ON THE FRACTIONAL RECORD VALUES

BY
MARIUSZ BIENIEK AND DOMINIK SZYNAL (LUBLIN)

Abstract. We define the record-values process which may be considered as the collection of record values with non-integer or fractional indices. The alternative construction from the sample as well as the basic properties of the defined process are shown.

2000 Mathematics Subject Classification: 62G30, 60G51, 60 J 25.
Key words and phrases: Record values, Stigler's order statistics, gamma process, Markov property.

1. INTRODUCTION

Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent identically distributed random variables with a common distribution function (cdf) F and probability density function (pdf) f. Moreover, let $X_{1: n}, \ldots, X_{n: n}$ denote the order statistics of a sample X_{1}, \ldots, X_{n}.

For a fixed $k \geqslant 1$ we define the k-th (upper) record times $U_{k}(n), n \geqslant 1$, of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ as

$$
\begin{aligned}
U_{k}(1) & =1 \\
U_{k}(n+1) & =\min \left\{j>U_{k}(n): X_{j: j+k-1}>X_{U_{k}(n): U_{k}(n)+k-1}\right\}, \quad n \geqslant 1,
\end{aligned}
$$

and the k-th (upper) record values as

$$
Y_{n}^{(k)}=X_{U_{k}(n): U_{k}(n)+k-1} \quad \text { for } n \geqslant 1
$$

(cf. [5]). Note that for $k=1$ we have $Y_{n}^{(1)}=X_{U_{1}(n): U_{1}(n)}:=R_{n}$ - the upper record values of the sequence $\left\{X_{n}, n \geqslant 1\right\}$, and that $Y_{1}^{(k)}=X_{1: k}=\min \left(X_{1}, \ldots, X_{k}\right)$.

Similarly, for a fixed $k \geqslant 1$ we define the k-th lower record times $L_{k}(n), n \geqslant 1$, of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ as

$$
\begin{aligned}
L_{k}(1) & =1 \\
L_{k}(n+1) & =\min \left\{j>L_{k}(n): X_{k: j+k-1}<X_{k: L_{k}(n)+k-1}\right\}, \quad n \geqslant 1,
\end{aligned}
$$

and the k-th lower record values as

$$
Z_{n}^{(k)}=X_{k: L_{k}(n)+k-1} \quad \text { for } n \geqslant 1
$$

(cf. [11]). Note that for $k=1$ we have $Z_{n}^{(1)}=X_{1: L_{1}(n)}:=R_{n}^{\prime}-$ the lower record values of the sequence $\left\{X_{n}, n \geqslant 1\right\}$, and $Z_{1}^{(k)}=X_{k: k}=\max \left(X_{1}, \ldots, X_{k}\right)$.

Stigler [13], by means of Dirichlet process, defined order statistics process, which may be considered as fractional order statistics, i.e. order statistics with non-integer index. A different approach to fractional order statistics is presented by Rohatgi and Saleh in [12]. Using Newton's binomial series expansion they defined a class of distribution functions $F_{r: \alpha}$ which may be interpreted as the distribution of the r-th order statistic with non-integral sample size $\alpha>0$. Jones [8] gave an alternative construction of Stigler's uniform fractional order statistics. Namely, ordinary order statistics of a sample U_{1}, \ldots, U_{n} from uniform distribution are used to construct random variables with the same joint distribution as Stigler's order statistics. Some applications of fractional order statistics are given in [7].

In this paper we define the record-values process, which can be considered as a family of k-th record values $Y_{n}^{(k)}$ with n replaced by a positive number t. In Section 2 we define the exponential record-values process by means of a gamma process. Next, we define the record-values process for an arbitrary distribution function F by a quantile transformation of the exponential recordvalues process. Then in Section 3 we establish that the record-values process is a Markov process. In Sections 4 and 5 we give an alternative construction of exponential fractional record values. Similar results for the k-th lower recordvalues process are summarized in Section 6. In Section 7 we give examples of evaluation of moments of fractional record values from special distributions. Finally, in Section 8 we give an application of fractional record values to the problem of point and interval estimation of the values of the inverse to hazard function of F.

2. RECORD-VALUES PROCESS

We start with a brief review of the distribution theory of k-th record values. It is known (cf. [5]) that if F is an absolutely continuous distribution function with pdf f, then the pdf of $Y_{n}^{(k)}$ is

$$
f_{Y_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!}(H(x))^{n-1}(1-F(x))^{k-1} f(x), \quad x \in \boldsymbol{R},
$$

where $H(x):=H_{F}(x)=-\log (1-F(x))$ is the hazard function of F. The joint pdf of the random vector $\left(Y_{1}^{(k)}, \ldots, Y_{n}^{(k)}\right)$ is

$$
\begin{equation*}
f_{Y_{1}^{(k)}, \ldots, Y_{n}^{(k)}}\left(x_{1}, \ldots, x_{n}\right)=k^{n} \prod_{i=1}^{n-1} \frac{f\left(x_{i}\right)}{1-F\left(x_{i}\right)}\left(1-F\left(x_{n}\right)\right)^{k-1} f\left(x_{n}\right) \tag{2.1}
\end{equation*}
$$

for $-\infty<x_{1} \leqslant \ldots \leqslant x_{n}<\infty$. Moreover, if $0=j_{0}<j_{1}<\ldots<j_{n}$, then the vector $\left(Y_{j_{1}}^{(k)}, \ldots, Y_{j_{n}}^{(k)}\right)$ has the joint pdf

$$
\begin{align*}
& f_{Y_{j_{1}}^{(k)}, \ldots, Y_{j_{n}}^{(k)}}^{(k)}\left(x_{1}, \ldots, x_{n}\right) \tag{2.2}\\
& \\
& =k^{j_{n}} \prod_{i=1}^{n} \frac{\left(H\left(x_{i}\right)-H\left(x_{i-1}\right)\right)^{j_{i}-j_{i-1}-1} h\left(x_{i}\right)}{\left(j_{i}-j_{i-1}-1\right)!}\left(1-F\left(x_{n}\right)\right)^{k}
\end{align*}
$$

for $-\infty=x_{0} \leqslant x_{1} \leqslant \ldots \leqslant x_{n}<\infty$, where $h(x)=H^{\prime}(x)$.
In this note $W_{n}^{(k)}, n \in N$, stands for the k-th record value from standard exponential distribution. It is known (see e.g. [2]) that for each $k \in N$ the sequence $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$ of k-th record values from exponential distribution has the following property: for all $m, n \in N$ such that $n>m$, the random variables $W_{m}^{(k)}$ and $W_{n}^{(k)}-W_{m}^{(k)}$ are independent (and this property characterizes the exponential distribution). Moreover, we know that $W_{m}^{(k)}$ and $W_{n}^{(k)}-W_{m}^{(k)}$ are gamma $\Gamma(m, k)$ and $\Gamma(n-m, k)$ distributed, respectively, where $\Gamma(\alpha, \beta)$ denotes a gamma distribution with pdf

$$
f_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x>0, \alpha, \beta>0
$$

The above facts motivate the following definition.
Definition 1. Fix $k \in N$. Let $W^{(k)}=\left\{W^{(k)}(t), t \geqslant 0\right\}$ be a stochastic process such that:
(i) $W^{(k)}(0)=0$ a.s.,
(ii) $W^{(k)}$ has independent increments,
(iii) if $t>s \geqslant 0$, then $W^{(k)}(t)-W^{(k)}(s)$ is gamma $\Gamma(t-s, k)$ distributed. Then $\left\{W^{(k)}(t), t \geqslant 0\right\}$ is called the exponential k-th record-values process. The random variables $W^{(k)}(t), t>0$, are said to be exponential fractional k-th record values.

Note that $W^{(k)}(t), t>0$, is $\Gamma(t, k)$ distributed. Moreover, if $n \in N$ and $0=t_{0}<t_{1}<\ldots<t_{n}$, then the joint pdf of the random vector

$$
\widehat{W}=\left(W^{(k)}\left(t_{1}\right), W^{(k)}\left(t_{2}\right)-W^{(k)}\left(t_{1}\right), \ldots, W^{(k)}\left(t_{n}\right)-W^{(k)}\left(t_{n-1}\right)\right)
$$

is

$$
f_{\widehat{W}}\left(x_{1}, \ldots, x_{n}\right)=k^{t_{n}} \prod_{i=1}^{n} \frac{x_{i}^{t_{i}-t_{i-1}-1}}{\Gamma\left(t_{i}-t_{i-1}\right)} \exp \left(-k \sum_{i=1}^{n} x_{i}\right), \quad x_{1}, \ldots, x_{n} \geqslant 0
$$

Therefore, the joint pdf of the random vector $W=\left(W^{(k)}\left(t_{1}\right), \ldots, W^{(k)}\left(t_{n}\right)\right)$ is

$$
\begin{equation*}
f_{W}\left(x_{1}, \ldots, x_{n}\right)=k^{t_{n}} \prod_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{t_{i}-t_{i-1}-1}}{\Gamma\left(t_{i}-t_{i-1}\right)} \exp \left(-k x_{n}\right) \tag{2.3}
\end{equation*}
$$

for $0=x_{0} \leqslant x_{1} \leqslant \ldots \leqslant x_{n}<\infty$.

Also, $\left(W^{(k)}(1), \ldots, W^{(k)}(n)\right) \stackrel{d}{=}\left(W_{1}^{(k)}, \ldots, W_{n}^{(k)}\right)$, where $\stackrel{d}{=}$ means equality in distribution. More generally, if $t_{m}=j_{m} \in N$ and $1 \leqslant j_{1}<\ldots<j_{n}$, then

$$
\left(W^{(k)}\left(j_{1}\right), \ldots, W^{(k)}\left(j_{n}\right)\right) \stackrel{d}{=}\left(W_{j_{i}}^{(k)}, \ldots, W_{j_{n}}^{(k)}\right) .
$$

This can be stated by comparing (2.1) with (2.3) and (2.2) with (2.4) below. This explains the name for the process $W^{(k)}$, which has the same finite-dimensional marginal distributions as the sequence of k-th records from exponential distribution.

Let F be a distribution function and let $G(x)=1-e^{-x}, x \geqslant 0$, be the standard exponential distribution function.

Definition 2. The stochastic process $Y^{(k)}=\left\{Y^{(k)}(t), t \geqslant 0\right\}$, where

$$
Y^{(k)}(t)=F^{-1}\left(G\left(W^{(k)}(t)\right)\right), \quad t \geqslant 0
$$

is called the k-th record-values process for distribution function F. The random variables $Y^{(k)}(t), t>0$, are said to be fractional k-th record values from F.

Suppose that F is absolutely continuous with the $\operatorname{pdf} f$. Using the above definition one can easily show that $Y^{(k)}(t), t>0$, has the pdf

$$
f_{Y^{(k)}(t)}(x)=\frac{k^{t}}{\Gamma(t)}(H(x))^{t-1}(1-F(x))^{k-1} f(x), \quad x \in R
$$

where H denotes the hazard function of F. Moreover, if $0=t_{0}<t_{1}<\ldots<t_{n}$, then the random vector $Y:=\left(Y^{(k)}\left(t_{1}\right), \ldots, Y^{(k)}\left(t_{n}\right)\right)$ has the joint pdf

$$
\begin{equation*}
f_{\mathbf{Y}}\left(x_{1}, \ldots, x_{n}\right)=k^{t_{n}} \prod_{i=1}^{n} \frac{\left(H\left(x_{i}\right)-H\left(x_{i-1}\right)\right)^{t_{i}-t_{i-1}-1} h\left(x_{i}\right)}{\Gamma\left(t_{i}-t_{i-1}\right)}\left(1-F\left(x_{n}\right)\right)^{k} \tag{2.4}
\end{equation*}
$$ for $-\infty=x_{0}<x_{1} \leqslant \ldots \leqslant x_{n}<\infty$, where $h(x)=H^{\prime}(x)$.

Moreover, by (2.1) and (2.4) we have $\left(Y^{(k)}(1), \ldots, Y^{(k)}(n)\right) \stackrel{d}{=}\left(Y_{1}^{(k)}, \ldots, Y_{n}^{(k)}\right)$, and using (2.2) and (2.4) we get $\left(Y^{(k)}\left(j_{1}\right), \ldots, Y^{(k)}\left(j_{n}\right)\right) \stackrel{d}{=}\left(Y_{j_{1}}^{(k)}, \ldots, Y_{j_{n}}^{(k)}\right)$ for $1 \leqslant j_{1}<\ldots<j_{n}, j_{i} \in N$. Therefore we can consider $Y^{(k)}(t)$ as $Y_{n}^{(k)}$ with index n replaced with arbitrary positive t.

3. THE MARKOV PROPERTY

Suppose that F is absolutely continuous with pdf f. Using (2.4) one can show that the conditional pdf of $Y^{(k)}(t+s)$, given $Y^{(k)}(t)=x, t, s>0$, is

$$
f_{Y^{(k)}(t+s) \mid Y^{(k)}(t)}(y \mid x)=\frac{k^{s}}{\Gamma(s)}\left(\frac{1-F(y)}{1-F(x)}\right)^{k}(H(y)-H(x))^{s-1} h(y)
$$

for $y \geqslant x$. Moreover, the conditional pdf of $Y^{(k)}(t)$, given $Y^{(k)}(t+s)=y$, is

$$
f_{Y^{(k)}(t) \mid Y^{(k)}(t+s)}(x \mid y)=\frac{1}{B(t, s)}\left(\frac{H(x)}{H(y)}\right)^{t-1}\left(1-\frac{H(x)}{H(y)}\right)^{s-1} \frac{h(x)}{H(y)}
$$

for $x \leqslant y$, where $B(t, s)$ denotes beta function determined by

$$
B(t, s)=\int_{0}^{1} x^{t-1}(1-x)^{s-1} d x, \quad t, s>0 .
$$

Also, by (2.4),

$$
f_{Y^{(k)}\left(t_{n+1}\right) \mid Y^{(k)}\left(t_{1}\right), \ldots, Y^{(k)}\left(t_{n}\right)}\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=f_{\left.Y^{(k)}\left(t_{n+1}\right) \mid Y^{(k)}\right)\left(t_{n}\right)}\left(x_{n+1} \mid x_{n}\right),
$$

which gives the following result.
Proposition 1. $\left\{Y^{(k)}(t), t \geqslant 0\right\}$ is a Markov process with the transition probabilities

$$
\begin{equation*}
P\left\{Y^{(k)}(t+s)>y \mid Y^{(k)}(t)=x\right\}=1-\frac{1}{\Gamma(s)} \Gamma(s ; k(H(y)-H(x))) \tag{3.1}
\end{equation*}
$$

for $s>0, y \geqslant x$, where

$$
\begin{equation*}
\Gamma(\alpha ; x)=\int_{0}^{x} t^{\alpha-1} e^{-t} d t, \quad \alpha>0, x>0 \tag{3.2}
\end{equation*}
$$

denotes incomplete gamma function.
Note that if $t=n \in N$ and $s=1$, the equation (3.1) reduces to

$$
P\left\{Y^{(k)}(n+1)>y \mid Y^{(k)}(n)=x\right\}=\left(\frac{1-F(y)}{1-F(x)}\right)^{k}
$$

for $y \geqslant x$, which agrees with the classical result (cf. [2], p. 97).

4. ALTERNATIVE CONSTRUCTION

In this section we show how to construct $W^{(k)}(t)$ using exponential k-th record values $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$. For $t \geqslant 0$ we write $\{t\}=t-[t]$, where $[t]$ denotes the floor function and $\{t\}$ is called the fractional part of t.

Theorem 1. For $t \geqslant 0$

$$
\begin{equation*}
W^{(k)}(t) \stackrel{d}{=}(1-B) W_{[t]}^{(k)}+B W_{[t]+1}^{(k)}, \tag{4.1}
\end{equation*}
$$

where B is a beta $B(\{t\}, 1-\{t\})$ distributed random variable, independent of the sequence $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$.

Remark 1. We put $B=0$ a.s., if $\{t\}=0$.
Proof. If $t=0,1,2, \ldots$, then the right-hand side of (4.1) is simply $W_{t}^{(k)}$, which is $\Gamma(t, k)$ distributed. Now for $t \in(0, \infty) \backslash N$ let us denote the right-hand side of (4.1) by $W_{t}^{(k)}$. If $t \in(1, \infty) \backslash N$ and $n=[t]$, then the random vector
$\left(W_{n}^{(k)}, W_{t}^{(k)}, W_{n+1}^{(k)}\right)$ has the pdf

$$
\begin{aligned}
f_{W_{n}^{(k)}, W_{t}^{(k)}, W_{n+1}^{(k)}}(u, v, w) & =f_{W_{t}^{(k)} \mid W_{n}^{(k)}, W_{n+1}^{(k)}}(u \mid v, w) f_{W_{n}^{(k), W_{n+1}^{(k)}}(u, w)} \\
& =\frac{1}{B(\{t\}, 1-\{t\})}(v-u)^{\{t\}-1}(w-v)^{-\{t)} \frac{k^{n+1}}{\Gamma(n)} u^{n-1} e^{-k w}
\end{aligned}
$$

for $0<u<v<w<\infty$. Therefore

$$
\begin{aligned}
f_{W_{t}^{(k)}}(v) & =\frac{k^{n+1}}{\Gamma(n) B(\{t\}, 1-\{t\})} \int_{0}^{v} u^{n-1}(v-u)^{\{t\}-1} d u \int_{v}^{\infty}(w-v)^{-\{t\}} e^{-k w} d w \\
& =\frac{k^{n+1}}{\Gamma(n) B(\{t\}, 1-\{t\})} B(n,\{t\}) v^{n+\{t\}-1} \frac{\Gamma(1-\{t\})}{k^{1-\{t\}}} e^{-k v} \\
& =\frac{k^{t}}{\Gamma(t)} v^{t-1} e^{-k v}, \quad v \geqslant 0
\end{aligned}
$$

which means that $W_{t}^{(k)} \sim \Gamma(t, k)$. Similar evaluations lead to (4.1) for $t \in(0,1)$.
Remark 2. Other methods of the construction of gamma distributions and gamma processes can be found for instance in [4] and [6]. References [3] and [9] are also recommended.

5. MULTIDIMENSIONAL CASE

In the previous section we show how to construct the single random variable $W^{(k)}(t), t>0$, from the exponential k-th record values. Now we show how to construct the random vector $\left(W^{(k)}\left(t_{1}\right), W^{(k)}\left(t_{2}\right), \ldots, W^{(k)}\left(t_{m}\right)\right)$, where $0<t_{1}<\ldots<t_{m}<\infty$. We start with the definition of m-dimensional generalized arc-sine distribution.

Definition 3. The random variables B_{1}, \ldots, B_{m} are said to have m-dimensional generalized arc-sine distribution with parameters $a_{1}, \ldots, a_{m}, a_{m+1}>0$ if their joint pdf is of the form

$$
f_{B_{1}, \ldots, B_{m}}\left(u_{1}, \ldots, u_{m}\right)=\Gamma\left(\sum_{i=1}^{m+1} a_{i}\right)\left\{\prod_{i=1}^{m+1} \frac{\left(u_{i}-u_{i-1}\right)^{a_{i}-1}}{\Gamma\left(a_{i}\right)}\right\}
$$

for $0=u_{0}<u_{1}<\ldots<u_{m}<u_{m+1}=1$.
Remark 3. Note that for $m=1$ we obtain ordinary one-dimensional beta $B\left(a_{1}, a_{2}\right)$ distribution.

Theorem 2. Let $n=t_{0}<t_{1}<\ldots<t_{m}<t_{m+1}=n+1$. Define

$$
W_{t_{i}}^{(k)}=\left(1-B_{i}\right) W_{n}^{(k)}+B_{i} W_{n+1}^{(k)}, \quad 1 \leqslant i \leqslant m,
$$

where $\left(B_{1}, \ldots, B_{m}\right)$ is a random vector with m-dimensional generalized arc-sine
distribution with parameters $a_{i}=t_{i}-t_{i-1}, 1 \leqslant i \leqslant m+1$, independent of the sequence $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$. Then

$$
\left(W_{t_{1}}^{(k)}, \ldots, W_{t_{m}}^{(k)}\right) \stackrel{d}{=}\left(W^{(k)}\left(t_{1}\right), \ldots, W^{(k)}\left(t_{m}\right)\right)
$$

Proof. The joint pdf of $W_{n}=\left(W_{n}^{(k)}, W_{t_{1}}^{(k)}, \ldots, W_{t_{m}}^{(k)}, W_{n+1}^{(k)}\right)$ is of the form

$$
\begin{align*}
& \text { (5.1) } \quad f_{W_{n}}\left(u_{0}, \ldots, u_{m+1}\right) \tag{5.1}\\
& \quad=f_{W_{1}^{(k)}, \ldots, W_{t_{m}}^{(k)} \mid W_{n}^{(k)}, W_{n+1}^{(k)}}\left(u_{1}, \ldots, u_{m} \mid u_{0}, u_{m+1}\right) f_{W_{n}^{(k)}, W_{n+1}^{(k)}}\left(u_{0}, u_{m+1}\right) \\
& \text { for } 0 \leqslant u_{0}<u_{1}<\ldots<u_{m}<u_{m+1}<\infty \text {. Now, by (2.2), we get }
\end{align*}
$$

$$
\begin{equation*}
f_{W_{n}^{(k)}, W_{n+1}^{(k)}}\left(u_{0}, u_{m+1}\right)=\frac{k^{n+1}}{\Gamma(n)} u_{0}^{n-1} \exp \left(-k u_{m+1}\right), \quad 0<u_{0}<u_{m+1} \tag{5.2}
\end{equation*}
$$

Moreover, the conditional pdf of $W_{t_{1}}^{(k)}, \ldots, W_{t_{m}}^{(k)}$, given $W_{n}^{(k)}=u_{0}, W_{n+1}^{(k)}=u_{m+1}$, is the same as the joint pdf of the vector $\boldsymbol{B}^{\prime}=\left(u_{m+1}-u_{0}\right) \boldsymbol{B}+\boldsymbol{u}_{0}$, where $\boldsymbol{B}=$ $\left(B_{1}, \ldots, B_{m}\right)$ and $u_{0}=\left(u_{0}, \ldots, u_{0}\right) \in \boldsymbol{R}^{m}$. Therefore
for $u_{0}<u_{1}<\ldots<u_{m}<u_{m+1}$. Combining (5.1), (5.2) and (5.3) we obtain

$$
\begin{aligned}
& f_{W_{t_{1}}^{(k)}, \ldots, W_{t_{m}}^{(k)}}\left(u_{1}, \ldots, u_{m}\right)=\frac{k^{n+1}}{\Gamma(n)} \int_{0}^{u_{1}} u_{0}^{n-1} \frac{\left(u_{1}-u_{0}\right)^{t_{1}-t_{0}-1}}{\Gamma\left(t_{1}-t_{0}\right)} d u_{0} \\
& \quad \times \prod_{i=2}^{m} \frac{\left(u_{i}-u_{i-1}\right)^{t_{i}-t_{i-1}-1}}{\Gamma\left(t_{i}-t_{i-1}\right)} \int_{u_{m}}^{\infty} \frac{\left(u_{m+1}-u_{m}\right)^{t_{m+1}-t_{m}-1}}{\Gamma\left(t_{m+1}-t_{m}\right)} e^{-k u_{m+1}} d u_{m+1} \\
& \quad=k^{t_{m}} \prod_{i=1}^{m} \frac{\left(u_{i}-u_{i-1}\right)^{t_{i}-t_{i-1}-1}}{\Gamma\left(t_{i}-t_{i-1}\right)} e^{-k u_{m}},
\end{aligned}
$$

which is the same as (2.3) with $n=m$.
Theorem 2 allows us to construct $\left(W^{(k)}\left(t_{1}\right), \ldots, W^{(k)}\left(t_{m}\right)\right)$ in the case when $\left[t_{1}\right]=\left[t_{m}\right]$. Now we consider the general case. Let $i \equiv t_{i, 0}<t_{i, 1}<\ldots<t_{i, m_{i}}<$ $t_{i, m_{i}+1} \equiv i+1, i=0,1, \ldots, n$, where $n=\left[t_{m}\right]+1$ and m_{i} denotes the number of $W^{(k)}(t)$ in W with $i<t<i+1$. Our aim is to construct the vector of the k-th fractional record values

$$
W=\left(W^{(k)}\left(t_{i, j}\right), 1 \leqslant j \leqslant m_{i}, 0 \leqslant i \leqslant n-1\right)
$$

using the sequence $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$. This is done in the following theorem.
Theorem 3. Under the above assumptions we define

$$
W_{t i, j}^{(k)}=\left(1-B_{j}^{(i)}\right) W_{i}^{(k)}+B_{j}^{(i)} W_{i+1}^{(k)}, \quad 1 \leqslant j \leqslant m_{i}, 0 \leqslant i \leqslant n-1,
$$

where $\boldsymbol{B}^{(i)}=\left(B_{1}^{(i)}, \ldots, B_{m_{i}}^{(i)}\right), i=0,1, \ldots, n-1$, is a random vector with m_{i} dimensional generalized arc-sine distribution with parameters $a_{j}^{(i)}=t_{i, j}-t_{i, j-1}$,
$j=0,1, \ldots, m_{i}+1$. Suppose that $\boldsymbol{B}^{(0)}, \boldsymbol{B}^{(1)}, \ldots, \boldsymbol{B}^{(n-1)}$ and $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$ are $m u$ tually independent. Then

$$
W \stackrel{d}{=}\left(W_{t_{0,1}}^{(k)}, \ldots, W_{t_{0}, m_{0}}^{(k)}, W_{t_{1,1}}^{(k)}, \ldots, W_{t_{1, m_{1}}^{(k)}}^{(k)}, \ldots, W_{t_{n-1,1}}^{(k)}, \ldots, W_{t_{n-1, m_{n-1}}}^{(k)}\right) .
$$

Proof. This easily follows from Theorem 2 and the independence of increments of k-th record values $\left\{W_{n}^{(k)}, n \geqslant 1\right\}$.

6. LOWER RECORD-VALUES PROCESS

We start with a brief review of the distribution theory of k-th lower record values. It is known (cf. [11]) that if F is an absolutely continuous distribution function with pdf f, then the pdf of $Z_{n}^{(k)}$ is

$$
\begin{equation*}
f_{Z_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!}(\bar{H}(x))^{n-1}(F(x))^{k-1} f(x), \quad x \in \boldsymbol{R}, \tag{6.1}
\end{equation*}
$$

where $\bar{H}(x):=\bar{H}_{F}(x)=-\log F(x)$. The random vector $\left(Z_{1}^{(k)}, \ldots, Z_{n}^{(k)}\right)$ has the joint pdf

$$
\begin{equation*}
f_{Z_{1}^{(k)}, \ldots, Z_{n}^{(k)}}\left(x_{1}, \ldots, x_{n}\right)=k^{n} \prod_{i=1}^{n-1} \frac{f\left(x_{i}\right)}{F\left(x_{i}\right)}\left(F\left(x_{n}\right)\right)^{k-1} f\left(x_{n}\right) \tag{6.2}
\end{equation*}
$$

for $x_{1} \geqslant \ldots \geqslant x_{n}$. Moreover, if $0=j_{0}<j_{1}<\ldots<j_{n}$, then the vector $\left(Z_{j_{1}}^{(k)}, \ldots, Z_{j_{n}}^{(k)}\right)$ has the joint pdf

$$
\begin{equation*}
f_{Z_{j_{1}}^{(k)}, \ldots, Z_{J_{n}}^{(k)}}\left(x_{1}, \ldots, x_{n}\right)=k^{j_{n}} \prod_{i=1}^{n} \frac{\left(\bar{H}\left(x_{i-1}\right)-\bar{H}\left(x_{i}\right)\right)^{j_{i}-j_{i-1}-1} \bar{h}\left(x_{i}\right)}{\left(j_{i}-j_{i-1}-1\right)!}\left(F\left(x_{n}\right)\right)^{k} \tag{6.3}
\end{equation*}
$$

for $\infty=x_{0}>x_{1} \geqslant \ldots \geqslant x_{n}>-\infty$, where $\bar{h}(x)=\bar{H}^{\prime}(x)$.
Let $V_{n}^{(k)}, n \in N$, stand for the k-th record value from standard negative exponential distribution with the $\operatorname{cdf} G^{*}(x)=e^{x}, x \leqslant 0$. Using (6.1) and (6.3) one can show that for each $k \in N$ the sequence $\left\{V_{n}^{(k)}, n \geqslant 1\right\}$ of k-th lower record values from negative exponential distribution has the following property: for all $m, n \in N$ such that $n>m$ the random variables $V_{m}^{(k)}$ and $V_{n}^{(k)}-V_{m}^{(k)}$ are independent. Moreover, $V_{m}^{(k)}$ and $V_{n}^{(k)}-V_{m}^{(k)}$ are negative gamma $N \Gamma(m, k)$ and $N \Gamma(n-m, k)$ distributed, respectively, where $N \Gamma(\alpha, \beta)$ denotes a negative gamma distribution with pdf

$$
f_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}|x|^{\alpha-1} e^{\beta x}, \quad x<0, \alpha, \beta>0 .
$$

The above facts motivate the following definition.
Definition 4. Fix $k \in N$. Let $V^{(k)}=\left\{V^{(k)}(t), t \geqslant 0\right\}$ be a stochastic process such that:
(i) $V^{(k)}(0)=0$ a.s.,
(ii) $V^{(k)}$ has independent increments,
(iii) if $t>s \geqslant 0$, then $V^{(k)}(t)-V^{(k)}(s)$ is negative gamma $N \Gamma(t-s, k)$ distributed.

Then $\left\{V^{(k)}(t), t \geqslant 0\right\}$ is called the negative exponential k-th lower recordvalues process. The random variables $V^{(k)}(t), t>0$, are said to be negative exponential fractional k-th lower record values.

Note that $V^{(k)}(t), t>0$, is $N \Gamma(t, k)$ distributed. Moreover, if $n \in N$ and $0=t_{0}<t_{1}<\ldots<t_{n}$, and

$$
\hat{V}=\left(V^{(k)}\left(t_{1}\right), V^{(k)}\left(t_{2}\right)-V^{(k)}\left(t_{1}\right), \ldots, V^{(k)}\left(t_{n}\right)-V^{(k)}\left(t_{n-1}\right)\right),
$$

then the joint pdf of \hat{V} is

$$
f_{\hat{v}}\left(x_{1}, \ldots, x_{n}\right)=k^{t_{n}} \prod_{i=1}^{n} \frac{\left|x_{i}\right|^{t_{i}-t_{i-1}-1}}{\Gamma\left(t_{i}-t_{i-1}\right)} \exp \left(k \sum_{i=1}^{n} x_{i}\right), \quad x_{1}, \ldots, x_{n} \leqslant 0 .
$$

Therefore, the joint pdf of $V=\left(V^{(k)}\left(t_{1}\right), V^{(k)}\left(t_{2}\right), \ldots, V^{(k)}\left(t_{n}\right)\right)$ is of the form

$$
\begin{equation*}
f_{V}\left(x_{1}, \ldots, x_{n}\right)=k^{t_{n}} \prod_{i=1}^{n} \frac{\left(x_{i-1}-x_{i}\right)^{t_{i}-t_{i-1}-1}}{\Gamma\left(t_{i}-t_{i-1}\right)} \exp \left(k x_{n}\right) \tag{6.4}
\end{equation*}
$$

for $0=x_{0} \geqslant x_{1} \geqslant \ldots \geqslant x_{n}>-\infty$.
Note that by (6.2) and (6.4) we have $\left(V^{(k)}(1), \ldots, V^{(k)}(n)\right) \stackrel{d}{=}\left(V_{1}^{(k)}, \ldots, V_{n}^{(k)}\right)$ and, more generally, if $t_{m}=j_{m} \in N$ and $1 \leqslant j_{1}<\ldots<j_{n}$, then using (6.3) and (6.4) we get

$$
\left(V^{(k)}\left(j_{1}\right), \ldots, V^{(k)}\left(j_{n}\right)\right) \stackrel{d}{=}\left(V_{j_{1}}^{(k)}, \ldots, V_{j_{n}}^{(k)}\right) .
$$

This explains the name for the process $V^{(k)}$, which has the same finite-dimensional marginal distributions as the sequence of k-th lower record from negative exponential distribution.

Let F be a distribution function and let $G^{*}(x)=e^{x}, x \leqslant 0$, be the standard negative exponential distribution function.

Definition 5. The stochastic process $Z^{(k)}=\left\{Z^{(k)}(t), t \geqslant 0\right\}$, where

$$
\mathcal{Z}^{(k)}(t)=F^{-1}\left(G^{*}\left(V^{(k)}(t)\right)\right), \quad t \geqslant 0,
$$

is called the k-th lower record-values process for distribution function F. The random variables $Z^{(k)}(t), t>0$, are said to be fractional k-th lower record values from F.

Suppose that F is absolutely continuous with the pdf f. Using the above definition one can easily show that $Z^{(k)}(t), t>0$, has the pdf

$$
f_{Z^{(k)}(t)}(x)=\frac{k^{t}}{\Gamma(t)}(\bar{H}(x))^{t-1}(F(x))^{k-1} f(x), \quad x \in \boldsymbol{R} .
$$

Moreover, if $0=t_{0}<t_{1}<\ldots<t_{n}$, then the joint pdf of the random vector $Z:=\left(Z^{(k)}\left(t_{1}\right), \ldots, Z^{(k)}\left(t_{n}\right)\right)$ is

$$
\begin{equation*}
f_{Z}\left(x_{1}, \ldots, x_{n}\right)=k^{t_{n}} \prod_{i=1}^{n} \frac{\left(\bar{H}\left(x_{i}\right)-\bar{H}\left(x_{i-1}\right)\right)^{t_{i}-t_{i-1}-1} \bar{h}\left(x_{i}\right)}{\Gamma\left(t_{i}-t_{i-1}\right)}\left(F\left(x_{n}\right)\right)^{k} \tag{6.5}
\end{equation*}
$$

for $\infty=x_{0}>x_{1} \geqslant \ldots \geqslant x_{n}>-\infty$.
Note that by (6.2) and (6.5) we get $\left(Z^{(k)}(1), \ldots, Z^{(k)}(n)\right) \stackrel{d}{=}\left(Z_{1}^{(k)}, \ldots, Z_{n}^{(k)}\right)$, and, more generally, for $1 \leqslant j_{1}<\ldots<j_{n}, j_{i} \in N$, by (6.3) and (6.5) we have

$$
\left(Z^{(k)}\left(j_{1}\right), \ldots, Z^{(k)}\left(j_{n}\right)\right) \stackrel{d}{=}\left(Z_{j_{1}}^{(k)}, \ldots, Z_{j_{n}}^{(k)}\right) .
$$

Therefore we can consider $Z^{(k)}(t)$ as $Z_{n}^{(k)}$ with n replaced with arbitrary positive t.
Now the following results hold true.
Proposition 2. $\left\{Z^{(k)}(t), t \geqslant 0\right\}$ is a Markov process with the transition probabilities

$$
P\left\{Z^{(k)}(t+s)<y \mid Z^{(k)}(t)=x\right\}=1-\frac{1}{\Gamma(s)} \Gamma(s ; k(\bar{H}(y)-\bar{H}(x)))
$$

for $s>0, y \leqslant x$.
Theorem 4. For $t \geqslant 0$

$$
V^{(k)}(t) \stackrel{d}{=}(1-B) V_{[t]}^{(k)}+B V_{[t]+1}^{(k)},
$$

where B is a beta $B(\{t\}, 1-\{t\})$ distributed random variable, independent of the sequence $\left\{V_{n}^{(k)}, n \geqslant 1\right\}$.

Theorem 5. Let $n=t_{0}<t_{1}<\ldots<t_{m}<t_{m+1}=n+1$. Define

$$
V_{t_{i}}^{(k)}=\left(1-B_{i}\right) V_{n}^{(k)}+B_{i} V_{n+1}^{(k)}, \quad 1 \leqslant i \leqslant m,
$$

where $\left(B_{1}, \ldots, B_{m}\right)$ is a random vector with m-dimensional generalized arc-sine distribution with parameters $a_{i}=t_{i}-t_{i-1}, 1 \leqslant i \leqslant m+1$, independent of the sequence $\left\{V_{n}^{(k)}, n \geqslant 1\right\}$. Then

$$
\left(V_{t_{1}}^{(k)}, \ldots, V_{t_{m}}^{(k)}\right) \stackrel{d}{=}\left(V^{(k)}\left(t_{1}\right), \ldots, V^{(k)}\left(t_{m}\right)\right)
$$

Let $i \equiv t_{i, 0}<t_{i, 1}<\ldots<t_{i, m_{i}}<t_{i, m_{i}+1} \equiv i+1$, for $i=0,1, \ldots, n$, and

$$
V=\left(V^{(k)}\left(t_{i, j}\right), 1 \leqslant j \leqslant m_{i}, 0 \leqslant i \leqslant n-1\right)
$$

Theorem 6. Under the above assumptions we define

$$
V_{t i, j}^{(k)}=\left(1-B_{j}^{(i)}\right) V_{i}^{(k)}+B_{j}^{(i)} V_{i+1}^{(k)}, \quad 1 \leqslant j \leqslant m_{i}, 0 \leqslant i \leqslant n-1,
$$

where $B^{(i)}=\left(B_{1}^{(i)}, \ldots, B_{m_{i}}^{(i)}\right), i=0,1, \ldots, n-1$, is a random vector with m_{i}-dimensional generalized arc-sine distribution with parameters $a_{j}^{(i)}=t_{i, j}-t_{i, j-1}$, $j=0,1, \ldots, m_{i}+1$. Suppose that $\boldsymbol{B}^{(0)}, \boldsymbol{B}^{(1)}, \ldots, \boldsymbol{B}^{(n-1)}$ and $\left\{V_{n}^{(k)}, n \geqslant 1\right\}$ are mutually independent. Then

The proofs of Proposition 2 and Theorems 4, 5 and 6 are similar to the proofs of Proposition 1 and Theorems 1, 2 and 3, respectively, with obvious modifications.

7. MOMENTS OF FRACTIONAL RECORD VALUES

In this section we present some examples of evaluations of moments of fractional record values.

Example 1. Uniform distribution.
Let

$$
F(x)= \begin{cases}0, & x \leqslant 0 \\ x, & x \in(0,1) \\ 1, & x \geqslant 1\end{cases}
$$

Then for $x \in(0,1)$ we have $f(x)=1, H(x)=-\log (1-x)$ and $h(x)=(1-x)^{-1}$. Therefore the pdf of $Y^{(k)}(t), t>0$, is

$$
f_{Y^{(k)}(t)}(x)=\frac{k^{t}}{\Gamma(t)}(-\log (1-x))^{t-1}(1-x)^{k-1}, \quad x \in(0,1)
$$

and for $n \in N$

$$
\begin{aligned}
E\left(Y^{(k)}(t)\right)^{n} & =\frac{k^{t}}{\Gamma(t)} \int_{0}^{1} x^{n}(-\log (1-x))^{t-1}(1-x)^{k-1} d x \\
& =\frac{k^{t}}{\Gamma(t)} \int_{0}^{\infty}\left(1-e^{-z}\right)^{n} e^{-k z} z^{t-1} d z
\end{aligned}
$$

Using Newton's binomial formula we get

$$
E\left(Y^{(k)}(t)\right)^{n}=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(\frac{k}{k+j}\right)^{t} .
$$

For instance,

$$
E Y^{(k)}(t)=1-\left(\frac{k}{k+1}\right)^{t}
$$

and

$$
E\left(Y^{(k)}(t)\right)^{2}=1-2\left(\frac{k}{k+1}\right)^{t}+\left(\frac{k}{k+2}\right)^{t}
$$

Therefore

$$
\operatorname{Var} Y^{(k)}(t)=\frac{k^{t}(k+1)^{2 t}-k^{2 t}(k+2)^{t}}{(k+1)^{2 t}(k+2)^{t}}
$$

Similarly, for $0<t<s$

$$
\operatorname{Cov}\left(Y^{(k)}(t), Y^{(k)}(s)\right)=\left(\frac{k}{k+1}\right)^{s}\left[\left(\frac{k+1}{k+2}\right)^{t}-\left(\frac{k}{k+1}\right)^{t}\right]
$$

Example 2. Weibull distribution.

Let

$$
F(x)= \begin{cases}1-\exp \left(-\lambda x^{\alpha}\right), & x \geqslant 0 \\ 0, & x<0\end{cases}
$$

Then $f(x)=\alpha \lambda x^{\alpha-1} \exp \left(-\lambda x^{\alpha}\right), H(x)=\lambda x^{\alpha}$ and $h(x)=\alpha \lambda x^{\alpha-1}$. Therefore

$$
f_{Y(k)(t)}(x)=\frac{\alpha(k \lambda)^{t}}{\Gamma(t)} x^{\alpha t-1} \exp \left(-k \lambda x^{\alpha}\right), \quad x \geqslant 0
$$

which for $\beta>0$ gives

$$
E\left(Y^{(k)}(t)\right)^{\beta}=\frac{\Gamma(t+\beta / \alpha)}{(k \lambda)^{\beta / \alpha} \Gamma(t)} .
$$

For instance,

$$
\operatorname{Var} Y^{(k)}(t)=\frac{1}{(k \lambda)^{2 / \alpha} \Gamma^{2}(t)}\left(\Gamma\left(t+\frac{2}{\alpha}\right) \Gamma(t)-\Gamma^{2}\left(t+\frac{1}{\alpha}\right)\right)
$$

Moreover, for $0<t<s$

$$
\operatorname{Cov}\left(Y^{(k)}(t), Y^{(k)}(s)\right)=\frac{\Gamma(t+1 / \alpha)}{(k \alpha)^{2 / \alpha}}\left\{\frac{\Gamma(s+2 / \alpha)}{\Gamma(s+1 / \alpha)}-\frac{\Gamma(s+1 / \alpha)}{\Gamma(s)}\right\}
$$

Example 3. Single-parameter Pareto distribution.
Consider the single-parameter Pareto distribution function

$$
F(x)= \begin{cases}0, & x<1 \\ 1-1 / x^{\alpha}, & x \geqslant 1\end{cases}
$$

where $\alpha>0$. Then for $x \geqslant 1$ we have $f(x)=\alpha / x^{\alpha+1}, H(x)=\alpha \log x$ and $h(x)=\alpha / x$. Therefore the pdf of $Y^{(k)}(t)$ is

$$
f_{Y^{(k)}(t)}(x)=\frac{(k \alpha)^{t}}{\Gamma(t)} \frac{(\log x)^{t-1}}{x^{k \alpha+1}}, \quad x \geqslant 1 .
$$

Therefore for $\beta>0$

$$
E\left(Y^{(k)}(t)\right)^{\beta}=\left(\frac{k \alpha}{k \alpha-\beta}\right)^{t}
$$

provided that $\beta<k \alpha$. If $\alpha>2 / k$, this easily gives

$$
\operatorname{Var} Y^{(k)}(t)=\left(\frac{k \alpha}{k \alpha-2}\right)^{t}-\left(\frac{k \alpha}{k \alpha-1}\right)^{2 t}
$$

Similarly, for $0<t<s$

$$
\operatorname{Cov}\left(Y^{(k)}(t), Y^{(k)}(s)\right)=\left(\frac{k \alpha}{k \alpha-1}\right)^{s}\left[\left(\frac{k \alpha-1}{k \alpha-2}\right)^{t}-\left(\frac{k \alpha}{k \alpha-1}\right)^{t}\right]
$$

Example 4. Two-parameter Pareto distribution (Lomax distribution). For the two-parameter Pareto distribution

$$
F(x)=\left\{\begin{array}{ll}
1-(\lambda /(\lambda+x))^{\alpha}, & x>0, \\
0, & x \leqslant 0,
\end{array} \quad \lambda>0, \alpha>0\right.
$$

we have

$$
E\left(Y^{(k)}(t)\right)^{n}=\lambda^{n} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\left(\frac{k \alpha}{k \alpha-j}\right)^{t}, \quad n<k \alpha
$$

Therefore, if $k \alpha>2$, then

$$
\operatorname{Var} Y^{(k)}(t)=\lambda^{2}\left\{\left(\frac{k \alpha}{k \alpha-2}\right)^{t}-\left(\frac{k \alpha}{k \alpha-1}\right)^{2 t}\right\}
$$

Also

$$
\operatorname{Cov}\left(Y^{(k)}(t), Y^{(k)}(s)\right)=\lambda^{2}\left(\frac{k \alpha}{k \alpha-1}\right)^{s}\left[\left(\frac{k \alpha-1}{k \alpha-2}\right)^{t}-\left(\frac{k \alpha}{k \alpha-1}\right)^{t}\right] .
$$

Example 5. Generalized Pareto distribution.
For the generalized Pareto distribution with pdf

$$
f(x)=\left\{\begin{array}{lll}
(1+\alpha x)^{-1-1 / \alpha}, & x \geqslant 0, & \text { if } \alpha>0 \\
(1+\alpha x)^{-1-1 / \alpha}, & 0 \leqslant x \leqslant-1 / \alpha, & \text { if } \alpha<0 \\
e^{-x}, & x \geqslant 0, & \text { if } \alpha=0 \\
0, & \text { otherwise } &
\end{array}\right.
$$

we have for $n \in N, \alpha \neq 0$,

$$
E\left(Y^{(k)}(t)\right)^{n}=\frac{1}{\alpha^{n}} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\left(\frac{k}{k-j \alpha}\right)^{t},
$$

where

$$
\begin{array}{ll}
n<k / \alpha & \text { if } \alpha>0 \\
n \in N & \text { if } \alpha<0
\end{array}
$$

For instance, if $2 \alpha<k$, then

$$
\operatorname{Var} Y^{(k)}(t)=\frac{1}{\alpha^{2}}\left\{\left(\frac{k}{k-2 \alpha}\right)^{t}-\left(\frac{k}{k-\alpha}\right)^{2 t}\right\}
$$

Moreover, for $0<t<s$

$$
\operatorname{Cov}\left(Y^{(k)}(t), Y^{(k)}(s)\right)=\frac{1}{\alpha^{2}}\left(\frac{k}{k-\alpha}\right)^{s}\left[\left(\frac{k-\alpha}{k-2 \alpha}\right)^{t}-\left(\frac{k}{k-\alpha}\right)^{t}\right] .
$$

Example 6. Inverse exponential distribution.
Let

$$
F(x)= \begin{cases}e^{-1 / x}, & x>0 \\ 0, & x<0\end{cases}
$$

Then for $x>0$ we have $f(x)=x^{-2} e^{-1 / x}$ and $\bar{H}(x)=x^{-1}$, and $\bar{h}(x)=x^{-2}$. Therefore

$$
f_{Z^{(k)}(t)}(x)=\frac{k^{t}}{\Gamma(t)} \frac{e^{-k / x}}{x^{t+1}}, \quad x>0
$$

and for $\alpha>0$

$$
E\left(Z^{(k)}(t)\right)^{\alpha}=k^{\alpha} \frac{\Gamma(t-\alpha)}{\Gamma(t)}
$$

provided that $t>\alpha$. For instance, for $t>1$

$$
E Z^{(k)}(t)=\frac{k}{t-1},
$$

and for $t>2$

$$
E\left(Z^{(k)}(t)\right)^{2}=\frac{k^{2}}{(t-1)(t-2)},
$$

which implies

$$
\operatorname{Var} Z^{(k)}(t)=\frac{k^{2}}{(t-1)^{2}(t-2)}, \quad t>2
$$

Example 7. Gumbel distribution.
Let

$$
F(x)=\exp \left(-e^{-x}\right), \quad x \in \boldsymbol{R} .
$$

First we consider the case $\gamma=0$ which corresponds to Gumbel distribution. Then

$$
f_{Z^{(k)}(t)}(x)=\frac{k^{t}}{\Gamma(t)} \exp \left(-k e^{-x}\right) e^{-t x}, \quad x \in R
$$

and for $n \in N$

$$
\begin{aligned}
E\left(Z^{(k)}(t)\right)^{n} & =\frac{k^{t}}{\Gamma(t)} \int_{-\infty}^{\infty} x^{n} \exp \left(-k e^{-x}\right) e^{-t x} d x=\frac{k^{t}}{\Gamma(t)} \int_{0}^{\infty}(-\log u)^{n} e^{-k u} u^{t-1} d u \\
& =\frac{1}{\Gamma(t)} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}(\log k)^{n-j} \Gamma^{(j)}(t)
\end{aligned}
$$

where $\Gamma^{(j)}, j \geqslant 1$, denotes the j-th derivative of gamma function and $\Gamma^{(0)}=\Gamma$. Therefore

$$
E Z^{(k)}(t)=\log k-\frac{\Gamma^{\prime}(t)}{\Gamma(t)}
$$

and

$$
E\left(Z^{(k)}(t)\right)^{2}=\frac{1}{\Gamma(t)}\left\{(\log k)^{2} \Gamma(t)-2 \Gamma^{\prime}(t) \log k+\Gamma^{\prime \prime}(t)\right\} .
$$

This gives

$$
\operatorname{Var} Z^{(k)}(t)=\frac{\Gamma(t) \Gamma^{\prime \prime}(t)-\left(\Gamma^{\prime}(t)\right)^{2}}{(\Gamma(t))^{2}}
$$

which is positive since Γ is log-convex function on $(0, \infty)$.
Moreover, for $0<t<s$

$$
\begin{aligned}
E Z^{(k)}(t) Z^{(k)}(s)= & \frac{k^{s}}{\Gamma(t) \Gamma(s-t)} \int_{-\infty}^{\infty} y \exp \left(-k e^{-y}\right) e^{-y} \int_{y}^{\infty} x e^{-t x}\left(e^{-y}-e^{-x}\right)^{s-t-1} d x d y \\
= & \frac{k^{s}}{\Gamma(t) \Gamma(s-t)} \int_{-\infty}^{\infty} y \exp \left(-k e^{-y}\right) e^{-s y}\left\{\int_{0}^{\infty} z e^{-t z}\left(1-e^{-z}\right)^{s-t-1} d z\right. \\
& \left.+y \int_{0}^{\infty} e^{-t z}\left(1-e^{-z}\right)^{s-t-1} d z\right\} d y
\end{aligned}
$$

We have

$$
\int_{0}^{\infty} e^{-t z}\left(1-e^{-z}\right)^{s-t-1} d z=B(t, s-t)=\frac{\Gamma(t) \Gamma(s-t)}{\Gamma(s)}
$$

and

$$
\int_{0}^{\infty} e^{-t z}\left(1-e^{-z}\right)^{s-t-1} d z=B(t, s-t)\left(\frac{\Gamma^{\prime}(s)}{\Gamma(s)}-\frac{\Gamma^{\prime}(t)}{\Gamma(t)}\right) .
$$

Hence

$$
E Z^{(k)}(t) Z^{(k)}(s)=E\left(Z^{(k)}(s)\right)^{2}+\left(\frac{\Gamma^{\prime}(s)}{\Gamma(s)}-\frac{\Gamma^{\prime}(t)}{\Gamma(t)}\right) E Z^{(k)}(s)
$$

and

$$
\operatorname{Cov}\left(Z^{(k)}(t), Z^{(k)}(s)\right)=\operatorname{Var} Z^{(k)}(s)=\frac{\Gamma(s) \Gamma^{\prime \prime}(s)-\left(\Gamma^{\prime}(s)\right)^{2}}{(\Gamma(s))^{2}}
$$

Example 8. Generalized extreme value distributions.
Let

$$
F(x)= \begin{cases}\exp \left(-(1-\gamma x)^{1 / \gamma}\right), & x<1 / \gamma, \gamma>0 \\ \exp \left(-(1-\gamma x)^{1 / \gamma}\right), & x>1 / \gamma, \gamma<0 \\ \exp \left(-e^{-x}\right), & x \in \boldsymbol{R}, \gamma=0\end{cases}
$$

The case $\gamma=0$ corresponds to Gumbel distribution which has been considered in Example 7. For $\gamma \neq 0$ we obtain

$$
f_{Z^{(k)}(t)}(x)=\frac{k^{t}}{\Gamma(t)}(1-\gamma x)^{t / \gamma-1} \exp \left(-k(1-\gamma x)^{1 / \gamma}\right)
$$

and for $n \in N$

$$
E\left(Z^{(k)}(t)\right)^{n}=\frac{1}{\gamma^{n} \Gamma(t)} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \frac{\Gamma(\gamma i+t)}{k^{\gamma i}}, \quad t>\max (0,-n \gamma) .
$$

Therefore for $t>\max (0,-\gamma)$

$$
E Z^{(k)}(t)=\frac{1}{\gamma}-\frac{\Gamma(\gamma+t)}{\gamma k^{\gamma} \Gamma(t)},
$$

and for $t>\max (0,-2 \gamma)$

$$
E\left(Z^{(k)}(t)\right)^{2}=\frac{1}{\gamma^{2}}-\frac{2 \Gamma(t+\gamma)}{\gamma^{2} k^{\gamma} \Gamma(t)}+\frac{\Gamma(t+2 \gamma)}{\gamma^{2} k^{2 \gamma} \Gamma(t)}
$$

Hence

$$
\operatorname{Var} Z^{(k)}(t)=\frac{\Gamma(t+2 \gamma) \Gamma(t)-\Gamma^{2}(\gamma+t)}{\gamma^{2} k^{2 \gamma} \Gamma^{2}(t)}
$$

Moreover (cf. [1]), for $0<t<s$

$$
\operatorname{Cov}\left(Z^{(k)}(t), Z^{(k)}(s)\right)=\frac{\Gamma(t+\gamma)}{\gamma^{2} k^{2 \gamma} \Gamma(t)}\left\{\frac{\Gamma(s+2 \gamma)}{\Gamma(s+\gamma)}-\frac{\Gamma(s+\gamma)}{\Gamma(s)}\right\}
$$

8. AN APPLICATION

Let $\left\{Y^{(k)}(t), t \geqslant 0\right\}$ be the k-th record-values process for an absolutely continuous distribution function F with $\operatorname{pdf} f$ and the hazard function $H(x)=$ $-\log (1-F(x))$. Let ψ_{F} stand for the inverse function of H, i.e.

$$
\psi_{F}(u)=H^{-1}(u)=F^{-1}\left(1-e^{-u}\right), \quad u \geqslant 0 .
$$

As an application of fractional record values we consider the problem of estimation of $\psi_{F}(u)$ for $u>0$, which is equivalent to the estimation of x_{p},
the p-th quantile of F, by putting $u=-\log (1-p), p \in(0,1)$. The problem of the estimation of x_{p} by fractional order statistics is considered in [7] and [10].

Using Taylor's formula to ψ_{F} in a neighbourhood of u we get

$$
\psi_{F}(x)-\psi_{F}(u)=\psi_{F}^{\prime}(u)(x-u)+\frac{1}{2} \psi_{F}^{\prime \prime}(u)(x-u)^{2}+\frac{1}{6} \psi_{F}^{\prime \prime \prime}(u)(x-u)^{3}+\ldots
$$

Using $Y^{(k)}(t) \stackrel{d}{=} \psi_{F}\left(W^{(k)}(t)\right)$, putting $x=W^{(k)}(t)$ and taking expectations, we obtain

$$
\begin{align*}
E Y^{(k)}(t)= & \psi_{F}(u)+\psi_{F}^{\prime}(u) E\left(W^{(k)}(t)-u\right) \tag{8.1}\\
& +\frac{1}{2} \psi_{F}^{\prime \prime}(u) E\left(W^{(k)}(t)-u\right)^{2}+\frac{1}{6} \psi_{F}^{\prime \prime \prime}(u) E\left(W^{(k)}(t)-u\right)^{3}+\ldots
\end{align*}
$$

Taking into account that $W^{(k)}(k u)$ is $\Gamma(k u, k)$ distributed, we see that if $t=k u$, then $E\left(W^{(k)}(t)-u\right)=0$ and $E\left(W^{(k)}(t)-u\right)^{2}=u / k$. Putting these quantities into (8.1) we get

$$
E Y^{(k)}(k u)=\psi_{F}(u)+\frac{u \psi_{F}^{\prime \prime}(u)}{2 k}+\frac{1}{6} \psi_{F}^{\prime \prime \prime}(u) E\left(W^{(k)}(k u)-u\right)^{3}+\ldots
$$

Therefore $Y^{(k)}(k u)$ can be considered as an estimator of the value $\psi_{F}(u)$.
Definition 6. The estimator $\hat{\psi}_{F}(u)$ of the inverse to hazard function at the point u based on the k-th fractional record values is defined as

$$
\hat{\psi}_{F}(u)=Y^{(k)}(k u), \quad u>0
$$

Note that using the fractional record values instead of the ordinary record values allows us to reduce the bias of $\hat{\psi}_{F}(u)$.

We consider also the estimator of $\psi_{F}(u)$ based on the sequence $\left\{Y_{n}^{(k)}, n \geqslant 1\right\}$ of k-th record values from F.

Definition 7. The estimator $\tilde{\psi}_{F}(u)$ of $\psi_{F}(u)$ based on the k-th record values from F is defined as

$$
\tilde{\psi}_{F}(u)=(1-\{k u\}) Y_{[k u]}^{(k)}+\{k u\} Y_{[k u]+1}^{(k)},
$$

where $[x]$ and $\{x\}$ stand for the integral and fractional part of a real number x.
Note that the values of $\tilde{\psi}_{F}(u)$ may be obtained from empirical data, on the contrary to $\hat{\psi}_{F}(u)$. The values of $\hat{\psi}_{F}(u)$ can be approximated by the values of $\widetilde{\psi}_{F}(u)$, as stated in the following theorem.

Theorem 7. Let $\varepsilon=\{k u\}$. Then

$$
\begin{equation*}
E\left(\tilde{\psi}_{F}(u)-\hat{\psi}_{F}(u)\right)=\frac{\varepsilon(1-\varepsilon)}{2 k^{2}}\left(\psi_{F}^{\prime \prime}(u)+u \psi_{F}^{(3)}(u)\right)+O\left(k^{-3}\right) \tag{8.2}
\end{equation*}
$$

Proof. Let $\mu_{j}^{\prime}=E\left(W^{(k)}(t)-t / k\right)^{j}, j \in N$, stand for the j-th central moment of $W^{(k)}(t)$ and let $c=t / k-u$. Then for $j \geqslant 2$

$$
\mu_{j}^{\prime}=\frac{1}{k^{j}} \sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} t^{j-i} \frac{\Gamma(t+j)}{\Gamma(j)}=O\left(\frac{1}{k^{j}}\right)
$$

which implies for $r \geqslant 2$

$$
E\left(W^{(k)}(t)-u\right)^{r}=\sum_{j=0}^{r}\binom{r}{j} c^{r-j} \mu_{j}^{\prime}=O\left(\frac{1}{k^{r}}\right) .
$$

Moreover, by (8.1) the left-hand side of (8.2) may be written as

$$
\begin{equation*}
\psi_{F}(u)+\psi_{F}^{\prime}(u) M_{1}+\frac{1}{2} \psi_{F}^{\prime \prime}(u) M_{2}+\frac{1}{6} \psi_{F}^{\prime \prime \prime}(u) M_{3}+\ldots, \tag{8.3}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{r} & =(1-\varepsilon) E\left(W_{[k u]}^{(k)}-u\right)^{r}+\varepsilon E\left(W_{[k u]+1}^{(k)}-u\right)^{r}-E\left(W^{(k)}(t)-u\right)^{r} \\
& =\sum_{j=0}^{r-1}\binom{r}{j} \frac{\mu_{j}^{\prime}}{k^{r-j}}\left\{(1-\varepsilon)(-\varepsilon)^{r-j}+\varepsilon(1-\varepsilon)^{r-j}\right\} .
\end{aligned}
$$

Therefore

$$
M_{1}=0, \quad M_{2}=\frac{\varepsilon(1-\varepsilon)}{k^{2}}, \quad M_{3}=\frac{\varepsilon(1-\varepsilon)}{k^{2}}\left(3 u-\frac{2 \varepsilon^{2}-2 \varepsilon+1}{k}\right) .
$$

Putting these expressions into (8.3) we get (8.2). \square
Now we show how to construct the confidence intervals for $\psi_{F}(u)$ using $\tilde{\psi}_{F}(u)$ and $\tilde{\psi}_{F}(u)$. As $W^{(k)}(t) \sim \Gamma(t, k)$, we obtain

$$
P\left(Y^{(k)}(t) \leqslant \psi_{F}(u)\right)=P\left(W^{(k)}(t) \leqslant u\right)=\frac{\Gamma(t ; k u)}{\Gamma(t)}
$$

where $\Gamma(\alpha ; x)$ is incomplete gamma function given by (3.2). Therefore, for $0<t<s$

$$
\begin{equation*}
P\left(Y^{(k)}(t) \leqslant \psi_{F}(u) \leqslant Y^{(k)}(s)\right)=\frac{\Gamma(t ; k u)}{\Gamma(t)}-\frac{\Gamma(s ; k u)}{\Gamma(s)} . \tag{8.4}
\end{equation*}
$$

If $t, s \in N$ and $t=n, s=n+r$, then (8.4) takes the form

$$
P\left(Y_{n}^{(k)} \leqslant \psi_{F}(u) \leqslant Y_{n+r}^{(k)}\right)=e^{-k u} \sum_{i=n}^{n+r-1} \frac{(k u)^{i}}{i!} .
$$

Therefore, to construct the $100(1-\alpha) \%$ confidence interval of the form

$$
\left(Y^{(k)}(t), Y^{(k)}(s)\right)
$$

we choose as t and s the solutions to the equations

$$
\begin{gather*}
\frac{\Gamma(t ; k u)}{\Gamma(t)}=1-\frac{\alpha}{2} \tag{8.5}\\
\frac{\Gamma(s ; k u)}{\Gamma(s)}=\frac{\alpha}{2} \tag{8.6}
\end{gather*}
$$

Alternatively, t and s can be approximated as follows:

$$
\begin{equation*}
t \approx \Gamma_{k u, 1}^{-1}(\alpha / 2) \tag{8.7}
\end{equation*}
$$

$$
\begin{equation*}
s \approx \Gamma_{k u, 1}^{-1}(1-\alpha / 2) \tag{8.8}
\end{equation*}
$$

where $\Gamma_{a, b}^{-1}(p), p \in(0,1)$, denotes the quantile of order p of gamma $\Gamma(a, b)$ distribution.

Note that in general the values given in (8.7) and (8.8) are easier to find. However, for the values of t and s determined by (8.5) and (8.6) the coverage probability is exactly $1-\alpha$, while for t and s determined by (8.7) and (8.8) the coverage probability is only approximately equal to $1-\alpha$.

To summarize the above consideration, we define the exact $100(1-\alpha) \%$ confidence interval for $\psi_{F}(u)$ as

$$
\left(\hat{\psi}_{F}(t / k), \hat{\psi}_{F}(s / k)\right),
$$

where t and s are given by (8.5) and (8.6), respectively. But in practice we propose using the approximate $100(1-\alpha) \%$ confidence interval for $\psi_{F}(u)$ defined by

$$
\left(\tilde{\psi}_{F}(t / k), \tilde{\psi}_{F}(s / k)\right)
$$

where t and s are given by (8.5) and (8.6), respectively.
Acknowledgements. The authors are very grateful to the referee for pointing out some interesting references and comments.

REFERENCES

[1] M. Ahsanullah, Some inferences of the generalized extreme value distribution based on record values, J. Math. Sci. 78 (1996), pp. 2-10.
[2] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records, Wiley, New York 1998.
[3] E. Bertoin, Lévy Processes, Cambridge University Press, Cambridge 1996.
[4] L. Bondenson, On simulation from infinitely divisible distributions, Adv. in Appl. Probab. 14 (1982), pp. 855-869.
[5] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Zastos. Mat. 15 (1976), pp. 187-190.
[6] T. S. Fergusson and M. J. Klass, A representation of independent increment processes without Gaussian component, Ann. Math. Statist. 43 (1972), pp. 1634-1643.
[7] A. D. Hutson, Calculating nonparametric confidence intervals for quantiles using fractional order statistics, J. Appl. Statist. 26 (1999), pp. 343-353.
[8] M. C. Jones, On fractional uniform order statistics, Statist. Probab. Lett. 58 (2002), pp. 93-96.
[9] J. F. C. Kingman, Random discrete distributions, J. Roy. Statist. Soc. Ser. B 37 (1975), pp. 1-15.
[10] N. Papadatos, Intermediate order statistics with applications to nonparametric estimation, Statist. Probab. Lett. 22 (1995), pp. 231-238.
[11] P. Pawlas and D. Szynal, Relations for single and product moments of k-th record values from exponential and Gumbel distributions, J. Appl. Statist. Sci. 7 (1998), pp. 53-61.
[12] V. K. Rohatgi and A. K. Saleh, A class of distributions connected to order statistics with nonintegral sample size, Comm. Statist. Theory Methods 17 (1988), pp. 2005-2012.
[13] S. M. Stigler, Fractional order statistics, with applications, J. Amer. Statist. Assoc. 72 (1977), pp. 544-550.

Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: mbieniek@hektor.umcs.lublin.pl

Received on 15.5.2003;
revised version on 27.12.2003

