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Absh-act. We study the relationship between the distribution of 
the supremum functional M ,  = sup,,,,,(X(t)-fit) for a process 
X with stationary, but not necessarily independent increments, and the 
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The purpose of this paper is to show that the class of limiting distributions 
of appropriately normalized stationary waiting time for G/G/l queues in heavy 
traffic coincides with the class of distributions of the supremum functional 

M ,  sup (x(t)-pt) 
O C t C m  

for stochastically continuous processes X with stationary increments. This re- 
sult, which we label the Heavy Traflc Invariance Principle, is formulated at the 
end of this section. In the special case of stationary and independent incre- 
ments, that is, in the case when X is a Livy process, explicit formulas for the 
distribution of Mx are established. 

In a sense, our Invariance Principle clarifies the connection between the 
supremum functional and the stationary waiting times. Of course, separately, 
these objects have been studied extensively before. In particular: 

* The work of W.S. was supported by KBN grant Nr 2 P03A 026 17, and has been carried 
out while he was a Visiting Professor at the Department of Statistics, Case Western Reserve 
University, Cleveland, OH 44106, U.S.A. 
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In the case when X is a L6vy process, the distribution of M x  was con- 
sidered by several authors, including Baxter and Donsker [I], Zolotarev [17], 
Takacs [14], Bingham [3], Harrison 161, Kella and Whitt [S], and others. 

The case of a spectrally negative Levy process X was studied by Zolotarev 
([17], Theorem 2) and Bingham ([3], Proposition 5) who have shown that in this 
case Mx has an exponential distribution with parameter A which is a solution 
of a certain integral equation. 

The case of a spectrally positive X was considered by Zolotarev ([17], 
Theorem 3), Tak6cs ([14], Theorem 51, Harrison [6], and Kellaand Whitt ([8], 
Theorem 4.2). Using different methods they showed that the distribution of 
Mx is given by the Pollaczek-Khinchine formula, although not all of them use 
this terminology. The specid situation of a spectrally positive a-stable L6vy 
process, where Mx turns out to have a Mittag-Leffler distribution, was, how- 
ever, not analyzed by them in any detail. To the best of our knowledge that 
observation has been first made by Whitt [ld]. 

On the other hand, Boxma and Cohen [4] showed that the limiting dis- 
tribution of the stationary waiting times in heavy traffic for GI/GI/l queues, in 
the case when the service times have tails heavier than the interarrival times, 
and both belong to the domains of attraction of (different) a-stable distribu- 
tions with parameters a, 1 < a < 2, have the Mittag-Leffler distribution. How- 
ever, the connection with the supremum functional has not been noticed in 
their paper. 

The way the Heavy Traflc Invariance Principle is applied is as follows: we 
find a sequence of queueing systems for which the distributions of appro- 
priately normalized stationary waiting times in heavy trafic converge to the 
distribution of Mx. Knowing the form of the stationary waiting times for those 
queues we can then find their limit, that is, the distribution of Mx. In Section 3 
we illustrate our method in the case of spectrally positive Gvy processes, first 
for the a-stable process, and then for the general case. Section 3 also contains 
a comparison of our method with the Takacs method. In Section 4 we find an 
explicit formula for the distribution of the supremum functional for a symrnet- 
ric a-stable process, We are not aware of any other result of this type. Our 
method can also be applied to find the distribution of Mx when X is a spectral- 
ly negative ol-stable Ltvy process. 

The tools developed in this paper can be used to study a broad class of 
queueing systems. We shall apply them for this purpose in a separate paper 
which, from a purely mathematical perspective, may be viewed just as an 
expanded set of examples illustrating our Heavy Traffc Invariance Principle. 
However, from the perspective of queueing theory the ability to explicitly eval- 
uate distributions for stationary waiting times in more complicated systems is 
of primary importance. 

Now, let, for each n 2 1, { ( v . ,~ ,  u,,~), -a c k < CO) be a stationary se- 
quence of pairs of nonnegative random variables. In our context they represent 
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the generating sequence of the n-th queue: v,,, is the service time of the k-th 
customer, k 2 1, and u , , ~  is the interarrival time between the k-th and (k+ 1)-st 
customers, k 2 1. Then the random variable 

where 

k 

e n , k = ~ , , - k - ~ n , - k  and Sn,,=O, S,, ,= C en,- for k21, 
j= 1 - 

can be interpreted as the stationary waiting time for the n-th queue. Perhaps, at 
this point it is worthwhile to clarify that: queues defined for different n's do not 
interact with each other and do not form a queueing system. 

Our standing, and obvious, assumptions are: a,, 2 EtnP1 < 0, for n 2 1, and 
Sn,k 4 - w as. as k + m. 

It is now easy to see that, for any fixed n 2 1, 

Under the above notation and assumptions our main result cw be formulated 
as follows: 

THEOREM 1 (Heavy Traffic Invariance Principle). Let, for each n = 1, 2, . . ., 
t,,,, k = 1, 2, . . ., be a stationary sequence of random variables such that 
a, : = Et,,, < 0, and 

k 

Sn,k:= C (,,+ -m a.s. as k-oo. 
j =  1 

Moreover, let 

and suppose that 0 < /I < m and (c,, n 2 1) is a sequence of positive numbers 
such that 

(i) X, = Z,,/c, 3 X, in D [0, m), considered with the J1 Skorokhod topolo- 
gy, as n + oo, and X is stochastically continuous, 

(ii) fin = n la,l/c, + /I as n -, m,  and 
(iii) the sequence {wJc,) is tight. 

Then ~ , , / C , , ~ M ,  = ~up,,,,~(X(t)-Bt) as n + m .  

The proof of this Principle is provided in Section 2. The remainder of the 
paper is devoted to applications of the above Principle for various types of 
Levy processes X. The goal is to determine the supremum M ,  by an appro- 
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priate selection of the queue generating sequences ( (u , ,~ ,  u,,~), - m < k < a) 
and constants c, for which conditions (iHiii) are satisfied and the limit a&, 
can be identified. 

2 CONVERGENCE AND TIGHTNESS CRITERIA 
FOR THE SUPREMUM FWNCTIONAL 

In this section we estabIish a general convergence result for suprema of 
a sequence of processes. The Heavy Traffic Invariance Principle is an immedi- 
ate corollary to this result. We also find usable sufficient conditions for the 
tightness of the sequence {w,/c,) . 

The notation Z ,  3 Z will mean the usual convergence in distribution if 
Z, and Z are random variables, and the convergence in the J1 Skorokhod 
topology (see Billingsley [2] and Lindvall [lo])  if 2, and Z are processes with 
sample paths in the functional space D [0, m). A function f l  is said to be 
superadditive if (t  + s) 2 /3 (t)  + P (s) for each t , s 2 0. The function fi  (t) = LctJ 
is an example of a superadditive function. 

THEOREM 2. Let X and X,, n 2 1,  be stochastic processes with stationary 
increments and trajectories in D [ O ,  oo) such that X(0) = X ,  (0) = 0 a.s. Addi- 
tionally assume that 

(A) X, 3 X as n + m, and X is stochastically continuous. 
Furthermore, let f l  and P,, n 2 1,  be superadditiue functions in D [0, co), 

positive for t > 0, and equal to 0 for t = 0, mch that M = supo St, , (X (t)  - 8 (t)) 
and M ,  = supo .: (X, (t)  - p, (t)) are finite random variables, 

(B) fl ,  ( t )  -, B (t)for each t 2 0 as n -, oo, where the function p is continuous, 
and 

(C) X(t)-f l( t)+ -co a.s. as t + co. 
Then the tightness of the sequence {M,} implies that M ,  5 M.  

Proof.  Let us notice that for any function X E D  [0, a) such that 
sup0 $ < x (t)  < co we have 

(1) sup x (t)- sup x (t)  = max ( sup x (t), sup x (t))- sup x( t )  
O d t 4 m  OdtSs OStSs s d t C m  OStSs 

= max (0, sup x ( t )  - sup x (t)) 
r S t i m  OStSs 

=rnax(0, sup (x(t+s)-x(sj)+x(s)- sup x(t)). 
O S t c m  O G t d s  

Let us write 

M, = sup (z,, (t + s) - x, (s)), M = sup ( X  (t)  - P (t)). 
O S t < a :  O S t < m  
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Since Xn, n 2 1, have stationary increments and /In are superadditive and 
positive, we obtain 

= P( sup (xn(t+s)-xn(s)-(~.(t+s)-8.(s))) > x) 
O d t < 4 ,  

for each x > 0 and n 2 1. This and the tightness of {M,) imply the tightness of 
(MJ. Hence for any E > 0 there exists a K such that P ( M ~  > K) < E for all n. 
This and (1) yield the following inequalities: 

Since condition (A) and Theorem 5.1 from [2] imply the convergence 

in view of condition (A) we get 

Now, (C) and the above imply that lim,,, limsup, P(M,- M,(s) > 0) < 8. 

Since E was arbitrary, the proof is complete. 81 

Re mark 1. A weaker version of the above theorem can be found in 
Szczotka [I21 (see Lemmas 2 and 3 therein). In a sense, Theorem 2 provides 
a solution to a problem posed by Whitt [I51 who asked about a topology in 
D [0, GO) under which the convergence Xn (t) - /?, (t) 3 W (t) - fit implies the 
convergence - sup,, ,, , (X&) - p, (t)) 5 sup, ,, , , (rY, (t) - fit), where W is 
a Wiener process, and X, are Donsker's sums. 

Of course, Theorem 2 is only as good as our ability to verify tightness of 
the sequence (M,). For processes Xn of a special form, such as Donsker's sums 
of random variables, sufficient conditions for tightness were provided by Szczo- 
tka [I31 under the assumption that the summands have finite and bounded 
moments of order 2+ E, E > 0. Our next result removes that restriction. 

THEOREM 3. Let 
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where the array { I n , R ,  k 2 1, n 3 I) is row-wise stationary with EL,k = 0, and 
I&ln/cn--,8, 0 < P < m. 

(i) If 

for some positive integers z and no such that la,/ n/c, 2 $ far n 2 no, and 
K = (1/22) 8, then the sequence { M , )  is tight. 

(ii) If we additionally assume that lnek are row-wise i.i.d. with Cn,, = L-,, 
k, n 3 1, and c, = nlja, where the distribution of belongs to the domain of 
attraction 4 a Lkvy a-stable distribution with 1 < a < 2, then (3) holds. 

The proof of Theorem 3 will be preceded by a couple of lemmas. 

LEMMA 1. Let X be a process with stationary increments such that 
X (0) = 0 as., J (t) a positi~e and superadditive function, #I (0) = 0, and let 
0 = zo < z, < z,, . . . be a sequence of positive integers. Then 

If z0 = 0, T, = I?, k 2 1, for some integer z, z 2 2, then 

Pro of. Notice that 
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Hence 

The assertion (5) is an immediate consequence of (4), where we put Z~ = 9 for 
k k 3 1. Then z ~ + ~  -ZR = T IT- 1) < rk+l. This completes the proof of the lem- 

ma. a 

LEMMA 2. Assume that processes X,, n 3 1, have stationary increments, 
X,(O) = 0 as . ,  a d  functions fl,(t), n 2 1, are positive, nundecreasing and super- 
additiue. Moreover, assume that, for some integers no and z >, 2, 

Then the sequence (M,) is tight. 

Proof. The proof is an immediate consequence of the nonnegativity of 
functions P,, (t), the inequality 

~ ( x , ( z ~ ) > x ) < P (  sup ~ , ( t ) > x )  for x20, 
0 < t < r k + '  

and the second assertion of Lemma 1. H 

Now we can return to the proof of Theorem 3. 

Proof of Theorem 3. Since 

let no be an integer such that, for n 2 no, (lan/ n)/c, 2 $8, and let IC (1/22)8. 
Then, for n 2 no,  we have pn (zk)  3 xzk+l .  This and Lemma 2 with X, given in 
(2) give the first assertion of the theorem. 
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To prove part (ii) we notice that, by Doob's inequality, 

where S 2 1 and rl  = T'-~/" = > 1. Since the distribution of c1 belongs 
to the domain of attraction of an a-stable distribution, by the Remark on p. 36 - 
in Kwapien and Woyczynski [9], we get 

which jointly with zl > 1 gives the finiteness of the series in (3). 1 

3. CONVERGENCE TIP K&VY PROCESSES A N D  A DECOMPOSITION LEMMA 

Let X be a Levy process without a Gaussian component and with sample 
paths in the space D [ O ,  a). Then its characteristic function can be written in 
the form 

where 

$b,v (u) = iub + j (eiux - 1) v (dx) + 1 (eiUx - 1 - iux) v (dx), 
4x1 B r  O<lx l<r  

the drijt b is a real number, the spectral measure v is a positive measure on 
(- co, co) which integrates the function min (1, x2), and r is a positive number 
such that the points - r  and r are the continuity points of spectral measure v. 

If the spectral measure v is concentrated on the positive half-line (0, a)), 
then the process X will be called spectrally positiue or, loosely, a process with 
positive jumps. When v is concentrated on the negative half-line (- co, O), the 
process X will be called spectrally negative or a process with negative jumps. 

Let 
df b(p ,  V) = - 1 xv(dx) 

1x1 B r  

if it is finite. Then 

(8) $b,Y (u) = iu (b - b (r , v)) + (eiux - 1 - iux) v (dx). 
O < l x l < a ,  

If b = b (r ,  v), then &,,, (u) does not depend on r. 
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A Lkvy process can be considered as the limiting process of the inter- 
polated sum processes K(t) = zr:, c,,, t > 0, n > 1, where k g 1, n 3 1) 
is an array of r.v.'s. In the sequel we recall the classical Prokhorov's result (see 
Prokhorov [Ill) providing sufficient conditions for such a convergence. 

LEMMA 3. Let (m,k,  k 3 1 ,  n 3 1) be an infinitesimal array of row-wise i.i.d. 
zero-mean random variables with distribution function F,  in the n-th row. Fur- 
thermore, let 

for all continuity points y < 0 and x > 0 of v, 

(1 1) 

and 

lirn sup nP (l[n,ll > x) = 0, 
x d m  n 

b , ,  n J xdF, (x) + b,, 
1x1 -=r 

lirn lim sup n J x2 dFn ( x )  = 0. 
e-tO IxIGe 

Then Y, 3 X in D LO, c ~ )  equipped with J1 Skorokhod topology, where X is 
a stochusticaEEy continuous IRvy process with the characteristic function 
E exp(iuX(t)) = exp(it$b,,(u)), where t,hb,v is given by (7) with b = b,. 

Applying the Heavy Traffic Invariance Principle will be also made easier if 
one utilizes the following Decomposition Lemma which, intuitively speaking, 
asserts that if the distribution of service times has heavier tails than the dis- 
tribution of the interarrival times (or vice versa), then the limiting process 
X and, consequently, supos,, , (X (t)-Pt) depend only on the distribution of 
random variables with heavier tails. To formulate the Decomposition Lemma 
let us put 

and 

where 
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LEMMA 4 (Decomposition Lemma). Let (tr,, Un) 5 (V, I,), where V and 
U are nondegenerate and stochastically continuous processes. Assume that 
conditions (ii) and (iii) of Theorem 1 hold with tmDk = an, - k  - un, - k  - V. + U.. 
Then : 

97 P (i) i ' f ~ , , ~ / c ~ ~ 4 0 ,  then X,+X= -U,undo~c , ,  +sup,,,,,(-U(t)-Pt). 
9 (ii) If C , , , / C ~ , ~  + 0, then X n  3 X = V,  and mn/cn,, + sup,,, , , (V (t) - pt). 

Proof. The assertion follows immediately from the fact that the processes 
X, are of the form 

In this section we find the distribution of the supremum functional 
Mx when X is a spectrally positive U v y  process. For the sake of clarity of 
exposition we proceed first with the a-stable case although it can be deduced 
from the general case discussed in Subsection 4.2. Subsection 4.3 explains how 
our approach compares with the approach developed by Takacs [14J. 

41. The ol-stable case. If X is spectrally positive with v ( x ,  m) = yx-@ for 
x > 0, then 

Let 
03 M a - 1 )  

(13) ,u = j (e-"- l + ~ ) x - ( " ' ~ ) d x  and 
o + 8 = (  P+b(r, v)-b ) , 

THEOREM 4. Let 1 < a < 2, y > 0, and X be a spectrally positive a-stable 
I k v y  process with characteristic function exp (iuX (t)) = exp (t$b,, (u)), where 
$ b , Y ( ~ )  is of the form (7) and v (x ,  m) = yx-a for all x > 0. Furthermore, let 
p >  max (0, b) and 

M ,  = sup (X (t)  -fit). 
O f t e m  

Then the normalized supremum functional Mx/O has the Mittag-Lefler distribu- 
tion R, - ,, i.e., 

with the Laplace transform 

1 
[ e-SXdRa-l (x )  = - for s 2 0 .  

0 - l+sa-I 
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Proof .  Let us consider a sequence of the M / G I / l  queueing systems 
indexed by n. The n-th system is generated by the sequence 
{(v,,,, u,,,), - ao < k < ca] with the following specifications: v,,, have distri- 
bution function F independent of n, where F (x) = 0 for x < yli" and 
F(x) = l - y ~ - ~  for x 2 yli". Putting yo = ylla we have 

Assume that u, ,~  have exponential distributions with means ii,, n 2 l,jespectively, 
such that a, = iT-iS, < 0, and a,, t 0 in such a way that, for c, = nl/", we have 

where 

and r is the parameter appearing in the representation of the exponent $b,v (u). 
Let 

[ntl Cntl 
K(t )=  CLj,:i and U,(t)= SY, t 2 0 ,  n21. 

Then U, 3 U, where U is a Wiener process. 
In the next step we shall show that the sequence {T/,) converges to a spec- 

trally positive stable LCvy process V with the characteristic function given 
by (7) with characteristic exponent $,,, (u), where 

and v(x, m) = y x - "  for x > 0. As a matter of fact, in this case 

so that the expression does not depend on r. 
To show that .',3 V we will verify the conditions of Lemma 3 in which we 

put In,k = CjltR and set F,  to be the distribution function of 6i:i. 
First, notice that, for n such that nlia x + i7 > y 'la, 
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which, in turn, implies that 

1 
n ~ ( c $ : ]  > x) + y- = v (x, m) for any x > 0. 

xa 

Similarly, for n such that nllay+iT < y l / " ,  y < 0, 

which implies condition (9) of Lemma 3. 
Now notice that, for n such that nl/' x + fi > y 'la, we have 

Therefore condition (10) of Lemma 3 holds. 
To check the third condition of Lemma 3 notice that 

j xdF, (x) = ESi;!I (IT!,f11 < I) = -ECk:11(11$?!1 2 r) .  
Ixl-=r 

Hence, for n such that ni/"r + i > yli", 

Consequently, 

This implies condition (11) of Lemma 3 with 

I 
b, = - y a p  rl-' = b(r, v). 

a- 1 

Finally, we check the last condition of Lemma 3. Notice that 
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Since 1 - 2/01 = (a - 2)/a < 0, the third expression tends to zero as n + rn , and 
since 

the second expression also tends to zero as n + a. The first expression equals 

1 = Y a - ( ( E + f i / n l l ~ ) 2 - ~ - n l - 2 1 a  + YE- 
2-01 

Since the above limit converges to zero as E +  0, condition (12) of Lemma 3 
holds. 

Thus, in view of Lemma 3, it follows that 3 I.: where V is a spectrally 
positive stable LCvy process with characteristic exponent $b,,v,  where 

If Xn (t) = n-lhE1 (Lj-an), t 2 0, then Xn = V.- n(a-2)1(2a) cn U. and 
(a- 2)/(2a) < 0. Now, by the Decomposition Lemma, it follows that X, 3 V, 
where V is a spectrally positive Lkvy process with an u-stable spectral measure 
v and characteristic exponent $,,, (u). Since the process X (t) -#It has the char- 
acteristic exponent $, -P,v  (u), and b - 8 = b, - (8 + b, - b) = b, - B, 

sup (X (t) - #It) 2 sup (V (t) - (8 - b, - b) t) = sup (V (t) - Ft). 
O < t < m  O < t < m  O C t <  m 

To show that mn/nlla 3 supo S~ < (X (t) - fit) it is sufficient to demonstrate 
that the sequence {a Jnlla) is tight. We will prove even more and establish that 
the Laplace-Stieltjes transforms of w,/n1la, n 2 1, converge to the Laplace 
transform of the Mittag-Leffler distribution. To this end notice that the form of 
the distribution of the stationary waiting time for M/GI/f queues is known (see, 
for example, in Cohen [ 5 ] ,  p. 255, formula (4.8.2)) and, with the above spec%ca- 
tions, 

(14) for x 2 0, 

and P(wn < x) = 0 for x < 0, where F is the distribution function of the service 
time, Q. = 5/ii, is the tr&c intensity, while G*" denotes the k-fold convolution 
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of a distribution function G.  In this situation, the Laplace-Stieltjes transform of 
the stationary waiting time wn is of the form 

I-@, - 1 (15) Eexp(-swn)= , s 2 0 ,  
I -F(s) - I - F (s) 

1-en- cs 

where P is the Laplace-Stieltjes transform of the distribution function F .  Con- 
sequently, the LapIacd3tieltjes transform of o,/c, is of the form 

- 

(16) 
1 

E exp ( - swJc,) = 

I++-  1  - ~ n  

Since c, = pa1/' and nlu,l/cn +B",  we have , ,  - +  and 
la,l = Bn n-("- But Q,, = fi/Gn. Therefore 

- - 
Qn - - - U n ( a - ~ ) / a .  

1 - e n  lad fin 

At this point notice that the LaplaceStieltjes transform of F has the following 
form: 

Hence 

1-l"(s) 1 1 -- = - {iis-(I -P(s))) 
US iis 

This implies that 

- v 1 * = -n("-l)/a- 
1 

- ay 1 (exp (- xs/nl/") 1 + xs/nlla) - x-" dx 
P n  YO xs/n 
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The last equality was obtained by changing variables u = xs/nlia in the pre- 
vious integral, with u ranging over the domain s, 6 u < co, where s, = y, s/nl/". 
Since the last displayed expression tends to r P - I  ayp/B= sa-I OK-l ,  in view of 
(13) and (16), we get the following convergence: 

1 
E exp (- sw,,/(Jn l la))  -+ - 

I +  sa-l' 
s 2 0.  

The above limit is the Laplacdtieltjes transform of the Mittag-Leffler dis- 
tribution .that is -. 

which implies that 

Summarizing, as n -, the distributions of oJ(Bnlla) converge to the Mittag- 
-LeMer distribution RE- I .  Hence the distribution of M/9 has the Mittag-Leffler 
distribution R,-,  as well. gl 

4.2. The general case. In this subsection we calculate the Laplace transform 
of the distribution of the supremum functional for a general spectrally positive 
U v y  process. 

THEOREM 5. Let X be a spectrally positive LLvy process with spectral 
measure v and characteristic exponent t,bbmv(u). Furthermore, let I;,, n 2 1, be a se- 
quence of distribution functions on [0, co) with means iTn, n 2 1, respectively, such 
that,for a sequence {c,) ofpositive constants monotonically increasing to infinity, 
the distribution functions 

satisfy conditions (9H12) of Lemma 3. Moreover, let 

and 
m 

(19) #Is )= lim J(e-"-l+~)v, , ,(du),  s 2 0 .  
n+m 0 

Then 

rP (s) = 
1 

1 - 4 (s)/(Ps) 

4 - PAMS 232 
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is the Lapiace-Stieltjes transform of the distribution of the supremum finctional 
Mx, provided @ (0) = 1 and 8 is continuous at s = 0 .  

P r o  of. The proof is similar to the proof of Theorem 4 with the following 
modifications: The single distribution F for the service times v . , ~ ,  k 2 1, in the 
n-th queueing system M/GI/I,  is now replaced by the distributions Fn. Then 

- 1 "J -- j (exp ( - sx/cn) - 1 + xs/cn) d F;(X) 
fin ~ / c n  

1, 
= - j (exp(-sx/cS - 1 +xs/c,) c,  d ~ ,  ( x ) .  

su,  0 

Changing variables in the last integral, i.e. putting u = xs/c,, we can write the 
latter expression as the integral 

Hence 

where v , ,  are defined in (18). By assumption, the above expression converges to 
1 - # (s)/(s/3) for s 2 0 .  Therefore 

E exp ( - son/cn) -, 
I 

= @ ( s ) ,  s > o .  
1 - # (s)/sS 

But @ ( O )  = 1 and, by assumption, @ is also continuous at s = 0. This and the 
fact that @ is a b i t  of the Laplacdtieltjes transforms Eexp (-swn/cn) implies 
that @ itself is a Laplace-Stieltjes transform. This also yields the weak conver- 
gence and, in particular, the tightness of the sequence (wn/cn). Hence the Heavy 
Traffic Invariance Principle implies that the limiting distribution of (wn/cn} is 
the same as the distribution of M ,  = sup, <,, , (X (t)- fit) and that 8 is the 
Laplace-Stieltjes transform of the distribution of Mx. H 

4.3. The general case via a modified Takhcs' approach. In this subsection 
we provide an alternative approach to the problem of identifying the dis- 
tribution of the supremum functional Mx for a spectrally positive Gvy process 
X which is based on the following result of L. Takics which was rediscovered, 
in a slightly different context, by Kella and Whitt [8]: 
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THEOREM 6 (Takics 1141). Consider a spectrally positive Livy process 
X with the Laplace transform of the form E exp ( - sX( t ) )  = exp (- t4  Is)) for 
R (s) 2 0, whme 4 {s) is such that Q : = lim,,o q!~ (s)/s exists and 0 < Q < 1. Then: 

(i) Thers exists a distribution function H such that H (x )  = 0 for x < 0, 
whose Laplace tran$ora is of the form 

(ii) The distribution function FM of the functional Mx = sup, ,,, , (X ( t )  - t )  
(here #I = I!) is of the following form: 

w 

F M ( ~ ) = ( 1 - e )  C ~ ~ H * " ( x ) f o r  x>O and G(x)=O for x G 0 ,  
k = o  

where H*k denotes the k-foid convolution of H and its Laplace transjkrwa is 

Our next.result shows how, in the case when lim,,, 4 (s)/s = 0, the above 
theorem can be extended to the case of arbitrary B > 0. 

THEOREM 7. Let X be a spectrally positive Lkvy process with the Laplace 
transform E exp (-sX (t)) = exp (- tq5 (s)) for % (s) 0, where 4 (s) is such that 
lim,,o 4 (s)/s = 0. Then the distribution FM of the supremum functional 
Mx = sup,,,, , (X  (t)- Bt) has the Laplace transform 

j e-Sx dF (x )  = 
I 

0 1 - 4 (s)/(fls) 

Proof .  Let y be such that 0 < y < B, and define 

Then 

Furthermore, I? is a spectrally positive U v y  process with the Laplace trans- 
form of  the form 
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where 

Hence 

Now by Takbcs' theorem, the distribution of i@ = supo <,, , (20) - t)  is of the 
form 

where I? is the distribution function such that, for x < 0, I?(x) = 0, and whose 
Eaplace transform is of the form 

Therefore the distribution of (/3+ y)a is equal to 

where H(x )  = H(x/@+y)). Finally, notice that the Laplace transform of F 
equals 
m 

1 e-"dF (x )  = ~ - Y / @ + Y )  - - f i  - 1 
o I - Y ( B + ~ ) - ' ( I  + ( s Y ) - ' ~ ( s ) )  B-s-' 469 - ~ - ( s P ) - '  9b)' 

This completes the proof. H 

5. SUPREMUM OF A SYMMETRIC U-STABLE PROCESS 

In this section we abandon the restriction of spectral positivity imposed 
in the preceding section and consider an arbitrary symmetric a-stable Ltvy 
process. 

THEOREM 8. Let X be a symmetric a-stable U u y  process with tails of the 
spectral measure v ( x ,  co) = v (- co, - x )  = yx-'for x > 0 and 1 < a < 2. Then 
the distribution of the supremum functional Mx = supo (X (t)- Pt) has the 
Laplace-Stieltjes transform of the form Ee-" = ee-*(")ln, s 2 0, where 
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Proof, Assume that the generating sequenoe ((vnTk, IA,,~),  - m < k < a) 
is such that 

5 n . k = ~ n , - k - ~ ~ , - t = t k - l a , l ,  k > l j n 2 1 ,  

where {, cl, {,, t3 ,  . . . are i.i.d. random variables with stable and symmetric 
distribution with density f and characteristic function f ( t )  = exp(-lit)"), 
t  E R,  I < a i 2, A = 2ay jr (1 -cos x)-( '+l ldx.  

Furthermore, define a, t 0 in such a way that 

Then 

where 

This implies that X, 3 X, where X is a Lkvy process with symmetric stable 
spectral measure v and 8, It) + #It. Hence the characteristic function of X ( t )  is 
the limit of characteristic functions of Xn(t) .  But 

1 ["'I 
(21) lim E exp iu - cj = lim E exp (iu ( [ n t ] / n ) l T )  

n ( nltaj . l  ) n 

On the other hand, for positive u, the process X has the characteristic exponent 
equal to 

0-  m 

~ O , Y  (u) = ya 1 (eiux - 1 - iuxj 1x1 l) dx + yu (eiux - 1 - iux) x-('+ l )  dx 
-a0 0 + 
0 - 

= yci 1 (cos lux1 -isin 1~x1- l+i luxl)  I ~ l - ( " + ~ ) d x  
-w 

m 

+ ya j (cos lux1 + i sin lux1 - 1 - i 1~x1) x-("+') dx 
0 + 

For negative u the situation is similar. Finally, we get 
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Comparing the right-hand sides of (21) and of (22) we get 

To prove the tightness of the sequence { o J n l / " )  we can use Theorem 3 
with Cn,, = tk, k 3 1, and c, = nl/". Indeed, notice that 

where 1 < 6 < ct and b = zd('-l/"). Since E 1(l8 < and b > 1, the above in- 
equality implies that the series (3) in Theorem 3 converges uniformly with 
respect to n. This gives the tightness of {w,,/nll"). 

Next, we will find the limit of E exp (- swn/nli") as n -+ co. TO do this we 
will use the following representation of the Laplace-Stieltjes transform of the 
stationary waiting time a,: 

I3 exp ( - sun) = exp {- k =  f 1 t ( ~ e X p ( - ~ ( s . , ~ ) + ) - ~ ) ) ~  

where S ,  = z:=, S n j ,  k 3 1, n 3 1 and (r), = rnax(0, x). Since S , ,  = z=, 6- 
P la,l k and tk are symmetric and a-stable, SnVk = klla t - Ianl k. Hence 

m 

=P(5,<k1-1/alan()-l+ j e x p ( - s ( k l l a x - k ( a , ( ) ) f ( x ) d x  
k l -  l~qa"~ 

m 

= - P (t > kl-"" lanl) +exp(sk 1a.l) exp (-sklia x) f (x) dx 
k1 - l/ala,l 

On the other hand, 

1 1 
f (x) = - j e-itxf ( t)  dt = - j (cos (tx) - i sin(tx)) exp ( -  A Itla) dt 

2n R 2 ~ l ?  

= cos (tx) exp ( - dt . 
'=o 

Hence, by (24), we get 
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Using (25) and (23) we get 

(26) E exp (- swJnl/") 

where 

Notice that, for each s 2 0, A,($ + A ( $ ,  where 

ml m 

A(s) = 1 - J (exp (- serlJ"x +sPu)- 1) exp ('-At? cos ( tx)  dtdx du. 
0 u ~ ~ i  - i/a 0 

Substituting z = ulJa x - Pu, we get x = ZU- lta + /3u1 - lia and 

Since {w, n- 11") is tight, the function exp (-x- A (s)) must be the Laplace- 
-Stieltjes transform of a distribution function on [0, m). Therefore, by the 
Heavy Trafk Invariance Principle, exp ( - n - A (s)) must be the Laplace-Stiel- 
tjes transform of M ,  = supo <, (X (t) - Pt), where X is a LCvy process with 
symmetric a-stable spectral measure v. 
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