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Abstract. It is shown that the hyperbolic functions can be as- 
sociated with selfdecomposable distributions (in short; SR probability 
distributions or E v y  class L of probability laws). Consequently, they 
admit associated background driving Levy processes Y (BDLP's Y). 
We interpret the distributions of Y(1) via Bessel squared processes, 
Bessel bridges and local times. 
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1. INTRODUCTION AND TERMINOLOGY 

The aim of this note is to provide a new way of looking at the hyperbolic 
functions: cosh, sinh and tanh, or their modifications, as the members of the 
class SD of selfdecomposable characteristic functions (often called cIass L, after 
Paul Levy). Analytically, we say that a characteristic function I$ is seIfdecom- 
posable, and simply write ~ E S D ,  if 

where Q, is also a characteristic function. Let us recall here that class SD is 
a proper subset of ID, the class of all injinitely divisible characteristic functions, 
and that the factors Q, in (1) are in ID as well; cf. Jurek and Mason (1993), 
Section 3.9, or Lohe (1963), Section 23 (therein this class is denoted by %). We 
will also use the convention that a random variable X (in short: r.v. X) or its 
probability distribution px or its probability density f, is selfdecomposable if 
the corresponding characteristic function is in the class SD. Furthermore, the 
equation (1) describing the selfdecomposability property, in terms of an r.v. 
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X means that 

X E SD iff tl (0 < c < 1) 3 (r.v. X,) X cX + X,, 
where the r.v.'s X and X, are independent and means equality in distri- 
bution. 

For further references let us recall the main properties of selfdecomposable 
distributions (or characteristic functions or r.v.'s): 

(a) SD with convolution and weak convergence forms a closed convoEution 
subsemigroup of ID. 

(b) SD is closed under aflne mappings, i.e., for all reds  a and b one has: 

4 E S D  if eib' # (at) E SD . 
(c) XESD iff there exists a (unique) L i v y  process Y ( a )  such that 

m 

X J e - ' d Y ( ~ ) ~  
0 

where Y is called the BDLP (background driving Livy process) of the X. More- 
over, one has E [log (1 + l Y (I)])] < co . 

[ID,,, will stand for the class of all infinitely divisible laws with finite 
logarithmic moments.] 

(d) Let # and $ denote the characteristic functions of X and Y(1 ) ,  respec- 
tively, in (c). Then one has 

i dv . 
log 9 ( t )  = log J, (v) r.e., $ ( t )  = exp [ t  (log 4 (0)'I , t Z 0 (1/ (0) = 1 

0 

(e) Let M be the LCuy spectral measure in the Ltvy-Khintchine formula of 
#ESD. Then M has a density h ( x )  such that xh (x )  is non-increasing on the 
positive and negative half-lines. 

Furthermore, if h is dlferentiable almost everywhere, then d N ( x )  = 

-(xh(x))ldx is the Ltuy spectral measure of $ in (d). 
Finally, one has also the following logarithmic moment condition: 

log(1 + 1x1) dN (x)  < co for all positive E. 

I l x l 3 4  

Parts (a) and (b) foIlow directly from (1). For (c) and (d) cf. Jurek and 
Mason (1993), Theorem 3.6.8 and Remark 3.6.9 (4). Part (e) is Corollary 1.1 
from Jurek (1997). 

In this note we will characterize the BDLP's (or the characteristic func- 
tions $ in (d)) for the hyperbolic characteristic functions. The main result shows 
how to interpret these distributions in terms of squared Bessel bridges (Corol- 
lary 2) and squared Bessel processes (Corollary 3). 
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2. SEL,FDECOMPOSABI[LITY OF THE HYPERBOLIC CHARACTERISTIC FUNCTIONS 

For this presentation the most crucial example of SD r.v. is that of the 
Laplace (or double exponential) random variable q. So, g has the probability 
density i e p I x I ,  X E R ,  and its characteristic function is equal to 

t m dv 
= exp 1 [ j (eiVx- l)e-lxldx] - E S D .  

0 -a V 

To see its selfdecomposability property simply note that 

is the characteristic function of Q, in the formula (1). The rest follows from 
appropriate integrations; cf. Jurek (1996). 

Another, more "stochastic" argument for selfdecomposability of the Lap- 
lace r.v. q ,  as a counterpart of the above analytic one, is as foIlows. 

Firstly, notice that for three independent r.v.'s b (I), Z j l )  and b,, where the 
first two have exponential distribution with parameter 1 and the third one has 
Bernoulli distribution (P(b,  = 1) = 1 -c  and P(b ,  = 0) = c), we obtain the 
equality 

&(I) A ~ & ( l ) + b ~ 8 ( 1 ) ~  

which means that b(1) is a selfdecomposable r.v. (The above distributional 
equality is easily checked by using the Laplace or Fourier transform.) 

Secondly, taking two independent Brownian motions B,, &, t > 0, and 
independently of them an exponential r.v. b(1) satisfying the above decom- 
position, we infer that 

and thus proving that stopped Brownian motion B8(1) is selfdecomposable as 
well. 

Thirdly, let us note that B8(,) has the double exponential distribution. 
More explicitly we have 

I 
E [exp (it ($ B~(,)))] = E [exp (- t2 6 (I))] = - I + t2  - - 4, @I* 

For more details and a generalization of this approach cf. Jurek (2001), 
Proposition 1, and Bondesson (1992), p. 19. 
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PROPOSITION 1. The following three hyperbolic functions: l/cosh t, t/sinh t, 
(tanh t) / t ,  t E R, are characteristic functions ofseljdecomposable probability diszri- 
butions, i.e., they are in the class SD. 

P r o  of. From the following product representations: 

for all complex z, and from (2) with (a) we conclude that the first two hyperbolic 
functions are characteristic functions from SD. Moreover, these are characteris- 
tic functions of the series of independent Laplace r.v.'s; cf. Jurek (1996). 

Note that for 0 < a < b the fraction 

is a characteristic function, and so is 

tanh t - fi , 1 +(kn]-' t2 
-- 

t ~ = ~ l + ( ( k - ~ ) ~ ) - ' t ~ '  

as a converging infinite series of characteristic functions of the above form. 
Its selfdecomposability follows from Yor (19971, p. 133, or Jurek (2001), Exam- 
ple 1 (b). rs 

Remark  1. The selfdecomposability of (tanht)/t, i.e., the formula (I), 
would follow in an elementary manner if for all 0 < c < 1 and all 0 < w < u the 
functions 

were characteristic functions. [The above is a ratio of two fractions of the form 
as in the product representation of (tanh t)/t with fraction in the denominator 
computed at ct.] However, they cannot be characteristic functions! The affir- 
mative answer would mean that the Laplace r.v. is in L,. (These are those SD 
r.v.'s for which BDLP Y (1) in (c) is SD. Equivalently, the characteristic function 
e, in (1) is in SD.) But from (2) we see that Y(l)  for the Laplace r.v. q has 
compound Poisson distribution with LCvy spectral measure dM (x) = e-1"' dx 
which does not satisfy the criterium (e). Cf. also Jurek (1997). 

3. THE BDLP's OF THE HYPERBOLIC CHARACTERISTIC FUNCTIONS 

Since the three hyperbolic characteristic functions are infinitely divisible, 
one can insert them into LCvy processes: e,, fS, z, for s 2 0, corresponding to 
cosh, sinh and tanh characteristic functions. Those processes were studied from 
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the ID class point of view in the recent paper by Pitman and Yor (2003). Here 
we are looking at them from the SD class point of view, i.e., via the correspon- 
ding BDLP's. 

In the sequel, 4 with subscript e, $ or ? denotes one of the three hyper- 
bolic characteristic functions, M with those subscripts denotes the Levy spec- 
tral measure in the appropriate Levy-Khintchine formula; furthermore, $ with 
the above subscripts is ~e corresponding characteristic function in the random 
integral representation (properties (c) and (d) of class SD), and finally N with 
one of the above subscripts is the Lkvy spectral measure of $ (as in (e)). Thus 
we have the equalities: 

1 t tanh t --.- $6 lt) = $9 (t) . #i (t), i.e.2 - - 
cosht sinht t ' 

(4) 
dM2 (x) - M e ( - ) = M g ( . ) + M r ( - ) ,  where ------- 

1 
. . ---- - 

d x  2 x  sinh (nx/2)' 

dMi tx) - e-nlxl/2 = '(cot"+) - I), -- 
dx 2x sinh(xx/2) 2 1x1 

dMi.(x)  1 e-"Ix1f4 -- -- 1 
= - [I - tanh (x 1x1/4)]. 

dx 2 1x1 cosh (x 1x)/4) 2 1x1 

These are consequences of the appropriate Levy-Khintchine formulas for the 
hyperbolic characteristic functions or see Jurek (1996) or Pitman and Yor 
(2003) or use (2 )  and the product formulas for cosh z, sinh z (for tanh z use the 
ratio of the previous two formulas). 

COROLLARY 1. For the SD hyperbolic characteristic functions $6, 4s and 
&, their background driving characteristic functions are $6, $3 and $If, where 

(6) $Ic-(t) = exp [- t tanh t], $,-(t) = exp [I- t coth t], 

1 t 
$f(t) = exp [-.--- 

cash t sinh t 

Probability distributions corresponding to $e, $3 and $f are infinitely divisible 
with finite logarithmic moments. 

Proofs follow from (4) and the properties (c) and (d) of the selfdecom- 
posable distributions. 

Let us note that $If is the characteristic function of the compound Poisson 
distribution with summand being the sum of independent r.v.'s with cosh and 
sinh characteristic functions. 
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Finally, on the level of the LBvy measures N of Y(1), from the BDLP's in 
the property (e), we have the following: 

where 
dive (x) 7~ C O S ~  (zx/~)  

- 
dx 4 sinh2 (xx/2)' 

Explicitly, as in (4), on the level of the BDRV we have the factorization 
- - 

(8) 
t 

exp [- t tanh t]  = exp [I- t coth t] . exp 
lcoshtsinht-'1' 

Taking into account all the above and the property (e) we arrive at the 
identities: 

x cosh (nx/2)  1 (1 -costx)- . dx = t tanh t, 
R\W) 4 smh2 (742) 

IC 1 2t 1 (I -COS t ~ ) -  dx = 1-- 
R\IW 8 cosh2 (1~x14) sinh 2t' 

Furthermore, since $i corresponds to a compound Poisson distribution, the 
last equality implies that 

2t 
j cos tx - I d x = -  

R\IOI [i cosh"(rrx/4) sinh 2t' 

where we recover the known relation between (coshu)-2 being the probability 
density corresponding to the characteristic function at/(sinh at) and vice versa 
by the inversion formula; cf. Lkvy (1951) or Pitman and Yor (2003), Table 6. 

4. STOCHASTIC INTERPRETATION OF BDLP's FOR HYPERBOLIC FUNCTIONS 

The functions $e (t) and $g (t) were identified as characteristic functions of 
the background driving random variable Y(l) (in short: BDRV) for cosh and 
sinh SD r.v.'s in Jurek (1996), p. 182. [By the way, the question raised there has 
an affirmative answer. More precisely: (23) implies (24). To see this note that 
Dl A + C, where is a copy of Dl  and is independent of C. The notation 
here is from the paper in question.] 
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More recently, in Jurek (2001) it was noticed that the conditional charac- 
teristic function of the Lkvy stochastic area integral is a product of the sinh 
characteristic function and its BDLP $2. A similar factorization is in the 
Wenocur formula; see Wenocur (1986). Cf. also Yor (1992a), p. 19. 

In this section we give some "stochastic" interpretation of the characteris- 
tic functions $e(t) and + i ( t )  in terms of BesseI processes. 

Let us recall here some basic facts and notation from Pitman and Yor 
(1982) and Yor (1992a), (1997). Cf. also Revuz and Yor (1999). 

For the 6-dimensional Brownian motion (B,,  t 3 O), starting from a vector 
a, we define the process X, = IB,IZ, t 2 0, which in turn defines the probability 
distribution (law) Qz, x : = (aI2, on the canonical space 9 : = C([O, co); [0, a)) 
of non-negative functions defined on the half-line [0, co), equipped with the 
u-field 9 such that mappings {o -, X,(o)) are measurable. In fact, (X,, t 2 0) 
is the unique strong solution of a stochastic integral equation 

where (P,, t 2 0) is a 1-dimensional Brownian motion. 
The laws Q: satisfy the following convolution equation due to Shiga- 

Watanabe: 

(13) Q:*Q$ = Qc:"x: for all 6 ,  a', x, x' 2 0, 

where, for P and Q being two probabilities on (62, F), P*Q denotes the dis- 
tribution of (X,+ X, t 2 0), with (X,, t 2 0) and (x, t > 0) being two indepen- 
dent processes, respectively, P- and Q-distributed; cf. Revuz and Yor (1999), 
Chapter XI, Theorem 1.2. 

Similarly, let Q:,, be a 6-dimensional squared BesseI bridge of (X,, 0 < 
s $ I), given XI = y, viewed as a probability on C([O, 11, [0, co)). 

In the sequel we use integrals of functionals F with respect to measures 
Q over function spaces. To simplify our notation, as in Revuz and Yor (1999), 
we use Q(F) to denote such integrals. From Yor (1992a), Chapter 2, the Lkvy 
stochastic area formula is given in the form 

"idsX8)] = (A)"i2exp(-*(icothd-1) (14) ~ t + o [ e X P ( - ~  sinh R 2 

However, since Q:,, = Qt,O*~,O,, (cf. Yor (1992), Pitman and Yor (1982)), we 
have in fact 
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Thus we may conclude the following 

COROLLARY 2. The BDLP I: for the SD characteristic function 
&(t) = t/(sinht), is such that Y(1)  has the characteristic function 

05) +S ( t )  = exp (1 - t coth t )  = Q?+o (exp ( i t~(~;d~x.)))  EIDI,,~, 

where (y,, s 2 0) is a Brownian motion independent of the Bessel squared pro- 
cess X .  

[Here it may be necessary to enlarge the probability space to support in- 
dependent y and X.] 

In a similar way, in view of Yor (1992a), Chapter 2, we have 

~ i ( e x p ( - g [ a ) )  = cosh h 
( ~ ) " ' " x p ( - ~ A t a n h i  2 

so, in particular, 

Thus, as above, we conclude the following: 

COROLLARY 3. The BDLP Y, for the SD characteristic function $e(t)  = 

l/(cosht), is such that Y(1) has the characteristic function 

where a process (y,, s >, 0) is a Brownian motion independent of the Bessel 
squared process X.  

Let us return again to functions $e(t)  and $d(t), given in (6), but viewed 
this time as Laplace transforms in t2/2. From Yor (1997), p. 132, we have 

where ~ ' , d )  : = inf { t  : @*) = 1) denotes the hitting time of 1 by &dimensional 
Bessel process 9jd), t 2 0, starting from zero. Jeanblanc et al. (2002), Theo- 
rem 3, found that the corresponding BDLP's Y are of the form 

where (T',, h >, 0) is the inverse of the local time of 8:') at r; cf. Revuz and Yor 
(19991, Chapter VI, for all needed notation and definitions. From the above we 
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also recover the formulae 

~2 dl) 
E [exP (-1 d u l ( , h l  G I,)] = exp (- tanh 4, 

These as well provide another "stochastic view" of the analytic formulae for the 
BDRV of two SD hyperbolic characteristic functions in (4), i.e., l/cosh t and 
t/sinh t . 
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