
PROBABKITY 
AND 

MATHEMATICAL STATISTICS 

ON THE LOCAL TIME 
OF M U L ~ A R A ~ T E R  SYMMETRIC STABLE PROCESSES. 

- 
REGULARITY AJNB LIMIT THEOWEM 

IN BESOV SPACES 

5. BOUPOUSSI* (MARRAKESH) AND M. DQZZI* (NANCY) 

Abstract. Let X = (X,, Z E  TN = [0, 1IN) be a symmetric a-stable 
process, 1 < a < 2. Based on a Kolmogorov type continuity theorem 
we show Holder conditions in I?-norms for the local time of X with 
respect to the space and time variables, by distinguishing the cases 
where the time variables do or do not meet the axes. Weak conver- 
gence of the occupation integral is proved. 

AMS Subject Classification: 60G17, 6OG52, 60J55. 

Key words and phases: LocaI time, symmetric stable process, 
rnultiparameter process, anisotropic Besov space, tightness, limit theorem. 

1. INTRODUCTION 

Let N 2 1, TN = LO, 1IN  and X = (X,, z E TN) be an N-parameter real-val- 
ued stochastic process defined on a probability space (0, P). For R E  (TN), 
the Borel sets in TN, the occupation measure of the process X on R is defined as 
follows: For a Borel set B c R, 

If the random measure v,,(=) is absolutely continuous with respect to the 
Lebesgue measure, the same holds for v, ( -  ), for all R E B ITN), and we say 
that X has a local time on TN, which is the Radon-Nikodym density 
L (x, TN) = dv,, (x)/dx. In this case L (x, R) exists x-a.e. for any R E A ~  (TN) and 
the exceptional set depends on R. For z = (s,, . . ., sN) E TN and the rectangle 

Rz = (0, zj' = {v = ( ~ 1 ,  ..., uN)€TN: 0 < ui <si, i = 1, ..., N ) ,  

* Supported by the France-Morocco CNRS/CNRPRST convention, Project SPM/9661, and 
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let us define 

L ( x ,  z): = LCx, R,). 

L (x ,  z) defines a real-valued function of two variables z, x. We know from 
Geman and Horowitz [I81 that if X has a local time, then a version of L ( x ,  z) 
may be chosen, which defines a kernel on R x 9d(TN), and such a version is 
called regular. 

In the one-parameter case N = 1, the theory of local times of stochastic 
processes was initiated by the work of Paul Ltvy [22] for the linear Brownian 
motion. Trotter [24] proved the first major result on the existence and the 
Holder regularity (with respect to the uniform norm) of the local time of the 
Brownian motion; and much has been discovered since then by many other 
authors. The Holder continuity condition in E-norm of the Brownian local 
time was proved by Boufoussi and Roynette [9], and generalized by Boufoussi 
and Ouknine [8] to the symmetric a-stable process (1 < a < 2). For N-parame- 
ter processes, we cite the powerful Fourier analytic method developed by Ber- 
man [2], who observed, in particular, that uniform smoothness of the local 
time implies uniform irregularity of the associated process. This observation 
explains an important connection between the behaviour of the process, such 
as the rate of its growth, and the behaviour of the local time. 

The local time of the N-parameter Wiener process W can be defined by the 
integral of the (one-parameter) local time of the restrictions of W to lines which 
are parallel to some coordinate axis (cf. WaIsh [26] for N = 2 and Davydov 
[I41 for general N). A slightly different local time of W can be defined in terms 
of the N-parameter stochastic calculus (6. Cairoli and Walsh [ll] for N = 2 
and Imkeller [I91 for general N). Berman [3] (cf, also Berman [4], [5]) con- 
sidered Gaussian processes with stationary increments, which are locally non- 
deterministic. 

In his remarkabIe work Ehm [I71 considered local times of multiparame- 
ter stable processes. In particular, he established a law of the iterated logarithm 
for the supremum of the local time and solved the Hausdorff measure problem 
for the graph and the range of these processes. For a survey of the theory and 
for references to other articles we refer to Geman and Horowitz [18], to the 
cited paper of Ehm [17] and to Dozzi [16]. 

Our aim in this paper is to prove that local times of real N-parameter 
symmetric a-stable LCvy processes (Nol > 1) satisfy certain Holder conditions in 
E-norms, which are more precise than the classical Holder conditions in the 
uniform norm. This will be done by recalling notions on N-parameter Besov 
spaces; we use results of Kamont [20], [21] who has proved the characteriza- 
tion of these spaces in terms of the coefficients of the expansion of a continuous 
function on TN with respect to a basis which consists of tensor products of 
Schauder functions. For an introduction to the one-parameter Besov spaces we 
refer to Bergh and Lofstrom [I]. The first characterization of these spaces in 
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the E-norm with 1 < p < cc by coefficients of the expansion in the Fa- 
ber-Schauder basis has been given by Ciesielski 1121 for the Holder space, and 
by Ciesielski et al. [I31 for the general Besov spaces. These characterizations 
make the Besov topology easy to handle, and many appIications have been 
given in stochastic calculus such as the regularity of some classical sample 
paths (of fractional Brownian motion, of symmetric stable processes or of the 
local times of these processes). 

The paper is organized as follows: In Section 2 we recall basic facts about 
Besov spaces and give the characterization theorem of these space2 which will 
be used throughout. A Kolmogorov criterion and a tightness one are given in 
these spaces. In Section 3 we establish inequalities on the moments of the 
increments of local times of symmetric a-stable processes; our-approach con- 
sists in integrating the local time of a one-parameter restriction of these proces- 
ses. As a consequence of Kolmogorov's criterion we prove a regularity result of 
the local time with respect to its space and its time parameter. Finally we 
consider the asymptotic behaviour of the occupation integral of these processes 
generalizing a result of Dozzi [15]. 

Most of the estimates in this paper contain constants whose value 
may change from line to line even if the notation of these constants does 
not change, 

2. FUNCTION SPACES 

In this section we begin by recalling basic notions on the multidimensional 
Besov spaces. We will be concerned with the anisotropic case only and adopt 
the notation of Kamont E211 to give a presentation and a characterization of 
these spaces. 

21. Defmitions. For an integer N 3 1, let T, = [ O ,  1 IN and let 
D = (1,2, ..., N ) .  Given a vector ii = (a,, a,, ..., aN)€RN, we write la] for 
la, I + . . . + (aN]. Moreover, TN will be endowed with the partial order : for a, 5 E RNy we 
write ii < 6 iff ai < bi for dl  ED. We also use the notation I =  (A, A, .. ., A).)ER~ 
for a real A, and the sum zTaG will mean the sum ~jl+Ozj 2 a 0 . ,  .zj NaO.  

E(TN), 1 < p < m, is the class of functions whose p-th power is integrable 
on TN, and %?(TN) is the space of continuous functions on TN. 

For f: TN + R, i ED and h E Ry the progressiue diference of f of order one 
and in the direction ei (where ei means the i-th coordinate vector in RN) is 
defined by 

f(X-khei)-f(2) if Z , 2 + h e i ~ T N ,  
(2-1) Ah,i f (2) = 

otherwise. 
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Now, for 7i = (hl ,  . .., hN)€WN, 1 < k < N and A = (i,, . .., ik} c D, we define 
the progressive difference in direction A by 

where A K A  f = f if A = 0. 
For a Bore1 function f E LP (TN) if I < p < rn or f E W (TN) if p = m, the 

smoothness can be measured by its modulus of continuity computed in @ (TJ- 
norm and in the direction A. It is given by 

- 
W,,A Cf, t3 = sup IlAl;,A f 11, for 1 E KT. 

G GiiGT 

Let b E R and = ( a l ,  . , .> ad, where ai > 0, i~ D. We will consider the real- 
valued function defined on TN by 

The function mi,, is introduced here to measure the smoothness of a function 
f with respect to any direction A. More precisely, let 

and w , , ( f Y  0) = 1. 

DEFINITION 2.1. The anisotropic Besov space associated with the modulus 
w , - ,~  is defined by 

Lip, (ii, b) (TN) = f E E (TN): sup W . . A C ~ .  t )  < +m 
A c D i > G  ~ i ? , b ( ~ ,  A) 

Lip, (Z, b) (TN) endowed with the norm 

is a non-separable Banach space containing a separable Banach subspace: 

where we have used the notation S A  (0 = fnin {ti, i E A). As for the case N = 1 
(see Ciesielski et al. [13]), these spaces are linearly isomorphic to some se- 
quence spaces. In the next section we recall the characterization of the aniso- 
tropic Holder class in E-norms. 

Remark 2.1. Note that for b = 0 and p = cb the Besov space 
Lip, (ii, O)(T,) is exactly the space of functions satisfying a classical Holder 
condition (in each direction) with respect to the modulus w , ,  (0 = nr=, t y .  
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2.2. The cbracterization of function spaces. The family of Schauder func- 
tions on [0, 11 is defined by 

rp,(s) = c p ( 2 * + 1 s - 2 k + l )  for n =2j+k,   EN and k = 1, ..., 2j,  

where rp (u) := max(0, I-lul). It is well known that (q,, n 3 1) is a Schauder 
basis of the Banach space of continuous functions on 10, 11, satisfying nice 
support properties which are fundamental in the characterization of Besov 
spaces in terms of sequence spaces. In the multidimensional case it was shown 
(cf. Kamont [20], [21])  that the tensor product of Schauder functions plays 
a similar role. For ii = (n , ,  n,, . . ., nN) we will consider 

We also need to consider the following dyadic decomposition of TN. For 
j~ M = N u { - 2 ,  - 1 , 0 ) ,  

Now, for a vector J= ( j l ,  . . ., jN)€ MN, we put 
w 

ST= Kjl x . . . x Kj,. 

One can show that for a function f €V(TN) we have the following decom- 
position: 

where for ii = (nl, n2,  . . . , nN) 

C d f )  = c l ," ,o . . .ocN,n , ( f )  

and for 2 = ( x l  , x2 ,  . . . , xN)  

and for n = 2 j + k ,  with j > O  and k =  1, ..., 2j, 
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Now, for TE MN and 0 < p < co, we will define 

We will use the following result: 

THEOREM 2.1. Let ii = (al, . . ., aN) be such that 0 < ii < T and b E R. For 
?EM,, we put 

tT= (2-j'vO 2 - j ~ v o  
I 3 ... Y 1. 

Let 1 < p < cg be such that mini QiG, ai > lip. Then Lip, (a, b ) ( ~ i )  is a space of 
continuous functions linearly isomorphic to a sequence space and we have the 
following equivalence: 

The proof of the particular case b = 0 has been given by Kamont [20], 
and the general case follows the same ideas (cf. Kamont [21]). 

Re rn a r  k 2.2. Let b E R and 0 < ii c 1. Using Theorem 2.1, we can easily 
check that for any 0 < < a,, b E R and p large enough we have the following 
continuous injections: 

We can also find in Kamont [21] an important application of Theorem 2.1, 
which consists in studying a local property of the fractional anisotropic 
Wiener field More precisely, let 5 = (oc,, . . ., a,), 0 < E < 2, W' = (w:, z E TN) 
be a centered Gaussian field with the covariance kernel 

E W ~ Z )  W' (2') = Ka(z, z'), 

where 

K"= Kal@ ...@ KaN 
and 

Ka' (s, t )  = ~(ISI"+ Itla'-IS- tlai) , S ,  t E [0, 11. 

Kamont has proved the following regularity theorem: 

I THEOREM 2.2. For any 2 < p < coy 

1 P [ ~ ' ~ ~ i p , f ~ / 2 , 0 ) ] = 1 ,  P[~%lipp*(ii/2,0)]=0, 

1 P[WE~Lip,(ii/2,i)]=1, P [ W a ~ l i p ~ ( 6 / 2 , ~ ) ] = 0 ,  
i where El2 = (a1/2, . . . , a&!). 

Note that N = 2 and 6 = (1, 1) corresponds to the case of the Brownian 
sheet. The one-parameter case N = 1 is discussed in Ciesielski et al. 1131. 
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2.3. Kalmogorov criterion. Let us denote by W the class of all N-parameter 
rectangles R c TN of the type 

Given a function f: TN + R,  the "increment" f (R) o f f  over R E 4e is defined in 
the same way as iff  were a distribution, i.e, f (R) = j,df. More precisely, if 
R = (S, ~ + h ] ,  h=  {hl ,  ..., hN)€RN,  then 

where dhiPi is defined as in (2.1). Let us consider a direction which is a subset 
A = ( i , ,  . . ., i,) of (1, . . ., N ) .  We put 

Let A' =  ED: j $ A )  and let us fix a family x~ = ( x j ~ ( O ,  1 ) :  j € A C ) .  For 
any function f: [ O ,  11" + R, we consider a function f "": [0, Ilk 4 R defined 
by fXA(z) = f (3 whereifz = (si,, ... , si,J€[O, Ilk, thenz"" = (&, ..., f N j ~ [ O ,  1IN 
is such that 5 = s j  for j~ A and 3 = xj otherwise. We have the following 
Kolmogorov criterion in the space Lip,@, b)(TN). 

LEMMA 2.1. Let (Y,, z E T )  be an adapted continuous real-ttalued process 
satisfying the foEEowing assumption: 

There exists ii = (a,, . . ., a,), ai > 0,  ED, and for all p 2 1 there exists 
a constant C, > 0 such that fop. any rectangle R = Xr=, (q, si+ hi] c TN we 
have for any directi~n A = (i,, . . . , ik} c D and for any choice of a family XA of 
N -k elements taken of the set { O ,  1): 

Then for every b > 0 and p > (Nib) v maxiaY1 there exists a constant 
C ( p ,  b) > 0 such that 

In particular: 

P {Y~lipp* (a ,  bj(TN)) = 1 .  

P r o  of. Let A > 0. By Theorem 2.1 one can use the following equivalence 
of norms: 

IIYllgb - sup n,, ( Y) 
F M N  a ( i , b l ( t ~ j  ' 
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and then we get 

Notice that the coefbients CX (Y) are just the increments of Y on a dyadic 
rectangle of area proportional to 2-In. Then, by the assumption of the lem- 
ma above, we get 

4 c,a-p C 1 
73a (1 + W log 2)bp' 

and the series converges since bp > N. This implies in particular that 

Now, let 0 < b < b,. Using Theorem 2.1 one can show that the following 
continuous injection holds: 

(2.5) Vp > max a; l ,  Lip, (ii, b)(TN) ci lip; (5, bo) (TN). 
i 

Then for any b > 0 and p > maxiai1 v (N/b) we have 

P {YE lip; (5, b) (TN)) = 1. H 

2.4. Tightness criterion in Besov spaces. Let f = (t,, . . ., t,) E TN, 6 > 0 and 
A = (i,, . . ., i,) c D. Let 6, ( F )  = inf (til , . . ., ti,) and 

LEMMA 2.2. Let 1 d p < oo and b ER be such that p > maxi a; ' v (N/b). 
A bounded set K of Lipp(5, b)(TN) i s  relatively compact if 

lim sup sup K,,, (6, p, f )  = 0. 
6-0 ~ E K  

The proof of the two-parameter case of Lemma 2.2 is given in Boufoussi 
and Lakhel [7]. The proof of the general case follows the same techniques, but 
we present it here for the sake of completeness. 
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P r o  of. Note that K is clearly bounded in LP (T,). Since Lip, (i, b) (TN), 
p > maxiaL1 is a space of continuous functions on T,, it follows from the 
Frkchet-Kolmogorov theorem (see BrCzis [lo], p. 72) that K is reIatively com- 
pact in E(T,). This enables us to extract from each sequence CfJn3 of K a sub- 
sequence (f,,Jkal which converges to f in LP(TN). Now it is enough to see that: 

(i) f is in Lip,(& b) (TN); 
(ii) (fn,),2, is a Cauchy sequence in Lip,(& b)(TN). 
Since f,, 4 f i n  I?-norm as k + m, we can take a subsequence, also de- 

noted by A,, which converges a.e. to 5 Fatou's lemma implies that for any set 
- 

A c D we have 

(2.6) %,A (f, f )  G SUP w p , ~  (,&kg 0. 
nk 

Then 

On the other hand, by (2.6) and the second assumption in Lemma 2.2, we get 
for all A c D 

lirn OP,A (f? f l  
= 0, 

da(O*n m(i,b) (f, A) 

which proves that f is in the separable space lip;(& b)(T,). 
Now we turn to the proof of (ii). Let n, n' 2 0; we have 

If A = @ ,  then 

For S > 0, we have 

m p , ~  (A -fn' f < sup 
m p , ~  (fn -fn', f 1 

mjii,* (f> A) 7 )  68 6 '%i.l) ('3 A) ' 

Then 

I1 - PAMS 23.2 
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Then (fnJk3 is clearly a Cauchy sequence in Lip, (ii, b) (T,), which completes 
the proof of Lemma 2.2. ta 

As a consequence we will prove the following compact injection. 

LEMMA 2.3. Let ii > 6 and b < b'. Then, for any p > maxi a;' v (N/b), the 
following injection is compact: 

Lip,(% b)(T,) 5 Lip,(& b')iTN). 

Proof.  By the continuous injection (2.5), it is clear that any bounded 
subset K of Lip,(ii, b)(TN) is bounded in Lip,(;, b1)(TN]. It  is enough to show 
that 

We have 

= C sup a p . ~  ( f ,  W(z,b) ( f ,  A)  
~ c g  daF) <a  W(ii,b) (6 A) WW,b'l (fs A)' 
A#O 

Remark that 
b-b' 

Recall that 0 < t < 1, and since b -b' < 0, we get 

u"" (i' A) < 1 + (A) log - 
~ ( a . b ' ) ( t ,  A) ( 8"-', 

where c ( A )  is the number of i~ A such that ti < S. Now, from (2.7) and (2.8) 
we have 

 SUP&,^,(^, p, f )  < (I +logiy-b 'sup[f  1 1 ~ .  
f  EK f e K  

Since b-  b' < 0, the term on the right-hand side goes to 0 as 6 0, and this 
completes the proof of the lemma. FA 

Remark  2.3. Note that the continuous injection in (2.5) is also compact. 

Now we are able to give a tightness criterion in Besov spaces. With the 
same notation as in Lemma 2.1 we have 

LEMMA 2.4. Let (X, (z) ,  z E T,),, , be a sequence of continuous adapted pro- 
cesses satisfying the following condition: 
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Thme exists ii = fal, . . ., aN), ai > 0 for all i E ( 1 ,  . . . , N ) ,  and for all p 3.1 
there exists a constmt C, > 0 such that for any rectangb R = x (si, si + hi] c 
TN we havefor any direction A = (i l ,  . . ., ik )  c (1, . .., N }  and for any choice of 
the family x~ of N - k  elements taken in (0, 1):  

E IXiA (RA)IP 6 Cp lhiriP for a12 n E N .  
isA 

Then Xn is tight in Iip; (la, b)(TN) for any p > maxiai1 v (Nib). 

Proof.  As in (2.4) we have - 

By virtue of Lemma 2.3 and Remark 2.3 we can choose I large enough to get 
the desired result. r 

As an application of the above lemma we have the following approxima- 
tion result obtained by Nualart [23] in the space of continuous functions (see 
also Yor [27]): 

THEOREM 2.3. Let (Bf , s E [O, and (C:, t E LO, I]),, be two families 
of standard linear independent Brownian motions. Then for any b > 0 and p > 2/b 
the sequence of processes 

converges weakly to the Brownian sheet in the separable Banach spaces 
lip; ((+, 41, b).  

P r o  of. We apply the tightness criterion (Lemma 2.4) with N = 2. Since 
W:,o = WL,. = 0, it is enough to estimate the moments of the increments of Wn 
on rectangles. So let R = [s, s +h] x [ t ,  t+ k]  c T, h ,  k~ R, and let 1 < p < a. 
Then 

where (ti, qi, i $ 1) is a double sequence of independent identically distributed 
random variables with common law N ( 0 ,  1). There exists a constant 6, > 0 
such that 

This gives the tightness of distributions of W" in lip,* (ii, P) for all fi  > 0,  
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p > (2/fl) v 2 and ~ = (i, i). Finally, recall that lip; ((i, i j ,  f l )  is also a space of 
continuous functions. The convergence of finite-dimensional distributions can 
be deduced from the result of Yor [27] or Nualart 1231 who has proved the 
weak convergence W n  5 W as n 4 ao in the space of continuous functions 
C(C0, 11". 

3. LOCAL TIME OF N-PARAMETER SYMMETRIC STABLE PROCESSES 

3.1. Regularity. Let 1 < oc < 2 and let (X,, Z E  T = LO, 1lN)be a symmetric 
a-stable process, that is, for any rectangle R c RN, the random variable X(R) is 
symmetric a-stable with 

E exp iyX(R)  = exp { - c l  ( R )  IY~"}, 

where y ER, c is a real constant, and jl is the Lebesgue measure on RN. 
In the work of Ehm [17], regularity properties of the local time of X 

have been studied, and relations with be behaviour of the sample paths 
of X have been pointed out (such as the dimension of the level sets 
N ,  = (z: X ,  = x)). In particular, he proved the existence of a jointly con- 
tinuous version of the local time and HGlder conditions for its trajectories 
by means of the Fourier analytic approach. Our aim in this section is to study 
the regularity properties of the trajectories of the local time from the point 
of view of Besov spaces. 

3.1.1. Local time of the Brownian sheet. Let us consider (W,, ZE [0, 112), 
the two-parameter Brownian sheet (with values in R). The local time of W has 
been constructed as the Radon-Nikodym derivative of the occupation mea- 
sure, and via integration of local times on lines (cf. Walsh [26]), or directly by 
using the Fourier analytic approach due to Berman [2]-[5]. For fixed t > 0, 
we consider the rescaled one-parameter Brownian motion (W,,,, s E [0, I]). Let 
us denote its local time by L,.  For X E R  and t > 0, we clearly have 

where - means the equivalence in distribution, and I is the local time of 
the one-parameter Brownian motion. It is clear that Ll ( x ,  s ,  t )  + m in pro- 
bability as t + O .  The behaviour in Besov topology of L, for fixed t > 0 
has been studied in detail, since it is a Brownian local time. It has been proved 
in Boufoussi and Roynette [9] that the spatial trajectory of L, satisfies a Holder 
condition in E([O, 11) of order 4 for all p > 2. A similar regularity result 
has been given in Boufoussi and Kamont [6] jointly in the space and the time 
parameter. Then it is interesting to investigate the behaviour of L, in t for fixed 
x and s. 
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Walsh [26] has proved that for fixed x and s the trajectories of L1 satisfy 
a Holder condition of order y < i. He uses the following Tanaka formulae: 

2 S 

L ~ ( x ,  $ 1  t )  = -((W,,t-x)+ -x-  -j~(wu,t>x)~,K,*)l t 0 

where the integral is the It6 integral with respect to the rescaled Brownian 
motion W,,,. For h e d  E > 0 Walsh [26] has proved by means of the It6 
calculus for W,, the following regularity result: 

For each p > 1, there is a constant C(p, s ,  E) depending only on s ,  p and 
E such that - 

Then, using the Kolmogorov criterion in Besov topology (Lemma 2.1 with 
N = I ) ,  we get 

THEOREM 3.1. L e t s > O , O < c <  l a n d x ~ ~ .  ~ o r a l l b > O a n d ~ > 4 v b - ~  

where L l  (x, s ,  . ) l [ , , l l  denotes the restriction of Ll ( x ,  s ,  -) to the interval [ E ,  11. 

Remark  3.1. According to the definition of the Besov space in the case 
N = 1, it follows from Theorem 3.1 that for any b > 0 and for any p > 4 v b-I 

P-a.s. By virtue of (2.3), this establishes in particular that for any fixed x ,  s ,  the 
trajectory L 1 ( x ,  s ,  - ) I [ , , , 1  satisfies a Holder condition of order a < $. 

3.1.2. Local time of symmetric stable processes. Let z = (s,, .. ., S,)E T = 

[0, I]", 6 = (h,  , . . ., h,) E RN, x E R and consider the rectangle R = (2,  z + H I .  
In order to get bounds for the moments of the increment L ( x ,  R), fix 
2 = (s, ,  . . . , sN) and consider the rescaled one-parameter a-stable symmetric 
process s1 + X(,,,a,. Let Ll (x, s , ,  z") be a continuous version of its local time. 
A local time of X may be obtained by integrating L1: 

The importance of this formula lies in the fact that it is comparatively simple to 
obtain upper bounds for the moments of L,, which may be used to get bounds on 
the moments of L by (3.1). By the scaling property, for each z " ~  10, and x ER 
we get 

(3.2) (L l  (x, s l ,  3, s1 E[O, 11) is distributed as (121-lial (14- l iax,  s l ) ,  s1  E 
[O, I ] ) ,  where I is the local time of the one-parameter process 

s ~ + X ( ~ , , ~ )  with I = ( l ,  ..., I), - 
N - 1  

and 14 = 3L ([O,q). 
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LEMMA 3.1. Let W E N * .  There exists a  constant C(m, or) depending only on 
rn and a such that 

E I L (x , R)Izrn G C (my a) [A (R)] 
- 

Proof.  Let n=2m. For z = ( s l ,  ..., s , ) E T = [ O ,  1IN we will put 
2 = (s2, . . ., sly). Let = (h, , . . . , h,) E W N ,  x E R and consider the rectangle 
R = (z, Z S ~ ] .  We will also use the notation = (h,, .. ., h,) and a = (z", .f+8]. 
By (3.1), for any X E R  we have 

By an application of Holder's inequality and the scaling property (3.2) we get 

Applying Berman's method to the one-parameter process (see for example 
Vares [25]), we get 

~ J l ( ) u " j ) - l i ~ ~ ,  s1 +hl)- l() i i ' l -f jax,  s,))" < C(n,  L X ) ] ~ , ) " ( ~ - ~ ~ ~ ) .  

This and (3.3) imply that 

Q c (n, a) (A (R))"" ' "  . ls 

As a consequence of Lemma 3.1, we get from Lemma 2.1 the following 
regularity result of the local time in Besov spaces: 

THEOREM 3.2. Let 1 < a < 2. For any fixed X E R ,  we have 

for all b > O and p > (N/b)  v a/(a - 1). 

Remark  3.2. 1. We know that (L(x ,  z), z E T,) satisfies a Holder con- 
dition of order q < l -  l/a, by virtue of the continuous injection (2.3). The 
regularity result given in Theorem 3.2 for a large parameter p is more precise 
than the classical one. 
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2. We have not been able to prove limit regularity results which consist in 
answering the question: is it true that 

P(L(x,,)~Ep~(l-cl-~,O)(T~))=0, P { L ( ~ , ~ ) ~ L i p ~ ( l - a - ~ , 0 ) ( T ~ ) } = l ?  

We now turn to the regularity of the local time with respect to the space 
variable. Two cases will be treated. 

a. The f i rs t  case. Let z = (s,, ..., s , )E(O,  1IN. We look at the bound of 
the moments of L (x, Rz) = L (x, z), where R, = (0, z]. We have the following 
lemma: - 

LEMMA 3.2. For all 0 < q < (a - 1)/2, n = 2m EM* and x, h E R, we have 

EIL(x+k, z)-L(x, z)ln d Ctn, q ,  a)(R(R,)) 
n(1 -(I +n)ta) 

where C (n, q ,  a) is a finite constant. 

Proof.  The notation is the same as in the proof of Lemma 3.1. As in (3.3) 

I 
we have 

For any fixed S"E(O, and x, ~ E R ,  by the scaling property, the process 

( (~ l (X+h ,  u, 3, L1 (x, u, q), UECO, 11) 

is distributed as 

((l~- '"~(l~-""(x+h),  u), I ~ - l C l ( l ~ - l l a ~ ,  u)), UE[O, I]). 

Then we get 

EIL(x+h, 2)-L(x, z)ln 

We apply Lemma 1.2 of Ehm [17], which remains true for Q = [0, sl] , sl > 0 
in case N = 1 and when the dimension of the space variable is equal to 1: for 

, any 0 < q < (a - 1)/2, 

where C(n, q ,  a) is a positive constant. Now (3.4) implies that 
n 

E I L ( x + h , z ) - L ( ~ , z ) l " < C ( n , ~ , a ) s ~ ( ~ - ( ~ + ~ ) 1 ~ ) t h l " ~  1 l$l-(l+~)jadgj, 
{0, i ln j= 1 
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Since O  < q < (u- 1)/2, the integral on the right-hand side is finite, and we get 

which completes the proof of the lemma. m 

As a consequence of Lemma 3.2 and the result of Lemma 2.1 for the 
one-parameter case, we have 

THEOREM 3.3. Let 1 < a < 2 ,0  < q < (a- 1)/2 andfix Z E  TN. Then for any 
b > O  and p > b- lvq- l  we have - 

Re rn a r k 3.3. By virtue of (2.3), Theorem 3.3 implies in particular that the 
spatial trajectory of L satisfies a Holder condition of order q < (a - 1)/2. 

b. The  second case. Now let the time parameters be away from the 
axes. That means, we consider the trajectory (L(x ,  R), x E [ O ,  I]), where 

REB* = { R  = ( z ,  2'1: where z = (s,, ..., s,), z' = (s;, ..., sb) 
and 0 < si < s$ < 1 ) .  

In this case we can distinguish two situations: 
B If (No? - 1)/2 > 1, then there is a version of the local time L such that 

x + L ( x ,  R), A E [O, 11, is a.s, continuously differentiable. In this case we will 
look at the regularity in Besov spaces of the derivative 

a 
L[~)(x ,  R) = -L(x, ax R). 

e The case (Nu-  1)/2 < 1 contains only the cases N = 1 and N = 2 since 
we restrict ourselves to 1 < a < 2. 

LEMMA 3.3. Let 1 < a < 2, n = 2 m ~ N * ,  and let x, ~ E R .  
(1) Let (Na-  1)/2 < 1. For any 0 < q < (Na - 1)/2 there exists a$finite con- 

stant C(m,  N, v ] ,  a) > 0 such that, for any rectangle R = (2, z'] ~ w * ,  

(2) Let 1 < (Na - 1)/2 $2. For any 0 < v] < (Na  - 1)/2 - 1 there exists 
a finite constant C'(m, N ,  q, a) > 0 such that, for any rectangle R = ( z ,  z'] E g*, 

For the proof of this result we refer to Lemma 1.2 in Ehm [17]. As 
a consequence of Lemma 3.3 and the Kolmogorov criterion in Besov spaces 
(Lemma 2.1) we get 
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THEOREM 3.4. Let 1 < a 6 2 and R E  g*. 
( 1 )  If (Nu-  1)/2 6 1, then for 0 < q < (Nu - 1)/2 we have 

for all b > 0 and p 3 b - ' v y - ' .  
(2) If 1 < (Nu - 1)/2 < 2, then for 0 < q < ( N a -  1)/2 - 1 we have 

P {L(') (., R) €lip: ( q ,  b) (Ti)) = 1 

for all b > 0 and p > b- Ivy- ' .  

Remark  3.4. 1. Analogous results with higher order derivatives can be 
formulated for k < (Nct - 1)/2 < k + 1, k 2 2. 

2. In the case N = 1 and for 1 < a < 2 it has been proved in Boufoussi 
and Ouknine [8] that for any fmed z~ [O, I] and any p 2 l / a  

(3.5) P ( L  ( ., z)  E Lipp ((e - 1)/2, 0) (Ti)) = 1. 

Observe that (3.5) is stronger than the result given in Theorem 3.4. The 
reason is that the proof of (3.5) is not based on Kolmogorov's criteria, but it 
uses a classical Dynkin isomorphism theorem relating the sample path proper- 
ties of the local time of X to those of an associated Gaussian process which is 
easy to handle. Note also that (3.5) generalizes the case of the Brownian motion 
(N = 1 and a = 2) studied by Boufoussi and Roynette [91. They use direct 
calculations and prove a more precise regularity result, which reads as follows: 
for any fixed ZE [0, I] and for any p > 1, 

3. If N > 2 and the time parameters are taken away from the axes (in the 
sense that R E  B*), then Theorem 3.4 says that the trajectory x + L (x, R) is a.s. 
much more regular than that stated in Theorem 3.3. Notice that in this case the 
limiting situation g = (a- 1)/2 in Theorem 3.3 is reached. 

3.2. Limit theorem. Let f :  R + R be a bounded measurable function with 
compact support, and let (X,, Z E  TN) be a real symmetric stable process with 
index 1 c a 6 2. For z = ( s l ,  . . ., sN) we will note Az = (Asl, . . ., AsN). Our goal 
in this section is to give a functional limit of 

(AN(11u - l )  s f ( ~ , ) d u ,  L > O )  as ~ + c o ,  
[o,nzi 

with respect to the Besov topology. We have 

THJ~REM 3.5. Let b > 0. For all p > (Nib)  v a/(a-  1) we have 

, p ( l l m -  1) j f ( ~ ~ ) d u ~ [ f ( x ) d x ~ ( ~ , z )  a s I + m  
[o, 

in the Besov space lip,*(l- l/a, b)(TN), where means the weak conamgence. 



386 B. Boufoussi and M. Dozzi  

Proof.  Let AE R+.  Using the scaling property X,, - AN/' X,, by an ob- 
vious change of variables we get 

Now, using the occupation formula and again changing the variables, we obtain 

AN/u 1 f (AN/. x,) du = AN/. J f (AN/. X )  L (x , Z) dx = J f (x) L (R-Ni" x ,  Z )  dx . 
[OJI - 

Since f is bounded and of compact support, the process J f (x) L x, z) dx 
a.s. converges uniformly (in z) to j f (x)dxL(O, z). Now, since, for 
p > (N/b) v u/(a - I ) ,  lip,* ( 1  - l /a,  b) (TN) is a space of continuous functions, it is 
enough to show that the family of processes 

is tight in lip,* (1 - l / a ,  b)(T,), and this can be done by using Lemma 2.4. To 
this end Iet R = [ z ,  zr]  c TN. Since f is bounded and of compact support, one 
can easily show, with the estimate of Lemma 3.1, that 

E (X"(R))2m g C (pn)  ;3. (R)'"(l- for all m E N' , 

where C(m) > 0 is a constant. The tightness criterion in Lemma 2.4 completes the 
proof. PA 
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