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1. INTRODUCTION 

Let {Xu, n 2 1) be a sequence of independent identically distributed ran- 
dom variables with a common distribution function (cdf) F and probability 
density function (pdf) J: Moreover, let XI:,, . . ., Xu:, denote the order statistics 
of a sample XI,  .. ., X,. 

For a fixed k 8 1 we define the k-th (upper) record times Uk(n) ,  n > 1, of 
the sequence (X,, n 2 I} as 

and the k-th (upper) record values as 

'ik) = X ~ k ( f 2 ) : ~ k ( r i ) + k -  I 2 

(cf. [5]). Note that for k = 1 we have Y,") = X ul(n):ul(n) : = Rn - the upper record 
vaIues of the sequence {X,, n 2 I), and that Y!k) = X I;k = Tnitl(X1, .., Xk). 

Similarly, for a fixed k 8 1 we define the k-th lower record times Lk(n), n 2 1, 
of the sequence {X,, n 2 1)  as 



28 M. Bien iek  and D. Szynal  

and the k-th lower record values as 

(cf. [Ill). Note that for k = 1 we have 2:') = XI:,,(,, : = Rk - the lower record 
values of the sequence (X,, n 3 11, and Zik) = XkZk = max(X,, . . ., X,). 

Stigler [13], by means of Dirichlet process, defined order statistics process, 
which may be considered as fractional order statistics, i.e. order statistics with 
non-integer index. A different approach to fractional order statistics is presen- 
ted by Rohatgi and Saleh in [12]. Using Newton's binomial series expansion 
they defined a class of distribution functions F,:, which may be interpreted as 
the distribution of the r-th order statistic with non-integral sample size oc > 0. 
Jones [8] gave an alternative construction of Stigler's uniform fractional order 
statistics. Namely, ordinary order statistics of a sample U,, . . ., U ,  from uni- 
form distribution are used to construct random variables with the same joint 
distribution as Stigler's order statistics. Some applications of fractional order 
statistics are given in [7]. 

In this paper we define the record-values process, which can be considered 
as a family of k-th record values Ck) with n replaced by a positive number t. In 
Section 2 we define the exponential record-values process by means of a gam- 
ma process. Next, we define the record-values process for an arbitrary dis- 
tribution function F by a quantile transformation of the exponential record- 
values process. Then in Section 3 we establish that the record-values process is 
a Markov process. In Sections 4 and 5 we give an alternative construction of 
exponential fractional record values. Similar results for the k-th lower record- 
values process are summarized in Section 6. In Section 7 we give examples of 
evaluation of moments of fractional record values from special distributions. 
Finally, in Section 8 we give an application of fractional record values to the 
problem of point and interval estimation of the values of the inverse to hazard 
function of F. 

2. RECORD-VALUES PROCESS 

We start with a brief review of the distribution theory of k-th record 
values. It is known (cf. [5]) that if F is an absolutefy continuous distribution 
function with pdf f, then the pdf of Y,'" is 

where H (x) : = H,  (x) = -log (1 - F (x)) is the hazard function of F. The joint 
pdf of the random vector (Yjk), . . ., Y,(kl) is 
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for - m < xl d . . . < xn < oo. Moreover, if 0 = jo < j1 < . . . < j,, then the vec- 
tor (FT), . . ., Yf)) has the joint pdf 

for -cc = x , < x l  < . . . < x , <  a, where h(x)=H1(x).  
In this note Wik),  EN, stands for the k-th record value from standard 

exponential distribution. It is known (see e.g. [2]) that for each  EN the 
sequence {Wik)', n 2 1) of k-th record values from exponential distribution has 
the following property: for all pn, n EN such that n > m, the random variables 
WLk) and WJk)- WAkl are independent (and this property characterizes the ex- 
ponential distribution). Moreover, we know that Wik' and Wdk)- WAk) are gam- 
ma r ( m ,  k) and r(n-m, k)  distributed, respectively, where T ( a ,  j3) denotes 
a gamma distribution with pdf 

The above facts motivate the following definition. 

DEFINITION 1. Fix  EN. Let W(k) = {W(k)(t), t 2 0) be a stochastic pro- 
cess such that: 

(i) W(k) (0) = 0 as., 
(ii) W(k) has independent increments, 
(iii) if t > s 2 0, then W(k) (t) - W(k) (s) is gamma T (t - s, k) distributed. 

Then (W(k)(t), t 2 0} is called the exponential k-th record-ualues process. The 
random variables wg)(t], t > 0, are said to be exponential fraction& k-th record 
values. 

Note that W(k) (t),  t > 0, is r (t, k) distributed. Moreover, if n E N  and 
0 = to < tl < ... < t,, then the joint pdf of the random vector 

Therefore, the joint pdf of the random vector W =  (W(k)(tl), . .., W(k)(t,)) is 

for O = x o < x ,  < . . . < x , <  co. 
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Also, (W(kl (1), . . ., W(k)(n))  (Wik), . . ., where means equaIity in 
distribution. More generally, if t, = j ,  E N and 1 < j1 < . . . < j,, then 

(W(k)  (j,), . . , , Wtk) ( j,)) (Wjk), . . . , 4:)). 
This can be stated by comparing (2.1) with (2.3) and (2.2) with (2.4) below. This 
explains the name for the process Wk), which has the same finite-dimensional 
marginal distributions as the sequence of k-th records from exponential dis- 
tribution. 

Let F be a distribution function and let G(x)  = 1 -e-X, x 3 0, be the 
standard exponential distribution function. 

DEFINITION 2. The stochastic process Y[k' = {Y(k)  ( t ) ,  t 2 0) ,  where 

is called the k-th record-values process for distribution function F. The random 
variables YIk)(t), t > 0, are said to be fiactionaI k-th record values from F .  

Suppose that F is absolutely continuous with the pdf$ Using the above 
definition one can easily show that ~ ( ~ ' ( t ) ,  t > 0, has the pdf 

kt 
fr(h)a)(x) = - ( ~ ( x ) ) " ' ( l  -F(x)~' f (x), X E R ,  

It) 

where H denotes the hazard function of F. Moreover, if 0 = to < t l  < . . . < t,, 
then the random vector Y :  = (Y(k) ( t , ) ,  . . ., Y(k)(tn))  has the joint pdf 

for -a =x0 < xl <... Qx,  < co, where h ( x ) = R ( x ) .  
Moreover, by (2.1) and (2.4) we have (Y(kl  ( 1 ) ,  . . . , Y @ )  (n)) (Yjk)y , . .? ck)), 

and using (2.2) and (2.4) we get ( Y ( k ) ( j l ) ,  . . ., Y(k)(jn))  A (E;.?), . . ., ?ik)) for 
1 < j ,  < . . . < j,,, ji E N. Therefore we can consider Y(k) ( t )  as l$k) with index 
n replaced with arbitrary positive t. 

3. THE MARgOV PROPERTY 

Suppose that F is absolutely continuous with pdf J: Using (2.4) one can 
show that the conditional pdf of Y(k)(t  + s), given Y(k)( t )  = x, t, s > 0, is 

for y 2 x. Moreover, the conditional pdf of Y(kl (t) ,  given Y(k)( t  +s )  = y ,  is 
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for x < y, where B ( t ,  s) denotes beta function determined by 

1 

B(t ,  s) = [ x t - l  ( I  -x)S1 dx,  t ,  s > 0.  
0 

Also, by (2.4), 

which gives the following result. 

PROPOSITION 1. ( Y ( k ) ( t ) ,  t 2 0) is u Murkov process with the transition 
probabilities 

for s > 0, y 2 x, where 

denotes incomplete gamma function. 

Note that if t =  EN and s = 1, the equation (3.1) reduces to 

for y 2 x, which agrees with the classical result (cf. [2], p. 97). 

4. ALTERNATIVE CONSTRUCTION 

In this section we show how to construct W(k)(t) using exponential k-th 
record values { W$k), n 2 1). For t 2 0 we write { t )  = t- [ t ] ,  where [ t]  denotes 
the floor function and ( t j  is called the fractional part of t. 

where B is a beta B ({t) ,  1 - i t ) )  distributed random variable, independent of the 
sequence {Wjh), n 2 1). 

Remark  1. We put B = 0 as., if { t }  = 0. 

Proof.  If t = 0, 1 ,  2 ,  . . ., then the right-hand side of (4.1) is simply K(k), 
which is r(t, k) distributed. Now for t ~ ( 0 ,  m)\N let us denote the right-hand 
side of (4.1) by T.t;(k). If t ~ ( 1 ,  m)\N and n = [t] ,  then the random vector 
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(w,"', w(kl, W.(:',) has the pdf 

S W ~ [ O , W ~ ) ,  WI,~] I (16, V ,  W )  = f ~ ~ k ~ ~ w ~ k ) , w ~ k ~  (!, (U I 0, W) fypik),wLkl (u,  W) 

for 0 < u < v < w < m. Therefore 

k n - t  1 U W 

(v-~l)(~}-l duJ  ( w - ~ ) - ( ' ~ e - ~ ~ d w  
fwik)(v) = I- (n) B ({t) , 1 - {t}) o IJ 

k"+ 1 
- - B(n, (t}) u"+{?-' '{I -{t]le-ku 

r (4 B 3 1 - it}) kl -it1 

which means that Wk1 - r(t, k). Similar evaluations lead to (4.1) for t ~ ( 0 ,  1). 

Remark  2. Other methods of the construction of gamma distributions 
and gamma processes can be found for instance in [4] and [6]. References [3] 
and 191 are also recommended. 

5. MULTIDIMENSIONAL CASE 

In the previous section we show how to construct the single random 
variable W(k) (t), t > 0, from the exponential k-th record values. Now we show 
how to construct the random vector (W(k)(tl), W(k)(tZ), . . ., W(k)(t,)), where 
0 < t l  < . . . < tm < a. We start with the definition of m-dimensional general- 
ized arc-sine distribution. 

DEFINITION 3. The random variables B1, . . ., Bm are said to have m-dimen- 
sional generalized arc-sine distribution with parameters a l ,  . . ., 4, > 0 if 
their joint pdf is of the form 

for O = u o < u l  <... < U ~ < U , , , + ~  = 1. 

Remark  3. Note that for m = 1 we obtain ordinary one-dimensional 
beta B (a,, a*) distribution. 

THEOREM 2. Let n = to < tl < ... < t, < tm+l = n+l .  Define 

where (B,, . . ., B,) is a random vector with m-dimensional generalized arc-sine 
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distribution with parameters at = ti- ti 1 6 i i rn + 1, independent of the se- 
quence (W,('), n 2 1). Then 

W a ~ ( k j  (t ) (Wlk', *, wm f - ( 1 , . . ., Wtk'(tm)). 

P r o  of. The joint pdf of W, = (K,k), w:), . . . , yjnk), Nk! l )  is of the form 

(5.1) f ~ ~ I ~ o , . . . ~ ~ ~ + l >  
- -fwl;),...,w:~llw$kl,w;kj ( ~ 1 ,  . . ., urn l wo 3 urn+ 1 )  fwLk),wLk2 ( ~ 0  , urn+ 1) 

for 0 < uo < ul < . . . < u, < u,, , < a. Now, by (2.21, we get 
kll+ 1 

(5.2) fwi*),wlfj (UO urn+ I) = - ~ ~ ~ e x p ( - k e s , + , ) ,  0 < uo < urn+l. r (4 
Moreover, the conditional pdf of mik), .. ., w:), given W,'k' = u0, WEl = umC1, 
is the same as the joint pdf of the vector B' = (u, , , - uo) B + uo, where B = 

( B  . . . , B,) and u, = (u, , . . . , uO) E Rm. Therefore 

for u0 c ul < . . . < td, < Combining (5.1), (5.2) and (5.3) we obtain 

which is the same as (2.3) with n = m. H 

Theorem 2 allows us to construct (w'~' ( t l ) ,  . . ., W(k)(tm)) in the case when 
[t,] = [t,]. Now we consider the general case. Let i = tiPo < ti,l < . . . < ti,mi < 
ti,mi + 3 i + I ,  i = 0, 1, . . ., n, where n = [t,] + 1 and mi denotes the number of 
W(k)(t) in Wwith i < t < i f  1. Our aim is to construct the vector of the k-th 
fractional record values 

W =  (W(k)(ti,j),  1 < j < mi, 0 < i < n- 1) 

using the sequence {W,"), n 2 1). This is done in the following theorem. 

THEOREM 3. Under the above assumptions we define 

Wikj = (1 - B(!)) J 1 + B(j) J w(f)l, 1 < j < mi, 0 < i < n - 1, 

where Bco = (B(i), , . ., Bg:), i = 0 ,  1, . . ., n - 1, is a random vector with mi- 
dimensional generalized arc-sine distribution with parameters ayl = ti,j - tiJ- l ,  

3 - PAMS 24.1 
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j = 0, 1, . . ., mi+ 1. Suppose that B('), B('), . . ., B("-') and (Wik) ,  n 3 1) are mu- 
tually independent. Then 

w L  (wr:, . . ., %I,, w::, .. ., w"' tiprnL, .. - 7  @?l,l, ., 7 ,  wn-l,m,-l). Ik) 

Proof.  This easily follows from Theorem 2 and the independence of in- 
crements of k-th record values (Wik), n 3 1)- 

6. LOWER RECORD-VALUES PROCESS 

We start with a brief review of the distribution theory of k-th lower record 
values. It is known (cf. [ I l l )  that if F is an absolutely continuous distribution 
function with pdf f, then the pdf of Zkk) is 

k" 
f ~ ~ k )  ( X I  = -(B ( n -  I)! (x))"-I ( F ( x ) r i f  ( x ) ,  

where H ( x )  : = a, (x) = -log F (x). The random vector (Zjk), . . ., ZLk)) has the 
joint pdf 

for XI 2 . . . 2 x,. Moreover, if 0 = jo < jl < . . . < j,, then the vector (Zjt), . . ., Zg)) 
has the joint pdf 

for co =x,, > X I  2 ... 2 xn > -a, where k(x) = B ' ( x ) .  
Let Ek),  EN, stand for the k-th record value from standard negative 

exponential distribution with the cdf G* (x )  = ex, x < 0. Using (6.1) and (6.3) one 
can show that for each  EN the sequence (Gk), n 2 1) of k-th lower record 
values from negative exponential distribution has the following property: for 
all my n E N such that n > rn the random variables Vik) and Gk) - VAkl are in- 
dependent. Moreover, vAk) and K(')- Vik) are negative gamma NT(m, k) and 
NT (n -m, k) distributed, respectively, where NT (a, P)  denotes a negative gam- 
ma distribution with pdf 

The above facts motivate the following definition. 

DEFINITION 4. Fix  EN. Let V(k) = ( V ( k ) ( t ) ,  t 2 0 )  be a stochastic process 
such that: 

(i) Vck) (0) = 0 as., 
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(ii) V ( k )  has independent increments, 
(iii) if t > s 2 0, then Vk) (t) - V(kl  (s)  is negative gamma N r  ( t  - s, k )  dis- 

tributed. 
Then (V(k) ( t ) ,  t 2 0) is called the negative exponential k-th lower record- 

values process. The random variables V(k)f t ) ,  t > 0, are said to be negative 
exponential fractional k-th bwer record values. 

Note that V k ) ( t ) ,  t > 0 ,  is Nr ( t ,  k )  distributed. Moreover, if n E N and 
O = t , < t , <  ... <t,, and 

then the joint pdf of f is 

Therefore, the joint pdf of Y = (Vk) (t i) ,  V(') ( t2 ) ,  . . ,, Vk) (tn)) is of the form 

for 0 = xo 2 x l  2- ... 2 x, > -KO.  

Note that by (6.2) and (6.4) we have ( V t k ) ( l ) ,  . .., V(k)(n) )  A (Vfk) ,  . .., b(k)) 
and, more generally, if t,,, = j, E N and 1 $ j1 < . . . < j,, then using (6.3) and 
(6.4) we get 

This explains the name for the process v'~),  which has the same finite-dimen- 
sional marginal distributions as the sequence of k-th lower record from nega- 
tive exponential distribution. 

Let F be a distribution function and let G* ( x )  = ex, x < 0, be the standard 
negative exponential distribution function. 

DEFINITION 5. The stochastic process Zk) = (Z(k) ( t ) ,  t 2 O), where 

Ztk )  ( t )  = F - (G* (Vk) (t))) , t 2 0, 

is called the k-th lower record-values process for distribution function F. The 
random variables Zg)(t), t > 0, are said to befractional k-th lower record vaIues 
from P. 

Suppose that F is absoluteIy continuous with the pdf J: Using the above 
definition one can easily show that Z(k)( t) ,  t > 0, has the pdf 
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Moreover, if 0 = to < t ,  < . . . < t,, then the joint pdf of the random vector 
Z : = (Z(k)  ( t l ) ,  . . . , Z(') (tnj) is 

for m = x o > x l  2 ... ax, > -a. 
Note that by (6.2) and (6.5) we get (Z(k ) ( l ) ,  . . ., Z(k)(n)) (Zik', . . ., ZLk)), 

and, more generally, for 1 < j1 < . . . < j,, ji E N ,  b y  (6.3) and (6.5) we have 

Therefore we can consider Z(k)(t) as Zik) with n replaced with arbitrary positive t. 
Now the following results hold true. 
PROPOSITION 2. (Z(k)( t ) ,  t 2 0) is a Markov process with the transition 

probabilities 

1 
P (Zlk' ( t  + s) < y I Z(k' ( t )  = X) = 1 - - 

r (4 r (Y; k(R(yl-R(x))) 

for s>O,  y ~ x .  

THEOREM 4. For t 2 0 

Pk1 (t)  A (1 - 3) I#) + 3 T($i 1 , 

where B is a beta 3 ( { t )  , 1 - {t)) distributed random variable, independent of the 
sequence {qk), n 2 1). 

THEOREM 5. Let n = to < t l  < ... < t ,  < t,,l = n f l .  Define 

where (B1, . . ., B,) is a random vector with m-dimensional generalized arc-sine 
distribution with parameters ai = ti - ti- ,, 1 < i < m + 1, independent of the se- 
quence (V,(k), n 2 1). Then 

(kl  d ~ ( k )  t ) K k  - , K 1 - ( ( 1 , . . a ,  Vtk)  (tm)). 

Let i = ti,o < ti,l < ... < ti,mi < i+1 ,  for i = 0, I ,  ... , n, and 

V =  (V(k)(t isj) ,  I $ j <  mi, O < i <  n-1). 

THEOREM 6. Under the above assumptions we dejne 

~ ( k ?  ,,I = (1 -BY))  ~ ( k )  + ~ y ) ~ ,  l $ j < q ,  O < i < n - 1 ,  

where B(') = (BY',  . . . , @;:), i = 0, 1 ,  . . ., n - 1, is a random vector with mi-dimen- 
sional generalized arc-sine distribution with parameters a?) = ti, - ti, - 
j = 0 ,  1, . .. , mi+ 1. Suppose that B(O), B('), ... , B("-l) and {VJk),  n 2 1 )  are mu- 
tually independent. Then 

v A (Kt), , . . . , P"" to.mo 3 , . . . , K\'fl,, . . . , ~ ( k )  t,,-l,l~ - - . Y  v(k) t , , - ~ , ~ ~ - , ) .  
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The proofs of Proposition 2 and Theorems 4, 5 and 6 are similar to the 
proofs of Proposition 1 and Theorems 1, 2 and 3, respectively, with obvious 
modifications. 

7. MOMENTS OF FRACTIONAL RECORD VALUES 

In this section we present some examples of evaluations of moments of 
fractional record values. 

EXAMPLE 1. Uniform distribution. 
Let 

1 0, x G 0 ,  

F ( x ) =  x, x ~ ( O , l ) ,  

1 ,  xB1. 

Then for x ~ ( 0 ,  1) we have f (x) = 1, H ( x )  = -log(l-x) and h ( x )  = (1-XI-'. 
Therefore the pdf of Y(k)(t), t > 0, is 

and for n E N  

Using Newton's binomial formula we get 

For instance, 

and 

Therefore 

kt ( k  + - k2* (k + 2)f 
Var ~ ( ~ ) ( t )  = 

( k  + 1)" (k + 2)' 
. 
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Similarly, for 0 < t < s 

cov ( ~ ( ~ 1  ( t ) ,  Y ( ~ )  (s)) = (k: - IY [(E]-(&y], 
EXAMPLE 2. Weibull distribution. 
Let 

1-exp(-Ax") x x 0 ,  
F (x )  = 

x < o .  

Then f ( x )  = u A x " - ~  e x p  ( -Axu) ,  H (x) = Axa and h(x)  = a;lxa-l .  Therefore 

which for f l  > 0  gives 

For instance, 

var Fk' (t) = 

I Moreover, for 0 < t < s 

Cov (Y'k' ( t ) ,  Ylk' (s)) = 
r ( S  + 2 / 4  i- (S  + I / E )  

r ( s  + l / a )  - r (s) 

EXAMPLE 3. Single-parameter Pareto distribution. 
Consider the single-parameter Pareto distribution function 

x <  1, 
F ( x )  = 

1 - l / x a ,  x 2 1 ,  

where a > 0. Then for x  2 1 we have f ( x )  = a/xa+' ,  H (x) = ollogx and 
h(x)  = x / x .  Therefore the pdf of Y ( k l ( t )  is 

(ka)' (log xy-  
f ~ ( k ) ( * )  (4 = - r ( t )  xka+l ' 

x 2  1 .  

Therefore for P > 0 

provided that B < kol. If a > 2/k, this easily gives 
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Similarly, for 0 < t < s 

COV (Y'k' (t), yIk) (3)) = (kak: - [(g) - (&]Im 
EXAMPLE 4. Two-parameter Pareto distribution (Lomax distribution). 
For the two-parameter Pareto distribution 

we have 

Therefore, if ku > 2, then 

Also 

Cov(~'"](t), Y ( ~ )  (s)) = A2 (kak: - I ] [ ( = ) ' - ( & ) ] .  

EXAMPLE 5. Generalized Pareto distribution. 
For the generalized Pareto distribution with pdf 

otherwise, 

we have for  EN, 01 # 0, 

where 

n < k /a  if 01 > 0, 

n e N  if a < 0 .  

For instance, if 201 < k, then 
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Moreover, for 0 c t c s 

EXAMPLE 6. Inverse exponential distribution. 
Let 

e-'Ix, x > 0, 
F (x) = 

{o, x < 0. 

Then for x > 0 we have f (x) = and B(x) = x-l ,  and E(x )  = x - ~ .  
Therefore 

kf e -  klx 

fi(.)(t) tx) = - - r ( t )  xt+l  ' x > 0,  

and for a > 0 

provided that t > a. For instance, for t > 1 

k 
EZtk' ( t )  = - 

t -  1' 

and for t > 2 

E (Zk' (t))' = 
k2 

(t- l)(t-2)' 

which implies 

Var 2") (t) = 
k2 

t > 2 .  
(t- 1)2(t-2)' 

E~.UWLE 7. Gumbel distribution. 
Let 

F(x)=exp(-e-"), XER. 

First we consider the case y = 0 which corresponds to Gurnbel distribution. Then 

kt 
f~(k)(t)(~) = -exp(-ke-x) e-fx, r (t) XER,  

and for n E N  
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where Tb', j 2 1, denotes the j-th derivative of gamma function and Po) = r. 
Therefore 

r' EZ'" ( t )  = log k - - 
r (tl 

and 

1 
E (2" (t))' = - {(log k)' T ( I )  - 2T' ( t )  log k + P' ( t ) )  

I- It) 

This gives 

Var Ztk) ( t )  = 
r (t) r1 (t] - (F (t)12 

(r (t)I2 
I 

which is positive since r is log-convex function on (0, m). 
Moreover, for 0 < t < s  

P m m 

E Z ' ~ ]  (t)  Zk) (s) = j yexp( -ke-3  e-Y j xe-'"(e-Y- e-*)"-'-l dxdy 
r ( t ) r ( ~ - t l  Y 

m 

+y  1 e-'"(l -e-?-*- l  dz) d y .  
0 

We have 
m r ( t )  r (s-  t )  
j' e - t z ( l - e - z ) . - t - l d z  = B ( t ,  s - t )  = 
0 r (4 

and 

m 

j e - ' Z ( l - e - T - t - l d z  = B ( t ,  s - t )  
0 

Hence 

E z w  (t) ztk) (s)  = E (z" ( s ) ) ~  + (2 - g) Ez(k) ( S ]  , 

and 

Cov ( ~ ' ~ 1  ( t ) ,  Z(k)  (s))  = Var ZIk) (s)  = 
r (s) rff (s) - (rf ( S ) l 2  

(r (4)' 
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EXAMPLE 8. Generalized extreme value distributions. 
Let 

F ( x ) =  exp - ( I - ~ X ) ' / ~ ) ,  x > l / y ,  ~ € 0 ,  { 
lexp(-e-"), X E R ,  y = 0. 

The case y = 0 corresponds to Gumbel distribution which has been con- 
sidered in Example 7. For y # 0 we obtain 

and for  EN 

Therefore for t > max ( 0 ,  - y) 

and for t  > max ( 0 ,  - 2y) 

2 1 Z T ( t + y ) +  T ( t + 2 Y )  E (Z") ( t ) )  = - - 
y2 y2  k g  r ( t )  y2 k2y r (t)' 

Hence 

Var ztk) (t) = 
r f t + z ~ ) r ( t ) - r 2 ( ~ + t )  

y2  k2y r2 ( t )  

Moreover (cf. [ I ] ) ,  for 0 < t  < s 

Cov (zlk' (t) ,  z(~) (s))  = 

8. AN APPLICATION 

Let (Y'k)(t) ,  t  2 0) be the k-th record-values process for an absolutely 
continuous distribution function P with pdf f and the hazard function H ( x )  = 

-log ( 1  - F ( x ) ) .  Let $, stand for the inverse function of H ,  i.e. 

As an application of fractional record values we consider the problem of es- 
timation of $ F ( ~ )  for u > 0, which is equivalent to the estimation of x,, 
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the p-th quantile of F,  by putting u = -log (I - p),  p E (0, i). The problem of the 
estimation of x, by frqctional order statistics is considered in 171 and [10]. 

Using Taylor's formula to $F in a neighbourhood of u we get 

Using Yfk)  It) $F (Wk' (t)), putting x = W(k'jt) and taking expectations, we obtain 

(8.1) E : Y ( ~ )  (t) = $F (u) + $; (u) E (WCk1 ( t )  - U) 

+ ! ~ , & ( u ) ~ ( ~ ( ~ ) ( t ) - u ) ~ + + f  $ ~ ( u )  E ( w ( ~ ) ( ~ ) - u ) ~ +  ... 
Taking into account that Wfk)(ku)  is r ( k u ,  k )  distributed, we see that if t = ku, 

2 
then E (W(k )  ( t )  - u) = 0 and E (Wg) ( t )  -ti) = u/k. Putting these quantities into 
(8.1) we get 

E Y(k) (ku) = $'F (u) + - U'"")+~$F. (~ )E(W(k1(k~) -~ )3  2k +. . 

Therefore Y(k)(ku)  can be considered as an estimator of the value $,(u). 

DEFINITION 6. The estimator GF(u) of the inverse to hazard function at the 
point er based on the k-th fractional record values is defined as 

t j p  (u) = YIk) (ku), u > 0. 

Note that using the fractional record values instead of the ordinary record 
values allows us to reduce the bias of $=(u). 

We consider also the estimator of $,(u) based on the sequence 
{Zk), n g 1) of k-th record values from F. 

DEFINITION 7. The estimator qF(u)  of t,hF (u) based on the k-th record values 
from F is defined as 

where [x] and {x) stand for the integral and fractional part of a real number x. 

Note that the values of I,& (u) may be obtained from empirical data, on the 
contrary to @,(u). The values of GF(tr) can be approximated by the values of 
qF(u),  as stated in the following theorem. 

THEOREM 7. Let E = {ku). Then 

P r o of. Let p$ = E (WCk) ( t )  - t/k)i, j E N ,  stand for the j-th central moment 
of W ( k )  ( t )  and let c = t/k- u. Then for j > 2 
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which implies for r 2 2 

Moreover, by (8.1) the left-hand side of (8.2) may be written as 

(8.3) $ F ( ~ ) + $ ( p t ~ ) ~ M 1 + ~ $ ~ ( ~ ) ~ 2 + 2 $ ~ ( u ) ~ 3 + . . . ,  

where 

M ,  = (1 - e )  E ( Y 2 , - u ~ + s E ( ~ ~ , + ,  -~j ' -E(W(~'( t ) -u)~ 

Therefore 

Putting these expressions into (8.3) we get (8.2). 

Now we show how to construct the confidence intervals for $,(ti) using 
GF(u)  and gF (u). As ~ ( ~ 1  (t) - r (t, k), we obtain 

where r ( ~ ;  x) is incomplete gamma function given by (3.2). Therefore, for 
O < t < s  

(8.4) 
r ( t ;ku)  r ( s ;  ku) 

P (Y'" (t) < $, (u) < Y"' (s)) = - - 
r (4 r (4 - 

If t, s E N and t = n, s  = n + r ,  then (8.4) takes the form 
n + r - 1  (ku)' P(Zk) < ~ F ( u )  < Y,[?,) = e-k" C -. 
i = n  i! 

Therefore, to construct the 100(1 -a)% confidence interval of the form 

(Y'k' f t) , Y(k) (s)), 

we choose as t and s the solutions to the equations 

r (t; ku) -- 01 
(8.5) - r 0) 

(8.6) 
r(s;ku) - ol - - 

r(s)  2' 
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Mternatively, t and s can be approximated as follows: 

where r;; (pj, p E (0, I), denotes the quantile of order p of gamma r (a, b)  
distribution. 

Note that in general the values given in (8.7) and (8.8) are easier to h d .  
However, for the values of t and s determined by (8.5) and (8.6) the coverage 
probability is exactly 1 -a, while for t and s determined by (8.7) and (8.8) the 
coverage probability is only approximateIy equal to 1 -a. 

To summarize the above consideration, we define the exact lO(1 -u)% 
confidence interval for $F(~) as 

where t and s are given by (8.5) and (8.6), respectively. But in practice we 
propose using the approximate 100(1- a)% confidence interval for $F (u) de- 
fined by 

where t and s are given by (8.5) and (8.6), respectively. 

Acknowledgements. The authors are very grateful to the referee for point- 
ing out some interesting references and comments. 

REFERENCES 

[I] M. Ahsanullah,  Some inferences of the generalized extreme value distribution based on record 
values, J .  Math. Sci. 78 (1996), pp. 2-10. 

[2] B. C. Arnold, N. Balakr ishnan and H. N. Nagara ja ,  Records, Wiley, New York 1998. 
[3] E. Bertoin, U v y  Processes, Cambridge University Press, Cambridge 1996. 
[4] L. Bondenson,  On simulationfrom infiitely divisible distributions, Adv. in Appl. Probab. 14 

(1982), pp. 855-869. 
[5] W. Dziubdziela and B. K o p  oci6s ki, Limiting properties of the k-th record values, Zastos. 

Mat. 15 (1976), pp. 187-190. 
[6] T. S. Fergusson and M. J. Klass, A representation of independent increment processes 

without Gaussian component, Ann. Math. Statist. 43 (1972), pp. 1634-1643. 
[7] A. D. Hu t  son, Calculating laonparametric confidence intervals for quantiles using fractional 

order statistics, J .  Appl. Statist. 26 (1999), pp. 343-353. 
[8] M. C. Jones, Onfractional un$orm order statistics, Statist. Probab. Lett. 58 (2002), pp. 93-96. 
[9] J. F. C. Kingman, Random discrete distributions, J .  Roy. Statist. Soc. Ser. B 37 (1975), 

pp. 1-15. 



46 M. Bieniek and D. Szynal  

[lo] N. Papadatos, Intermediate order statistics with opplicntions to nonparurnetric estimation, 
Statist. Probab. Lett. 22 (1995), pp. 231-238. 

[ll] P. Pawlas  and D. Sz y nal, Relations for single and product moments of k-th record values 
from exponential and Gumbel distributions, J .  Appl. Statist. Sci. 7 (1998), pp. 53-61. 

[12] V. K. Rohatgi  and A. K. Saleh, A class of distributions connected to order statistics with 
nonintegml sample size, Comm. Statist. Theory Methods 17 (19881, pp. 200552012. 

[I31 S. M. StigIer, Fractional order statistics, with applictations, J .  Amer. Statist. Assoc. 72 (19771, 
pp. 544-550. 

Institute of Mathematics 
Maria Curie-Skbdowska University 
pl. Marii Curie-Skkodowskiej 1 
20-03 1 Lublin, Poland 
E-mail: mbieniek@hektor.umcs.lublin.pl 

Received on 15.5.2003; 
revised version on 27.12.2003 


