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Abstracr. In this paper we demonstrate how to use the importance 
sampling method to simulate rare wmts in a germ-grain model. We 
analyze conditions under which two gerrn-grain models are mutually 
absolutely continuous. We also find the likelihood set process. We 
apply these results in simulating the probability that the radius of the 
occupied component of the origin in continuous percolation is greater 
than some R. This method is based on the reduction of the variance of 
estimator. 
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1. INTRODUCTION 

A germ-grain model may provide a good description for a very irregular 
pattern observed in microscopy materials science, biology and analysis of 
images. Perhaps the best known model is the Boolean mode1 (Matheron [ 5 ] )  
formalizing a contiguration of independent, randomly placed particles. A Boole- 
an model is formed by placing random balls centered at the points of a Pois- 
son process and taking the union of these balls. The points of the Poisson 
process are sometimes called the germs and the associated balls the grains. In 
a natural generalization of the Boolean model the Poisson process of germs is 
repIaced by a general point process and balls by any compact sets or even more 
general objects. If we take these objects as a mark at the point of the point 
process of germs, then such a marked point process N will be called a marked 
point process (abbreviated as m.p.p.) driving the germ-grain model. 

The simulation of a Boolean model within a compact set Tc Rd falls into 
the following stages. First, the number of points is determined by simulating 
a Poisson random variable J with parameter A ITI, where A is the intensity of 
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the Poisson process and IT1 the volume of the set T Then J independent random 
points (ti) are simulated in T according to the Bernoulli process. Next, we 
generate J i.i.d. copies of radius m. Finally, the Boolean model is constructed by 

where 8 is the Minkowski addition, 0 is the unit ball, mi an i.i.d. positive 
random variable, and ( [ t i ,  mi@]) is a realization of N. Denote by PN(.) 
the distribution of &(If). That is, &(IN) is a random element on (9, q(P)), 
where 9 is a famiIy of closed sets and 4 (Rd) is the Fell a-algebra generated by 
FK = { F  E 9: F nK # 0) for K ranged over all compact sets (see Matheron 
[5], Section 1-2). 

We want to simulate the so-called rare event A E ~ ( R " )  for a Boolean 
model d(1V) or, more generally, for a germ-grain model. That is, P,(A) is 
"small" (typically of order 1W6). Using the so-called Crude Monte Carlo 
(CMC) method of simulation in this case is inefficient. Precisely, let n be the size 
of a sample and 1 (A,), 1 (A2), . . ., 1 (A,) replicas of 1 (A). Then estimating 
P = p ~ ( A l  

we make the relative error high: 

Therefore we will use the Importance Sampling (IS) method. The main idea is 
to compute PN (A) by simulating a germ-grain model from a probability measure 
Pfi such that PN is absolutely continuous with respect to it. In Proposition 2.1 
and Theorem 2.1 we find sufficient conditions under which PN is absolutely 
continuous with respect to Pfi. We also find the Radon-Nikodym derivative 
L(.), that is 

for realization E E 9 of d (N). Then 

Hence to estimate P,(A) we generate n replicas (1 (A,), L,), (1 (A,), L,), . . ., 
(i(A,), L,) from the measure Pfi and construct the estimator 
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The 95% confidence interval is then 

where 

We choose the measure PN (that is, the parameters of the newgem-grain 
model) in such a way that the event A is observed frequently. In other words, 
under a good choice of the parameters we decrease the relative error. 

We analyze in detaiI the Boolean model, where the point process con- 
stitutes a Poisson process and balls have radius rn = 1. We consider the event 
A, such that balls form a chain (all circles in this chain are connected), which 
joins the origin with the border of box T with side length R. That is, we 
simulate the probability that the radius of the occupied component of the origin 
is greater than R. The problem of finding P,  (A,,) is relevant in industry when 
we apply the electrodes to the plates of the dielectric materials. Because of the 
manufacturing process small holes arise in the electrodes. A chain of small 
holes crossing from the origin to the border of the box means a diminished 
value of the capacitance. Typically, the parameters of the model: size of T and 
intensity of the Poisson process % are such that PN(Ao)  is "small". We prove 
that the IS scheme for an appropriate choice of a new intensity of the Poisson 
process is 1ogarithrnicaIly efficient, which implies improvement. We also give 
some numerical results. 

The paper is organized as follows. In Section 2 we find sufilcient con- 
ditions under which the two germ-grain models are absolutely continuous. In 
Section 3 we analyze in detail the example mentioned above. 

2 GERM-GRAIN MODEL 

We start with a formal definition of a general germ-grain model. We will 
define a marked point process as a point process on a product space of loca- 
tions and marks with the additional property that the marginal location pro- 
cess is itself a well-defined point process. By B(X) we denote the Bore1 a-field 
of X. The location space (T, B (T)) is the compact subspace of the Polish space 
(W, B(W)). The marks space ( X ,  Yk) is the space of all compact subsets of 
W with a-algebra Yk : = (W) n X, where 4 (W) is the Fell u-algebra on W 
Let ( M ,  A) be a measurable space of simple integer-valued measures which are 
finite on bounded sets. We conceive a marked point process N as a random 
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element on (M, A, B), that is 

where BE B (T), C E Fk, and E ~ ~ , , ,  (., a )  is a Dirac measure. Note that 
N x  I.) : = N(., X )  constitutes a simple point process on T. 

Let p(dt, dm) be a mean measure of N: 

EN ( B ,  C) = p ( B ,  C), B E ~ ( T ) ,  C E F ~ .  - 

Similarly, let A(dt) be a mean measure of a point process Nx(.): 

It can be shown that p(dt, dm) is absolutely continuous with respect to il(dt), 
that is by the Radon-Nikodym theorem there exists a density v, (dm) such that 

(2.2) p(dt, dm) = R (dt) v,(dm), 

where v,(dm) can be interpreted as the distribution of the mark of the point t .  

EXAMPLE 2.1. If N(., .) is a marked Poisson process with mean measure 
A (-1 and i.i.d. marking, then p (dt, dm) = A (dt) v (dm), where v (-1 is a distribution 
of mark. If N x ( . )  is a Poisson process on Rd with intensity A, then 
p(dt, dm) = I d t  v(dm). 

Remark 2.1. In the classical theory of marked processes on the real line, 
it is well known that under certain conditions on the probability space and 
filtration, the mean measure of a marked point process determines its distri- 
bution (Jacod [3]). As we shall see, this is not true for processes on general 
spaces. Consider the Poisson process Nx(.) = N (., 2') on T = [0, 112 with 
mean measure equaI to Lebesgue measure I(dt) = dt. However, the Lebesgue 
measure is also the mean measure of the following process. Let a,, @,, . . . be 
i.i.d. unit rate Poisson processes on [0, I]. Denote by Ti  the time of the kth 
jump of ai. Now, let locations of the points be {(TP, Ti), i, k 2 1). 

Now, writing B@C = {b + m: b E B, rn E C) for the Minkowski addition of 
B and C, we define a germ-grain model by the union: 

Consider two marked point processes N and fl on T x X having the 
mean measures p and jl, respectively. Let P ,  and PR be the distribution of the 
germ-grain model driven by m.p.p.'s N and m, respectively. Let us put 
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For n E Jlr we d e h e  a conditional distribution NIn of N, given NIT x S) = n, 
that is, 

NI,(B, C):=E[N(B, C)IN(T,  X )  = n], BEW(T), C € F k .  

Note that NIn is also a marked point process on T x &. Let pln(dt, dm) be its 
mean measure. Similarly we define HI, (-, -) and PI,(., -). 

P m o s ~ n o ~  2.1. The marked point process N (-, .) is absolutely continuous 
with respect to the marked point process fl ( a ,  -) (N 4 fi) i$ pin 3 Pi. for n E N 
and N ( T x X ) <  ~ ( T x x ) .  - 

Proof. l f ~ + f l , t h e n  N ( T X X ) ~ N ( T X X )  andNl ,4 f i In ,  and hence 
also pin < &,. We prove the converse implication. We use the notation 

for the (T x X)k-valued vectors (k = 1, 2, . . .). The k~ order factorial measure 
uf,, of NIn is a measure on ( T x  X)" defined by 

where 

We prove that a!, is absolutely continuous with respect to ifn for each 
n E N n  and k < n. We use induction. For k = 1 the assertion is satisfied, 
since ah (dt, dm) = pi, (dt, dm) and a"h (dt, dm) = PI, (dt, dm). Assume that the 
assertion is satisfied for k- 1. Let 

Then 

Denote by x' the summation over distinct points in T. Then 

ufn(B1 xc1,  .--, B k x c k )  

6 - PAMS 23.2 
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where Lk (r  , m) = Lk - (t ,-ml, . . . , tk - mk - L (ti, mik). Thus < &fn for 
k d n. Since N(T x X )  < NIT x X), there exists nonnegative D, such that 

- 
P ( N ( T x X )  = n) = D , P ( ~ ~ [ T x  X )  = n). 

Denote by QIn the distribution of NI, on (My A'). For a bounded real-valued 
2-measurable function f we have 

= z - ~ ( f l ( ~ x ~ ) = n ) j f ( t .  m)D.L.(t, m)qn(d(t, m)) = E ~ ( N ) L ( ~ ,  
n s X  

where 

for realization z~=,~(,, , ,~,(. ,  .) of the marked point process W, and f (t, m) 
means f EF= I E ~ ~ , ~ ~ ~  (., .)). This completes the proof 

Remark 2.2. This result is well known for Poisson processes; see Mat- 
thes et al. [6], Proposition 1.7.11. 

Remark 2.3. For a marked Poisson process with intensity 1 and a mark 
independent of a position with a distribution measure v(.), we have 

( A  I TI)" e 
n ! 

where IB] is the volume of a set By and 

urn(d(ty m)) = dt l...dt,dv(ml)...dv(mn). 

Remark 2.4. Note that from the assumptions of Proposition 2.1 it fol- 
lows that p is absolutely continuous with respect to fi. In fact, let B x C be such 
that p(B x C) = 0. We have JV E $. Then 
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and for n E 2 we have PI, ( B  x C) = 0. Hence also pl, (3 x C) = 0 for n E JV, and 
fmally p{B x C) = 0. The converse statement in general is not true. In fact, 
consider two point processes Nx(.) and m*(.) on T  = [0, 112 given by 

THEOREM 2.1. If N @ N, then P,4  P,-. 

Proof. Suppose that $s(A) = 0 for A s q  (W). That is, 

n 

E - P ( N ( T x x )  = n ) [ l ~ ( U  {ti@md)Tn(d(t, m)) 
 EN i=  1 

where IA(F) = 1 if F E A and l A ( F )  = 0 otherwise. Hence all terms must be zero 
and for all n E JV we have 

Thus from Proposition 2.1 for  EN we obtain 

yieIding P,(A) = 0. This completes the proof. FA 

The likelihood ratio dPg/dP, (E )  for realization E E  9 of at (N) is 

- - L~(N(Tx=w = n ) h T x , ~ E ( U ~ , k @ ~ ) ~ ~ n ( d ( f .  111)) 

C _ p ~ ( @ ( T x x )  = n ) L x w ~ ~ ( U 1 . l  ( t i@da7.(d(t ,  m))' 

where I,(F) = 1 if F = 9 and Is = 0 otherwise. 

EXAMPLE 2.2 (Poisson cluster process). Let N ( . ,  .) be a Poisson process 
on a compact set T c Rd with intensity 1 marked by a point process N i ( . )  on 
a compact set I3 c Rd at position t i ,  where N , ( . )  are conditionally independent, 
given the realization of the parent Poisson process. Then N (.) = Uzz, (ti@Ni(-)) 
is a cluster Poisson process (see [4]). Assume that N i ( - )  are absolutely con- 
tinuous with respect to a unit rate Poisson process on E with the offspring 
density v(-). Let a(.) be the Poisson cluster process with intensity 1 and the 
offspring density v"(-). Conditioning on parent point configuration t, the 
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offspring UEi  (ti@Ni)) is absolutely continuous to a unit rate Poisson process 
on TOE with conditional density 

where the sum is over all ordered n partitions 4 of 9. Hence taking expectation 
over f gives 

see also Van Lieshout [8]. If each parent point has a single daughter point with 
displacement densities v ( . )  and v"(.), then (2.8) reduces to 

where H (E) denotes the number of points in codiguration E, and E,  is the it' 
point of 3. 

EXAMPLE 2.3 (wire frame model). The germ-grain model in which there is 
a one-to-one correspondence between the driving m.p.p. and the germ-grain 
model itself will be called a wirefiame model. The classical example is a Boole- 
an sphere model on Rd, in which marks are spheres centered at the location 
points ( t i )  of the point process N*(-). Denote by x :  TOX + T x X the one- 
-to-one mapping such that z ( d ( N ) )  = N. Similarly we define the mapping 
n X ( d ( N ) )  = Nx.  Then from (2.7) we have 

consider the marked Poisson processes N (a, -) and @ (-, -) with mean measures 
A(.) and I(.), respectively, and with independent marking with measures v(.) 
and f(-). Let A 4 2 and v 4 f. Then, by Proposition 6.10 of Karr [4], p. 232, we 
have N 4 @, and hence also P N 4  Pa. In this case we have 

where H (E) is the number of points of the Poisson process constructing a set 3. 
In particular, if N(., .) and N ( - ,  .) are marked Poisson processes with inten- 
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sities R and respectively, and the diameters in both Boolean sphere models 
have the same distribution, then 

3. RADKUS OF THE OCCUPIED COMPONENT OF THE ORIGIN 

In this section we consider the Boolean sphere model on Rd driven by the 
marked Poisson process N (-, a) with intensity 1 and marks being i.ild. spheres. 
A marked Poisson process m(., .) has the intensity and marks being spheres 
distributed like in a Boolean sphere model governed by PN. We will consider 
a rare event A E 5 (Rd) for which limn,o P, (A) = 0. By (2.1 1) we have 

L (E) = exp {(I- TI] (a/q H [ E ) ,  

where H (E) is a number of points of Poisson process in T when realization of 
d ( N )  is 8. We will give now an example of A for which the IS scheme works 
well, that is, it reduces the relative error. 

DEFINITION 3.1. We say that the IS scheme is logarithmically efficient if 

lim inf logV=flIS 
n+o logp2 

Var $1, lim sup ---- = 0, 
n+o p 

then the IS scheme is an improvement over CMC simulation. 

Logarithmic efficiency implies improvement (see Asmussen [I]). 

THEOREM 3.1. Let A be an euent such that 

lim -- ( fi;n))"e"(~) = ' 
for some positive scaling function /3 (-). Let X > A. If 

B @"I) lim --- 
A- to  28 (A )  

2 1 ,  

then the IS scheme is logarithmically eficient. If PC.) is strictly decreasing so that 

(3.3) lim 1' (,I2/I) - 8 (A)] = a, 
R+O 

then the IS scheme is an improvement. 
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P r o  of. Let X = AZ/X Denote by PB the distribution of d (N) when N X ( - )  
is the Poisson process with intensity p. For A € q ( W d )  we have 

A Hca 
E i [ f i ;  A] = exp {(I-4 IT,] J !f) dPA (Z) 

A 

A H(B)  a me) 
= exp ((I- 1) 171) u p  (ir- 4 I ( )  (3, 

A 

= exp -(x-1)21TI Px(A). I: ) 
Thus 

log Var log Ej EL2; A] lim = lim 
1-0 logp' A-CO -2p(A) 

= lim 
X I T I + ~ O ~ P ; , ( A )  = lim XITI-P(X) = lim - B (2) 3 1, 

A+ a - 2P (4 I+o -2b(n) A + O 2 f l ( A )  

Similarly we prove that under (3.3) the IS scheme is an improvement. w 

Assume from now that the radius of spheres is equal to m = 1. Let 
T = T (R) : = [- R,  Rld E Wd (d 3 2) for fixed R > 1. We shall apply Theorem 
3.1 to the event A. : = (0 o a T  (R)) that there exists a path through balls of the 
Boolean model joining 0 with the surface aT of T :  

In other words, in the wire frame model, the origin is inside a sphere which is 
connected through a chain of spheres with the surface aT. 

THEOREM 3.2. The IS scheme for A, is logarithmically eficient. 

For the proof we need the following lemmas. 

LEMMA 3.1. There exists a decreasing positiue function i$ (A) such that 

lim -- ( , f ( A ) ) l o l ! ~ A ( o - a ~ ( ~ ) )  = 1. 

Proof.  Using the version BK and FKG inequalities for continuous per- 
colation (see Theorems 2.2 and 2.3 of Meester and Roy [7]) we obtain (6.24) in 
Grimmett [2]. Then using the subadditive inequality limit theorem one can 
mimic the proof of Theorem 6.10 of Grirnmett [2] to obtain its version for the 
continuous percolation. That is, there exist strictly positive constants Q and a, 
independent of A, and a decreasing positive function 4(A) such that 

Q R ~ - ~ ~ - ~ ~ ( ~  ) PPn(Ot,dT(R)) < oRd-I e-RNA) for all R >  1. 

This completes the proof. 
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LEMMA 3.2. Let 0 6 f (x) 6 I. Then 

lim 4 (Af (4) 1% (4 2 1, 
A+o 4 (4 log ( A f  (4) 

Proof. The main idea of the proof is to approximate the continuous 
problem by site percolation problems on a special lattice, constructed by par- 
titioning Rd into small cubes. Let rc be a positive- integer and Z! = rc-'Zd. We 
partition Rd into cubes whose centers are the points of Z;, defining 

We turn Ed, into a lattice 3, by defining the adjacency relation on Z: with 
the rule that x y iff there exist points U E B , ( X )  and u ~ B , ( y )  such that 
~ ( u ,  U) 6 2, where Q (., .) is the Euclidean distance. We shall consider site per- 
colation on the ensuing lattice 99,. We declare a vertex x of 9, to be open if 
there exist one or more points of the Poisson process within the cube BK(x), 
and closed otherwise. The states of different vertices are independent random 
variables and the probability pK(R) that any given vertex is open is given by 

(3.6) p,(A) = 1 -exp(-AK-3.  

Let y. = (1 + r-' Ad. From the rescaling property of a Boolean sphere model 
and the considerations made by Meester and Roy [7], p. 60, or Grimmett [2], 
Section 12.10, for sdkiently small R we have 

where P", (a) is a law of site percolation on 3, defined by the adjacency relation 
-, where the probability that a given vertex is open equals p. Thus, by Theo- 
rem 2.38 of Grimmett 121 applied to site percolation, we have 

log PA (0 * aT (R)) log A f (A) 

log GJAI(A)) (0 * aT(R)) log log PK ( J f  (4) log A 
2 2 

log GKtQJ (0 u a~ (R)) log A f (A)  log PK ( A Y ~  1% nf (A)' 
Note that 

ol-0 loga 

This completes the proof. rn 

Proof of Theorem 3.2. Let f (A) = A / x  < 1. Then from Lemmas 3.1 
and 3.2 we have 

log PA (0 t, i3 T (R)) 
lim = lim 4 ( J f  (4 ))p Em log ( A f  (4) = 1, 
*-0 21og PA (0 o LIT (R)) ~ + o  24 (12) i + o  2 log A 

which completes the proof of the theorem. 
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Although the flavor of this section is not numerical we add for complete- 
ness some numerical results. We made 10000 simulations for R = 64, d = 2, 
rn = I and I= 1.7. The percentage denotes the relative half-width of 95% 
confidence interval based on the normal distribution. 

Table 1. Simulation of the 
event 0 c+ d T (R) 

Acknowledgment. The author is indebted to M. van den Berg for the help 
in deriving Table 1 and the referee for his valuable comments. 
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