < + co, we 
consider a random variable J$ with distribution function H,  satisfying 

where H ,  is the distribution function of Y-y. The parameter h = h(y) of the 
exponentially tilted variable Y,  is chosen to be a solution to the equation 
E (Ir,) = 0. Then an approximation for the centre of the distribution of I.', pro- 
vides a good approximation for the tail of the distribution of Y-y. The ap- 
proximation obtained by means of exponentially tilting and a normal approxi- 
mation (or a local central limit theorem) for the tilted variable is often called 
a saddlepoint approximation. General references for saddlepoint approxima- 
tions can be found in [lo] and [Ill. 

To establish the local central limit theorem for &, we rewrite it as a com- 
pound sum 

where the Xhis are independent and independent of Nh. Observe that, as shown in 
the forthcoming Lemma 4, we have E ( N j  -+ cc for both asymptotics E (N) -+ oo 
and y -, co. Related techniques for sum approximations can be found in 171 and 
[12]. However, note that the asymptotic y -+ oo requires uniformity in h for the 
local central limit theorem. We refer to Hoglund [8] for pioneering work on 
uniform approximations. In the i.i.d, case, Hoglund obtained uniform expansions 
for bounded lattice variables and for absolutely continuous variables such that 

where 1 is a slowly varying function. 

2. RESULTS 

First we enumerate four conditions that are necessary to establish our re- 
sults (see [3] and [2]). Set s2 = Var (&) and pi = E(Yi )  for i = 3, 4. Note that, as 
will be shown in the forthcoming Lemma 4, we have s + co as y + co. More- 
over, let 4, be the Laplace transform of & and wh(.!J = #, (ic) be the character- 
istic function of &. Finally, set 0, = min (a,:  EN*), 0, = max{ak:  EN*), 
p,, = P(N=n) for  EN, and A = E(N) .  
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CONDITION I. There exist a and 0 with 0 < ol < 1,0 < 0 < 1, such that, for 
all n, at least an of the a,'s, kc {I, . . ., n),  exceed or equal OD,. 

Condition 11 is required for the asymptotic y -, m, and Condition 11' for 
the asymptotic L + m . 

CONDITION 11. The support of X contains positive values and 
sup(t: $ ( t ]  < a) = +a. 

CONDITION 11'. d ( t )  is b i t e  on an I containing ( - B ,  B) for some B > 0. 
Moreover, Q assumes the value e/(me) at some point and B, = 8-I Q - ~ - ( c / ( u ~ ) ) E ~ .  

When X is absolutely continuous, Condition 111 is required for the asymp- 
totic y + a. 

CONDITION 111. For all real numbers a and S such that a > S > 0, and for 
a solution h to the equation E ( & )  = 0, we assume that ah([) = o(1/s2) as 
y + m  for a s > [ > 6 > 0 .  

In the lattice case, we always need to assume the following 

CONDITION IV. The ais are such that Y is a lattice with span d. 

Condition IV is satisfied for instance if the Xi's are defined on N and the 
a:s can be written in the form ai = rJs, where ri, s belong to N. 

We now state our theorems. First we consider the asymptotic y + a. 

THEOREM 1. Let us assume that Conditions I and I1 are satis$ed and that 
at > 0. Let h be a solution to the equation E ( G )  = 0. Then, as y + a, we have 
s + a. Let us assume moreover that (p4- 3s4)/s4 = 0 (1/s2) and that h/s + 0 as 
y + m .  Then 

as y + a if X is absolutely continuous and Condition I11 is fuEfilled, and 

as y + co if X is a lattice and Condition IV is fulJiEled. 

To state our results for the asymptotic A -+ co, we now consider rather 
a random y defined by y = e xr=, q, with e > 0 fixed, and let Z = Y- y .  

THEOREM 2. Let us assume that Conditions I and 11' are satis$ed and let 
h be a solution to the equation E ( x )  = 0. Then, as I + CQ, we have s + ao. Let us 
assume moreover that ,u4 exists. Then 



as 2 4  m $ X is absolutely continuous, and 

as A 4 m $ X is a lattice and Condition IV is fu&lled. 

Remark  1. If X is absolutely continuous, Yis not absolutely continuous 
due to a point probability po = ep%t zero. We introduce classically (see [5]) 
a variable fl such that, for y > 0, - 

i? 

P(Y > y )  = P ( Y  > ylN > O)P(N > 0) = P ( x  a i X i  > y)(l-p,), 
i= 1 

. N' 
where P ( N  = k) = (1 -pol-' p, for k~ N*. This ensures that = Zi=, aiXi is 
absolutely continuous. We obtain easily the equality ~ ( e ' q  = (1 - p o ) l  ($r(t)-~o) 

Rem a r k  2. Propositions 7.2.3 and 7.2.5 in [lo] give suficient conditions 
for the fulfilment of the conditions of our theorems. A discussion about neces- 
sary conditions for the validity of our conditions can also be found in [4] 
and [9]. 

Remark  3. When N = n is fixed, we obtain by Theorem 2 the results for 
weighted sums of i.i.d. random variables presented in [2]. When all ai = 1, we 
obtain the classical results for Poisson compound sums [5]. However, our 
results are established under stronger moment conditions. 

3. PROOFS 

This section deals mainly with the proof of Theorem 1 in the lattice case. 
The proofs of the other results given in this paper follow the same outline with 
some weaker arguments. The main differences are presented at the end of this 
section. 

P roo f  of Theorem 1 i n  the  l a t t i ce  case. In the first three lemmas, 
we consider that h is such that (h) < a. We begin with a very classical 
result that connects Y and Y,: 

LEMMA 1. We have 

P(Y> y) = e-hy#y(h)I(h), 

with I (h) = h 1; exp (- hx) v,+ (x)- Hh (011 dx, where H,* is defined by 

3[Hh(x)+Hh(x-)I $ x is on the lattice, 
H t  (x) = 

Hh ( 4  otherwise. 

Proof.  This follows from Fubini's theorem. See for example [7]. a 
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Then we rewrite Y ,  as a compound sum Y, = C~I, Xh, -y. The identifica- 
tion of Nh and Xhi is performed with the help of the Laplace transform of &. 
Let 4hi ( t)  = E (exp (tXhi)) and qk = P (Nh = k). 

LEMMA 2. We haw 

and 

Observe that the XhI)s are exponentially tilted variabIes associated with 
the u ; X ~ S .  

Proof. As for t > 0 

and 

where by convention n;=, 4 (ai t) = 1, we obtain for t > 0 

which completes the proof. H 

Now, we give bounds for E (Nh) and Var(Nh). 

LEMMA 3. We have 

and 

(4) A# (01 N- A2 (&2 (02 h)- 42 (01 h)) 

< Var (Nh) < A 4  (a2 h) + 2' (4' (62 h) - 4' (ol h)).  

Proof. Let us compute E (Nh), using the notation h (h) = n:=, 4 ( ~ i  h). 
We obtain 

10 - PAMS 23.2 



Observe that, by the definition of al and a,, we have 

so that we obtain the following inequalities: 

Very similar computations give the bounds for Var(Nh). ta 

We now choose a solution h to the equation E(Y, )  = 0. 
- 

LEMMA 4. There exists a solution h to the equution E(&)  = 0 such that 
h +  m, E(N,)+ rn a d  Var(&)-,o~ as y +  co. Moreover, 

( 5 )  Q' (60,  h) ffe2 LT: E (Nk) 

< Var ( 5 )  < Q' (62 h) 62 E (Nk) + (c2 Q (62 h))' Var (N,) .  
Proof.  Using our representation of & with Nh and the X,;s, and ob- 

serving that E (Xhi) = ai Q {ai h) by (2), we obtain 

m Thus, the equation E (&) = 0 is equivalent to z,=, q k  z:=, ai Q (ai h) = Y .  BY 
Condition I, we have 

Condition I1 ensures that Q is positive for sufficiently large h's and that 
lim,, , Q (t) = coy and as a, > 0, (3) proves that E (Nh) + m as h + oo . Thus, 
by (6),  the existence of a solution h to the equation E ( 5 )  = 0 is proved. 

We now prove that h + co as y + co. Similarly to (6) we have 

It follows that 

Then, using (3) and (7), we obtain 

which yields to 
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This proves that, as y + a, 4' (s2 h) + a~, and so h + m. Observe that in view 
of (3) we have obviously E ( N h )  + LX as y + co . 

We now study Var(G). Since 

and E (X,,) = ai Q (ai h), Var (Xhi) = a? Q' (a, h), we obtain 

By Condition I, we have for all solutions h to the equation E (Yh) = 0 

Q' (Hu2 h) a02 a; E (Nh)  < Var (K) 4 &' (cr2 h) o: E (N& (u2 Q (uZ h))' Var (N,) ,  

and we have proved that, as y + coy Var (Y,) + co . 
From now on, we always consider that h is a solution to the equation 

E ( Y , )  = 0. Let d, be the span of &/s. We approximate H,* (sx) by means of 
H f  (sx) convolution of H ,  by the triangular distribution on [-dh/2,  dh/2]. 
Then we use a Iocal central limit theorem for H t ( s x )  that we now state. Let us 
define 

p4 - 3s4 +- 
24s4 

(3x - x3) n (x), 

where %(x)  is the distribution function and n(x) the density of a standard 
Gaussian variable. 

THEOREM 3. If & is such that (p, - 3s4)/s4 = 0 (1/s2) when y + co, then 

where r,(x) + 0 as y + oo uniformly on [0, + co]. 
Proof.  Let us denote by G# the convolution of G by the triangular dis- 

tribution on [ - dh/2, dh/2] : 

As JGf(x)f + 0 uniformly with respect to x as y -, oo, it follows from the two- 
-term Taylor expansion of G at the point x that 



As dh is of order 1/s, to prove the theorem it suffices to show that, uniformly 
with respect to x, 

We rewrite cob (c) = A (ic) as PC). Let us note that w, (0) = 1, 
&(O) = E(Y,) = 0, wi (0) = i2s2, 0i3)(0) = i3p3 and wjp)(0) = i4p4. Successive 
derivations show that we have u(0) = 0, v' (0) = 0, v" (0) = i2 s2, v"' (0) = i3p3 
~d v ( ~ I ( o )  = i4 (pd - 3s43. k t  

- 

We let C' = HR - D # ,  where D' has the Fourier transform exp (-q 5') + 
+ exp ( - i 12) ( B  + D2/2)- 

Assume that E > 0 is fixed. As (p4-3s4)/s4 = 0 (1/s2), we have by Lemma 
7.2.1 of [ID] that JG'(x)l + 0 as y + CQ, and we can choose a constant a so large 
that IG' (x)l < &a for all x and y. By a smoothing theorem ([7], p. 538) we have 

where 

is the characteristic function of the triangular distribution. We partition the 
interval of integration into two parts. The first one is defined by 6s 6 14'1 4 as2, 
and the latter one by 161 < 6s, where 6 is a fixed positive real number. On the 
domain 6s ,< 161 < as2, we have 

As e"(Y) and sin2 ((ak sy)/2) have period 2n/(dh s), it is sufficient to prove that 

which is true because within a neighbourhood of the origin 

l ~ f i  ( 4 h l  ( i ~ )  - . . #hNh (i~))l exp ( - Y ~ / ~ )  

(see 171, p. 516), and outside of this neighbourhood [E,, ($,, (iy). . . #hNh (iy))l 
is bounded away from 0, and hence the integrand in (9) decreases faster than 
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any power of n. Thus, the contribution of this domain to the integral (8) is less 
than 

and this is an o(l/s2). 
On the domain lrl < Ss, we let 

and the integrand in (8) can be rewritten in the form 

and estimated by using the following inequality from [7]: 

where y 2 max(lol1, IPI) for any o! and #?, real or complex. We use a four-term 
Taylor expansion for $. As d4) is continuous and d4] (0)/s4 = 0 (1/s2), we de- 
duce that there exists a 6 such that 

l $ ( k ) - 9 i 3 c 3 - -  4 0  24s4 i4 1 < s 1 for < 65 

We choose 6 so small that 

v"'(0) , d4' (0) 1 --c4 6-c2 for lcl<6s. 
24s4 l 4  

With this choice of S we majorize the integral (8) on the domain 1('1 < 6s using (10): 

We choose y so large that the integral (11) is less than (1000~)/s~, and we have 
proved that for all x 

and as E is arbitrary, we conclude that C'(x) = o (l/s2) uniformly with respect 
to x. We get the desired expansion by dropping in D* the terms of the polyno- 
mial involving powers l/sk, with k 2 2, to obtain G'. 



We now return to the proof of the large deviation theorem. Let us recall 
that we have to estimate i ( h ) :  

Since Y is a lattice with span d, this integral can be rewritten as 

As H,* and H t  are equal at mid points of the lattice, we can apply Theorem 3. 
We note that Hh(0) = H f ( d / 2 )  so that we have 

Observe that 

p4 - 3s4 +- 
24s4 

( x 4 - 6 x 2 + 3 ) n ( x )  = n ( x ) + G ,  ( x ) .  

First we compute the contribution of n ( x ) :  

where J, (h) means the sum from 0 to [s114], and J2 (h) the sum from [s1I4] + 1 
to + oo, and [XI denotes the greatest integer contained in x. For Jl (h) we use 
the expansion exp (- x2/2) = 1 - x2/2  + o (x2),  and SO we obtain 

An upper bound for J ,  (h) is 
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and is an o(l/s". Since 

we obtain 
e-hd  

J (h) = - 1 - e - h d  + o (1/s2). 

Since (p,-3s4)/s4 = O(l/sZ), the contribution of GI($ to the intggral is an 
O(l /s2) ,  and thus, as h/s 4 0 when y 4 oo, we obtain 

which completes the proof of the theorem. E 

Elements  of proof  of Theorem 1 in the  absolu te ly  con t inu -  
o u s case. In the absolutely continuous case, we work with Tthat is absolutely 
continuous, as shown in Remark 1. As & is absolutely continuous, the smooth- 
ing of H,,, is not necessary and we use a version of Theorem 3 with HCh instead 
of H z .  The remaining of the proof is similar, with a direct computation of I (h). a 

Elements  of proof of Theorem 2. The asymptotic I +  m is easier to 
handle because a solution h of the equation E (5) = 0 is uniformly bounded. The 
outline of the proof is similar to the one of Theorem 1, but we need only 
a weaker version of Theorem 3 (an expansion in o( l / s )  is sufficient because 
l/hs = 0 (11s)). s 
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