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1. INTRODUCTION 

Let X and Y be absolutely continuous random variables (r.v.'s) with den- 
sities fx (x) and fy (y), let us denote by FX, ,  ( x ,  y), Fx (x), F y  (y)  their joint dis- 
tribution function (d.f.) and marginal d.f.'s. Furthermore we introduce the fol- 
lowing notation: 

= P ( X  < x, Y < y)-P(X < x ) P ( Y  < y) .  

The random variables X and Yare said to be positively quadrant dependent 
(PQD) if (cf. [4]) 

H X , y ( ~ , y ) 2 0  for all x , y ~ R .  

In [ 5 ]  the foIIowing inequality for PQD r.v.'s has been established: 

m m 

CovA (X, Y) = j 1 H x , ~  lx, Y )  dxdy 
- m  -OD 
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is the so-called Hoeffding covariance (if the usual product moment covariance 
exists, then it is equal to the Hoeffding covariance). Here and in the sequel 

is the essential supremum of f with respect to the Lebesgue measure j~ on R. 
The inequalities of the type (1.1) found the applications in kernel estima- 

tion of the density and distribution function and in studying convergence 
of empirical processes for positively dependent r.v.'s (cf. [9] and [5] where 
further references are given). Our goal is to show that the inequality (1.1) may 
be improved for certain classes of PQD r.v.'s. Let us recall some concepts of 
positive dependence for pairs of r.v.'s which will be considered in the sequel (cf, 
E ~ I  and ~ 7 1 ) .  

DEFINITION 1. 
r Y is stochastically increasing in X (in symbols, SI(Y I X)) if 

P ( Y  > y I X = x) is a nondecreasing function of x for all y. 
e X is stochastically increasing in Y (SI (XI  Y))  if P ( X  > x I Y = y) is a non- 

decreasing function of y for all x. 
e The r.v.'s X and Y with joint density f, , ,(x, y) are positively likelihood 

ratio dependent ( P L R ( X ,  Y)) if 

for all x, y, x', y' E R such that x < x' and y < y'; in this case the density is said 
to be totally positiue of order 2 (TP,) and it is said that the r.v.'s are TP, .  

@ The r.v.'s X and Y are associated (A) if 

for any coordinatewise nondecreasing functions f ,  g: R2 -+ R for which this 
covariance exists. 

Let us recall that the following implications between these concepts of 
dependence hold (cf. [ 7 ] ) :  

PROPOSITION 1. 
TP2*Si(X1Y)*A. 
TP,*SI(Y\X)*A. 
A PQD. 

Let us note that for continuous r.v.'s X and I: by Sklar's theorem (cf. [7]) ,  
there exists a unique function C (u, v) ,  u ,  v E I2 : = [0, 11' such that 

This function is called the copula of X and Y and it is a distribution function on 
I2 with uniform marginals. The inequalities of the form (1.1) may be obtained 
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by studying the related inequalities for the copula of X and E: At first let us 
observe that 

(1 -2) SUP HX,r (x, y) = max(C(u,  v)-uu). 
X.YER u,veI 

Furthermore, by the equality (2.12) of YLI (cf. [lo]) for PQD r.v.'s we have 

In view of (1.2) and (1.3) we shall obtain bounds for max,,,,,(C(u, v)-uv) 
in terms of l i ~ i ( C ( u ,  v)-uv)dudt~; therefore we need some additional prop  
erties of the copula under dependence conditions mentioned in Definition 1 
(cf. ~71). 

PROPOSITION 2. 
X, Y are PQD z j f  C (u, v) 2 uu for all u ,  v E 12. 

@ X ,  Y a r e  Si(YIX) ifffor any V E I ,  C(u,  U )  is a concaue function of u. 
@ X ,  Y a r e  SI(X1  Y) #for any U E I ,  C(u, v) is a concave function of v, 

From the next proposition it follows that the TP, property in some cases 
may be easily verified (cf. [6], p. 128). 

PROPOSITION 3. Assume that X and Y have a twice differentiable positive 
density fX,y(x ,  y). Then X ,  Y are TP2 zff 

2. THE MAIN RESULTS 

THEOREM 1. Let X and Y be absolutely continuous r.v.'s which are both 
SI ( X  I Y )  and SI (Y [ X).  Then 

Proof.  Let C (u,  v) be the copula of X and I.: Obviously, C (u,  v) -uv is 
nonnegative, continuous and C(u,  v)-uv = 0 on the boundary of 12. The case 
C(u ,  v)-uv = 0 is trivial, so that we may and do assume that for some 
( ~ 0 ,  V O ) E ( O ,  
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It is easy to see that, by Proposition 2, also C ( u ,  v)-uv is concave with respect 
to u for fixed v. Thus we have 

uu 
for u ~ ( 0 ,  u O ) ,  

(2.3) CCu, v0)-uvo 3 a(1-U)  
for U E ( U ~ ,  1 ) .  

Finally, by concavity of C ( u ,  0)-uu with respect to v for fixed u and by (2.3), 
we get 

auv 
(2.4) C (u, v) - uu 2 - 

uo vo 

a(1-u)(1-v) 
C(u ,  v)-uv 3 for U E ( U ~ ,  I ) ,  V E { V ~ ,  1 ) .  

( ~ - u o ) ( ~ - v o )  

Therefore, the inequalities (2.4) and elementary calculations yield 

Consequently, 
1 1  

max(C(u,  v)-uv) < 4 j j ( ~ ( u ,  v)-uv)dudv, 
u , v d  0 0 

and the conclusion follows from (1.2) and (1.3). H 

From the relation between T P ,  and SI described in Proposition 1 we get 
the following corollary: 

COROLLARY 1. I f  X and Y are TP,,  then (2.1) holds true. 

It is well known (cf. 121) that positively correlated Gaussian r.v.3 are TP, 
(this may be directly checked by Proposition 3); furthermore HX,y (x, y) = 

- HX,-, (x, - y), so that from Corollary 1 we easily derive the following in- 
equality for Gaussian vectors. 

THEOREM 2. Assume that X and Y have the joint normal distribution with 
the correlation coefJicient @ € ( - I ,  1). Then 

2 lel 
SUP IHx,Y ( x , Y ) I  G . 
X,YER 
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The inequality (2.1) cannot be impoved; let us consider the following 
example. 

EXAMPLE 1. Consider the r.v.'s X and Y with joint density with uniform 
marginals of the form f (x, y) = 1 + h(x) h (y) for (x, y) €IZ, where 

10 otherwise 

for some a E (0, 1). The distribution (equal to the copula) of X and Y takes the 
form F (x, y) = xy+ H ( x )  H(y) for (x, y) €I2, where H (x) = ji h (t) dt .  Then 

sup IF (x, y)--xyl = (max H ( x ) ) ~  = u2/4 
X.YER XEI 

and 

so that we have equality in (2.1). It is easy to see that, by Proposition 2, the 
r.v.'s are SI (Y  1x1 and SI (X I Y).  

Now let us introduce another family of PQD copulas. Let us denote by 
B a family of measurable functions h: I -, R such that: 

X 

[h(t)dt 2 0 for XEI. 
0 

It is easy to see that for any hl, hz E 98 the function f (x, y )  = 1 + hl (x) h2 ( y )  for 
(x, y) E iZ and f (x, y) = 0 otherwise is a density function with the PQD proper- 
ty and uniform marginals with copula 

X 

(2.9) F(x,y)=xy+H,(x)H2(y),  where Hi(x)=Ihi(t)dt,  i =  1,2. 
0 

Let us observe that Hi  (0) = Hi (1) = 0 and Hi is nonnegative and continuous 
on I so that it attains its maximum value at some point xi E (0, I), supxEI Hi (x) = 

Hi(xi) = ai, say. By properties (2.6H2.8) we get for i = 1, 2 
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and 

a i - x i + s  for s € [ x i - a i ,  xJ,  
Hi (s)  2 

ai+xi-s  for s € [ x i ,  xi+a i ] .  

Thus 

Therefore 

and 

Thus we have the following inequality: 

From the consideration presented above, (1.2) and (1.3) we get the following 
theorem: 

THEOREM 3. Let X and Y be absolutely continuous r.v.'s with copula of the 
form (2.9) for some h l ,  hz E 99. Then 

In order to see that the above inequality cannot be impoved let us con- 
sider the following example. 

EXAMPLE 2. Let 

for some a €  [0, i]. It is easily checked that in this case, for the random varia- 
bles X and Y with the joint distribution of the form (2.9), we have 

sup HX, (x, y) = C O V ~ / ~  (X , Y). 
~ , Y E R  
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3. MULTIVARIATE EXTENSIONS 

In this section we extend the results obtained in Section 2 to the multi- 
variate case. We need some concepts of positive dependence for families of 
random variables. The random variables XI, X2, . . . , X, are associated if 

for any coordinatewise nondecreasing functions f ,  g: Rn + R for which this 
covariance exists. The random variables XI, X2, . . . , X, are multivariate totally 
positive oforder 2 (MTP,)  (cf. [3]) if their joint density f satisfies the following 
inequality: 

f ( x v ~ ) J ' ( ~ ~ y ) B f ( x ) f ( ~ ) ,  

where 

and 

Let us note that M T P ,  r.v.'s are associated, and r.v.'s with joint strictly positive 
density which are TP2 in pairs are also MTP, .  In view of Proposition 3 it is 
often easier to check the MTP, property than association. 

Now let us prove a generalization of the Lebowitz inequality (cf. [S]). 

THEOREM 4. If the random variables XI, . . ., X, are associated and A,,  . . ., Ak 
are disjoint subsets of (1, 2, . . ., n}, then for any xi E R, i~ A1 u . . . u Ak, 

k 

6-11 0 < P(Xi 6 xi, i € A l u  ... uAk)-  n P(Xj d xj, j € A i )  
i = l  

In particular, 

Proof.  Let us put IAi = I ( X j  < x j ,  j~ Ai). Then the left-hand side of (3.1) 
may be expressed and bounded as follows: 

k - 1  i-1 k k - l  k 



where I,, = 1. Let us introduce the following notation: 

k 
Then S, - I , ,  , S + I  S - + I  S2 + nl=i + Ir j  are nonincreasing 
functions of XI, . . ., X,. Thus, by the properties of associated r.v.'s, we get 

Consequently, 

and the proof is completed. rn 

It  is easily seen that Theorem 4 and Corollary 1 yield the following result. 

COROLLARY 2. Let XI,  ..., X ,  be M T P z  with bounded densities. Then 

It  is known that Gaussian random vectors positively correlated are 
MTP,.  Therefore, by Theorems 2 and 4, we have the next corollary. 

COROLLARY 3. Assume that [XI, . . ., Xn] is a Gaussian vectoi and the r.v.'s 
Xi are positively correlated with correlation coeflcients Q~~ = Corr (Xi, Xj) .  Then 

4 CONCLUDING REMARKS 

It was mentioned in the Introduction that inequalities of type (1.1) are the 
main tool in estimation of the density and distribution function for associated 
sequences. It is easy to see that in many cases one can replace the assumption 
of association by a stronger MTP2 property and apply the inequality (2.1) 
instead of (1.1); this results in relaxing the conditions on the covariance struc- 
ture of the considered sequence. 
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As an example let us state the resuIt corresponding to the one presented 
in [I]. 

THEOREM 5 .  Let (XJ,, be a stationary sequence of MTPa random varia- 
bles with bounded densities and common distribution function F (x). Denote by 
F ,  ( x )  = n- ' I (Xi < x)  the empirical d i s~ ibut ion  function. If 

then 
n1j2 (F, (x) - F (#a (x) 4 N (0, 1) 

for all x such that 0 < F ( x )  c 1, where 

If, for some r > 0, 
m 

C Cov,(X,, Xj) = O ( n P r + l ) ,  
j=n+  1 

then there exists some constant C > 0 such that 

for every E > 0 and n B 1 .  

P r o  of. Let us observe that for fixed x the random variables I ( X ,  < x), 
I(Xz < x), .. . are associated. Then the inequality (2.1) may be applied and the 
proof runs as the proofs of Theorems 3.1 and 3.3 in [I], so we omit some 
obvious modifications. 

Remark  1. Finally, let us observe that from our main results one can 
also deduce some inequalities for negatively dependent random variables. If the 
random variables X and Yare negatively quadrant dependent (NQD), then 
-X and Y are PQD, so that a result similar to that stated in Theorem 3 also 
holds for a family of NQD random variables. The inequality (3.1) with the 
reverse sign also holds for negatively associated random variables. 
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