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Abstract. In this paper, the generalized (two-parameterized) 
t-transformations on probability measures are introduced, in which the 
t-transformation of Boiejko and Wysonariski can be obtained as the 
special case, and the associated deformed convolutions are also inves- 
tigated. We see that the generalized t-deformed f e e  convolution can be 
realized as the conditionally free convolution of Boiejko, Leinert, and 
Speicher. We also study another special case of the generalized t-de- 
formed free convolution, which is called the r+ee convolution, that 
gives an interpolation between the free and the Fermi convolutions. 
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0. INTRODUCTION 

Let V be an invertible map on the set of probability measures on R with finite 
moments of all orders. For two probability measures p, and p,, and a given 
convolution O (for which the classical convolution, the Voiculescu's free con- 
voIution, and other convolutions may serve), one can have the following defor- 
mation of the convolution associated with the invertible map V :  We define the 
dejhrmed convoIution of the probability measures pl and p, by the relation 

that is, the convoIuted measure y is defined as the Vinversion of the convolution 
of the transformed measures V(p , )  and V(p , ) .  

Boiejko and Wysoczariski introduced the invertible map U, on probabili- 
ty measures for t > 0, which is called the t-transformation, and considered the 
associated deformations of the classical (t-classical) and of the free (t-free) con- 

* The first-named author was partially sponsored with KBN grant no. 2P03AO0723 and 
RTN HPRN-CT-2002-00279. 
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volutions in the above manner in [4] and IS]. The central limits and the 
Poisson type limits with respect to the t-classical and to the &-free convolutions 
were also investigated. Furthermore, the model of the t-classical and the t-free 
Gaussian random variables were constructed on the t-deformed symmetric 
(boson) Fock space and on the t.-deformed full Fock space, respectively. 

In this paper we shall introduce a generalization of the t-transformation 
which is called the t ('cbold t')-transfunnation or the generalized t-transfurma- 
tion. The definition is still based on the reciprocals of the Cauchy transforms as 
for the t-transformation, but we shall impose two parameters, the diagonal 
graph of which will give the original t-transformation. 

The central limit measures with respect to the i-deformed classical and the 
t-deformed free convolutions are the same as the ones for the original t-defor- 
mations, but the Poisson limits depend on the two parameters. In Section 2, we 
calculate the t-deformed classical Poisson limit and give the orthogonal poly- 
nomials that belong to its limit probability measure. 

The subsequent sections are devoted to the study of the deformed free 
case. In Section 3, we see that the t-deformed free convolution can be obtained 
as the conditionally free convolution of Bozejko et al. in 131, which enables us 
to apply the results on the conditionally free convolution to our t-deformed 
free convolution. Using the combinatorial results in [3], we give the moment- 
cumulant formula for the t-deformed free convolution, which requires a finer 
set partition statistic on non-crossing partitions than the number of inner 
blocks (see [ 5 ] )  for the t-free convolution. 

The Poisson limit with respect to the t-deformed free convolution is cal- 
culated in Section 4 and we also give its limit measure explicitly with the 
orthogonal polynomials. In the last section, we shall restrict ourselves to the 
special case of parameters other than the usual t-free case, which yields the 
z-free convolution. This new family of deformed free convolutions gives an 
interpolation between the free and the Fermi (see [7]) convolutions. We also 
construct the model of the z-free Poisson process on the deformed full Fock 
space that is the same as the t-deformed full Fock space introduced in [5].  It is 
required to consider the gauge operator on the z-free Fock space other than the 
creation and annihilation operators in order to give the model of the T-free 
Poisson process. It would be notable that our model has exactly the same form 
as for the free Poisson process on the full Fock space constructed in [9]. 

1. GENERALIZED t-TRANSFORMATIONS AND CONVOLUTIONS 

We shall introduce the transformation of probability measures on R, 
which is a certain generafization of the t-transformation investigated in [4] (see 
also 151). Although the definition itself does not require that the probability 
measure has finite moments, we will work in this paper on the class of proba- 
bility measures 9" (R) of finite moments of all orders because we would like to 
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discuss on the continued fractions (Stieltjes expansion) and on moment-cumu- 
lant formulae. 

The Cauchy transform G, of the probability measure p is defined for 
ZEC' = ( z E C :  3 z  > 0) by 

By the Nevanlinna theorem (see, for instance, [ I] ) ,  we know that a function 
F (z) is the reciprocal of the Cauchy transform of a probability measure if and 
only if there exists a positive measure e and a real number a such that for every 
3 2  > 0 

Now we shall define the transformation on 9" (R), which acts essentially 
on the pair (a, p). 

DEFINITION 1.1. Let p be a probability measure in 9" (R)  and we write 
the reciprocal of the Cauchy transform of p as 

For a real number a and a positive real number b, we consider a pair of 
numbers t = (a, b) and define the t ( =  (a, b))-transformation 0'') by 

Ott) @) = p(%l, 

where the probability measure Cl(i) is determined by the formula 

Here G,(,,(z) is the Cauchy transform of the probability measure p(*'. Namely, 
the t (= (a,  b))-transformation induces the map on the pairs of a constant and 
a positive measure such that (a ,  e)  H (aa, be). 

Remark  1.2. The following formula is a direct consequence of the defini- 
tion: 

where E (p) denotes the mean (the first moment) of the probability measure p. 
In the case of a = b = t, the transform o(') is reduced to the t-transfor- 

mation U, in [4]. Thus we also call the "bold t" transformation @*) the gene- 
ralized t-transformation. 
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Here we shall describe the change of moments on our t ( = ( a ,  b))-trans- 
formation. 

LEMMA 1.3. For  EN, we write the nth moments of probability measures 
p and p(*) as 

m, = J xn dp (x) and fin = j xn dp(*) ( X I ¶  
R R 

respectively. Then we have 
n- 1 n - 1  

mn = b- ' f i ,+(b- ' - l )  mkfi . -k+(l-u/b)rnl  m k @ - k - l ,  
k =  1 k = O  

Pro of. For a probability measure v, we write 

the moment series of the probability measure v,  which is related to the Cauchy 
transform G,(z) by 

1 By the relation (1.2), we have 

which yields the equation 

M ,  (z) = bMP(o (z)  + ((1 - b) + (b - a) ml z) M,w (z) M ,  (z) .  

Using the Leibnitz formula for differentiation at z  = 0, we obtain the relation 

M ( 0  M$!) (0) 
= b-  " Mf' (0) M;; k ,  (0) 

+ ( I -b )  - 
n ! n ! k = O  k!  (n-k)! 

which implies that 

Since m, = r f i ,  = 1, we have the desired formulae. mt 
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PROPOSITION 1.4. The following properties of the t-tran$ormation are satis- 
fied : 

(1) The t-transformation is multiplicative, that is, 

where we use the notation t l - t 2  = ( a l ,  bl)._(a2, b,) = ( a 1 a 2 ,  b1 b,). 
(2) Dilation of a measure DA commutes with U('), that is ,  

(3)  For a pair t = (a ,  b), where a # 0 and b > 0, we write t -I  = ( a p 1 ,  b-I) .  
Then 0 " )  and I(*-') are inverses of each other. 

(4) For any real number o! and t = (a, b), 0''' (6,) = a,,, where S, denotes the 
Dirae unit mass at x. 

P r o  of. Concerning the first property ( I ) ,  it folIows from the definition 
that 

where we have used the relation 

E(O(*l)(p)) = a1 E k ) .  

Thus we obtain 

Concerning the second property (2), we should note that, for a. probability 
measure v and the dilation D,, we have 

D, (v) (3) = v (A- B) for any Bore1 set 3,  

I which implies the following formula on the Cauchy transforms: 
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Hence we obtain 

because we know the relation 

E (D, (v)) = AE (v )  . 

On the other hand, it follows that 
1 - - n 

( j  (2) Giflt)(,L) (z/]") 

Thus the dilatation D, commutes with the map @t). 

Now the properties (3) and (4) are obvious. H 

Remark  1.5. The t (= (a, b))-transformation of a probability measure 
can be seen in terms of continued fractions, that is, it just multiplies the coef- 
ficients a ,  and / I l  (the Jacobi parameters of the first level for the original 
probability measure) by a. and b, respectively: 

1 
G,(Il(2) = 

Z-am1 - bP1 

2 - M 2 -  
P2  

z-a3-  P 3  

P4 
Z - M 4 - 7  

EXAMPLE 1.6. We shall compute the t ( =  (a, b))-transformation of the Ber- 
noulli measure. Let ,ti, be the Bernoulli measure with success probability p, that is, 

pi3 = ( ~ - P ) ~ o + P ~ ~ -  

Since we know that 

we can obtain, by the definition, 
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If we put 

then one can decompose R1 (z)/R, (2)  into the partial fractions of the form 

where A and B are the zeros of the polynomial R,(z) which are given by 

l - p + a p - y  I - p + a p + y  
A =  

2 
, B =  

2 
with 

and the coefficients P and Q are given by 

This means that the measure l?')(pB) is again a two-point measure: 

As we have seen in Proposition 1.4, for a # 0 and b > 0, the t ( =  (a, b))- 
transformation 0''' is invertible, thus one can define the deformed convolution 
associated with the map o(') in the same manner as for the t-deformation in [4] 
(see also [5]). 

DEFINITION 1.7. Let p1 and pz be two probability measures in 9'" (R) and 
let a be a non-zero real number and b be a positive number. The t (= (a, b))- 
deformed convolzntion p1@(r)p2 can be defined as 

where @ on the right-hand side is an original convolution, for instance, the 
classical convolution or the Voiculescu's free convolution. The map (o('))-l is 
the inverse of @'), which is given by (3) in Proposition 1.4. 

Remark  1.8. If a given convolution is associative, then its t-deformation 
is also associative. It is not so difficult to see that the central limit measure with 
respect to the t(=(a,  b))-deformed convolution does not depend on a but it is 
the same as for the t-deformation in [4] and [ 5 ] ,  where we should put t = b. 
The Poisson limit measure, however, depend both on a and on b as we will see 
later, 
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2. THE 6-DEFORMED CLASSICAL POISSON LAW 

In this section we shall study the Poisson limit theorem for t-deformed 
classical convolution. The t-free case will be discussed later in another section. 

D E ~ I O N  2.1. For a number O 6 A < 1, we consider the sequence of 
measures 

We define the t-dejiormed classical Poisson measure of parameter A, c-Po$), by 
the weak limit 

where * means the classical convolution. In this section, we shall abbreviate 
c-Pot] as pn. 

Let us remind from Example 1.6 that the t-transformed measure of y, is 
given by 

(2.1) 0") ( P N ~  = PN B A N  + Q N  d ~ ~ ,  

where 

with putting 

In order to calculate the limit measure, we shall use the Fourier transform. 
We put 

By the definition it follows that 

where 9 denotes the Fourier transform. We infer from the equation (2.1) that 

F [@) (PN)] (x )  = PN exp (ixA,) + Q ,  exp (ixBN) 
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and consider the Taylor expansion 

Here we would like to study the limit, as N tends to infinity, of the Nth power 
of the Fourier transform and only terms containing Npl in power 0 or 1 will 
contribute to the limit. By small calculation we obtain 

Using this estimation, we get the following lemma: 

LEMMA 2.2. For each positive integer n, we obtain 

A%+& = 1+0(;). 

Proof .  For n = I, we have 

and, for n 2 2, 

The following lemma shows what contribution of each term of the series 
should be taken into account: 

LEMMA 2.3. For each positive integer n, we obtain 

P r o o f. Using the definitions and the relation y N = BN - A,, we may 
write, for n 2 3, that 

P N A ~ +  Q N B ~  

n B", A",A, B", B ,  A", 
='&+As)-( BN-AN ) 
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where, for the second last equality, we have used the estimations 

A N - 1  = -B ,+O and B N - l = - A N + O  

For n = 2, we can easily calculate 

For n = 1, we get 

THWREM 2.4. The Fourier transform ofthe t (= (a, b))-transformed measure 
of the t ( = ( a ,  b))-deformed classical Poisson measure of parameter A is given b y  
the formula 

9 [o(') ( p J ]  (x)  = exp (bA (eix - 1)) exp (i ( a  - b) Ax). 
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Proof .  It follows from the above lemmas that 

" (ix)" 
Cdit' kN)] (x) = -T ( P N  A; + QN 3;) 

n = O  n. 

a A * (ix)" 

N n = 2  

arl bL " (ix)" 
= I + - ( i x ) + -  - + O ( $ )  

N N , , ,  n !  

Hence we have 

lirn 9 [8(') (eN)] (x) = lirn (9 [@ (pJj ( x ) ) ~  
N+ m N-m 

= lim 
N - t m  

= exp (((a - b) ix - b + be'? 1) = exp (br2 (e'" - 1)) exp (i (a - b) Ax). H 

COROLLARY 2.5. The t ( =  (a, b))-transformed measure of the t ( =  (a, b))- 
deformed cEassica1 Poisson measure of parameter R is given by 

We shall investigate the orthogonal polynomials for the probability mea- 
sure p,, First we recall that the Charlier polynomials belong to the classical 
Poisson measure which is, of course, the discrete measure, 

Namely, the Charlier polynomials have the orthogonal relation 

A I C. (x, I.) Cn (x, A) = A-" e h !  6, 
x = o  X. 

and satisfy the recurrence relation 

C - ~ ( X , I I ) = O ,  c o ( x , a ) = 1 ,  

(l+n-X)C,(X, R)=LC,+,(X, l)+nCn-,(X, for n > 0. 
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We can also consider the monic polynomials 

P , ( X ,  A) = (-I1)"Cn(X, A), 

which satisfy the recurrence relation 

P - , ( X , A ) = O ,  P,(X,A)=I, 

(X-A-n)P,(X,A)=P,+i(X,A)+nAP,-l(X,I) f o r n 2 0 .  

By comparing the measures in (2.2) and (2.3), it can be seen that the measure 
O(')(p,) can be obtained as the right shift by ( a  - b) L of the classical Poisson 
measure of parameter bA, so the monic orthogonal polynomials (p, (X)) for the 
measure O(')(pA) are given by 

Fn(X) = P , ( X - ( a - b ) A ,  bL), 

the recurrence relation of which becomes 

( =  P 1 ( x ) = x - b i ,  

p , , + l ( ~  = ( x - ~ A - ~ ) ~ ~ ( x ) - ~ ~ R P , - , ( x )  for n 2 0, 

that is, the Jacobi parameters, for n 2 1, can be given by 

o l , = a l + n - 1 ,  p,=nbJ..  

Hence we can obtain the Cauchy transform of the probability measure 
in the continued fraction (Stieltjes expansion): 

z-uj l -  
z - a i - l -  

2bl 

z - a A - 2 -  
3bA .. - 

Since p ,  can be obtained as the t- = (a- l , b-')-transformed measure of 
o(*)(p,), it follows, with the help of Remark 1.5, that the Cauchy transform of 
the probability measure p, can be given in the continued fraction 
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Thus we have the foliowing orthogonal polynomials: 

THEOREM 2.6. The orthogonal polynomials {P?I'(X)) for the t-deformed 
classical Poisson measure pn are given by the following recurrence relations: 

p',Pn) (X) = (X - (a A + 1)) P?) (X) - IE P F I )  (X) , 

P::), (X) = (X - (a1 + n)) PF) ( X )  - nb~p[P?)~ (X) for n 3 2 .  

3. REMARKS ON THE t-DEFORMED FREE CONVOLUTION 

For a given map V on probability measures on R, one can define a defor- 
med free convolution po of the probability measures p1 and p2 associated with 
the map V using the following formula of the conditionally free convolution in 
[3] (see also [2]): 

namely, we use the transformed probability measures as the conditional part. 
Now we shall take the t-transformation o(*) as the map V and consider 

the conditionally free convolution as above. Then we shall see that the @')-free 
convolution coincides with the t-deformed free convolution introduced in Defi- 
nition 1.7, which allows us to apply the results on the conditionally free con- 
volution to our t-free case. 

PROPOSITION 3.1. Let pl and p2 be probability measures in 9" (R). For 
a given t (= (a,  b)), the t-deformedfiee convolution p1 El(,) p2 satisjies the relation 

where Ej on the right-hand side denotes the conditionally fiee convolution for 
pairs of probability measures in 131. 

P r o  of. We denote the t-deformed free convolution of pl and p2 by p,, 
that is: 

(1) - ( t )  Cl(t) 
Po - P1 2 ' 

where = Since pg) is the free convolution of pt) and p!), and the 
Voiculescu 9-transform of P?' is given by 
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we have the following relation: 

(3.1) G & ~ ( Z ) - Z - ~  = (~;p~~(z)-z-~)+(~:yl')(z)-z-~), 

where G& is the inverse of the function GPy, with respect to the composition. 

On the other hand, the relation (1.2) in Remark 1.2 can be reformulated as 

and, by substituting G$"(z) into z ,  we obtain the relation 

where we have used the fact that E ( p f l )  = aE (pi). Combining the relations (3.1) 
and (3.2), we obtain 

Since the mean E ( p r ) )  is the first cumulant of p?) with respect to the free 
convolution, namely 

E (p!)) = E (p':') + E (p!)), 

we obtain 

) + (G& (z )  - G,~(G& (z)) 

The above relation ensures that the probability measure p, should be given by 
the @)-free convolution of ,ul and p2. Actually, for a probability measure p, 
the cumulant series g$) for the @)-free convolution can be determined by the 
relation (see [3]) 
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where v = p"), that is, 

(-1) 1 a!) (z)  = G,a (2 )  - 
Gp (G$ > (2)) * 

Thus the relation (3.3) implies 

9;; (z )  = 9;; (z) + 9;; (2). 

Now we shall discuss the moment-cumulant formula for the t-deformed 
free convolution. We write the cumulant series for the t-deformed free con- 
volution of a probability measure p as 

and the Voiculescu B-transform of the t-transformed measure v = P(*) in the 
form 

With the help of the combinatorial investigations on the conditionally free 
convolutions in 131 {see also [4]), we have the following relation among the 
moment sequence {m, (41, and the cumulant sequences { R t )  (p)) ,  and 
{rn (v)ln3 1 : 

where NC(n) denotes the set of non-crossing partitions of n elements. Here 
a block B, of a non-crossing partition is called inner if it is contained in some 
other block. A block 3, which is not inner is called outer. 

As we have observed in the proof of Proposition 3.1, the relation (1.2) for 
the t-transformation can be reformulated as 

By substituting G$ ( z )  for z, we can derive the relation between W;)(z)  and 
9, tz): 

9, (z) = b@) (2) +(a  - b)  E  ( p ) .  

Since the mean of p might be regarded as the first cumulant for the t-deformed 
free convolution, namely E ( p )  = R':)(p)), we obtain 
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which implies 

r 1 Iv) = aR':) (PI, 

r v )  = b (p) for n 2 2. 

In order to give the moment-cumulant formula for the t-free convolution, 
we shall introduce the statistics on non-crossing partitions: ins(x) defined as 
the number of inner singletons, and nsi(n) determined as the number of non- 
singletonic inner blocks. Putting the relations (3.6) into the formula (3.5), we 
obtain the following: 

THFDREM 3.2. The moment-cumuIant fomzuEa for the t ( =  (a, b))-deformed 
free convolution can be given by 

As we have mentioned before, in the case of a = b = t, the above formula will 
be reduced to, of course, the one for the t-free convolution because (ins fx) +nsi (XI) 
is nothing else but the number of inner blocks of the non-crossing partition x. 

4. THE if-DEFORMED FREE POISSON LAW 

In this section we shall study the Poisson limit theorem for t-deformed free 
convolution. 

As we have done in Section 2, it is natural to define the t-deformed free 
Poisson measure of parameter A, f-Poj;L), by the weak limit 

where 

and, of course, means Voiculescu's free convolution. In this section, let us 
simply denote f-Po!) by p,.  

We write the t (=  a,  b))-transformed measure of p, in the form 

where A,, B,, P,, and Q, are the same as in (2.1). The Voiculescu &!-transform 
of @*) (p,), afi(l,(,N, (z), should satisfy the relation 
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which can be solved as 

- A (az- bz - a) - 
(z-  l ) N  +.($). 

Since we know that 

B(fi(1)(VN))'~(~) = N%(f)(PN) (4, 
taking the limit N + a, we obtain 

which implies that the free cumulants of t ( =  (a, b))-transformed measure 
can be given by 

rl (Pi) (pJ) = aA, 

( ) )  = A for n >, 2. 

Thus it follows that. the t-deformed free cumulants series of the t-deformed free 
Poisson law pn becomes 

because, by the relation (3.6), we have 

R$)(p,)=I for n 2  1 ,  

which is still consistent with the characterization of the Poisson law, that is, the 
Poisson law of parameter R should be characterized as the law all the cumu- 
lants of which are equal to 2. 

Now let us determine the measure of the t ( =  (a, b))-deformed free Poisson 
law, p 2 ,  exactly. By the formula (3.4) for the conditionally free convolution, the 
Cauchy transformation of p, should satisfy the relation 

that is, 

8 - PAMS 24.1 
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which implies the quadratic equation 

AGPA ( z ) ~  + BGPA (z) + C = 0, 

where 

A = (b-1)z2++!II+a; l+l -2bl )z - (a-b)A2,  
(4.1) B = (1-2b)z+(2b-a)R-1, C = b .  

Although we can determine the probability measure p,  by solving the 
above quadratic equation and using the Stieltjes inversion formula, we shall 
here give the measure with the help of the orthogonal polynomials. 

L m  4.1. The Cauchy transform of the t-deformed free Poisson measure 
g, can be expanded into the following continued fraction: 

P r o  of. First we give the function H (z) by the relation 

which yields the equation 

(4.2) H(z)~-(z-  (aA+ l ) )~ (z )+bl l  = 0. 

If we put the function G(z) as 

then it can be easily checked by using the equation (4.2) that G(z) satisfies the 
same quadratic equation as in (4.1). H 

Applying the theory of Stieltjes expansion (see, for instance, [lo]), it can be 
claimed that the t-deformed free Poisson measure p, has the following or- 
thogonal polynomials: 

PROPOSITION 4.2. We define the sequence (Q$^)(X)),30 of polynomials by 
the following recurrence relations: 

Qb"i' ( X )  = 1, Q p '  (X) = X - A, 
Q ~ ) ( X )  = (x-(UA + 1)) Q[P3 ( X ) - R Q ~  (X), 

QF!)l (X) = (X - (an + 1)) Q(P^) (x) - bAQ$)l ( x )  for n $2.  
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Then {Qih) (X)), ,, makes an orthogonal system with respect to the t-deformed 
free Poisson measure p ~ ,  that is, 

We can reformulate our orthogonal polynomials in a constant recurrence 
type of Cohen-Trenholme (see [6])  in the following way: 

Qn+l(X)=(~-(aA+l))Q,(X)-b;lQ,-l(X) for n 2 1 .  

The unique probability measure orthogonalizing the above system of polyno- 
mials has been calculated in [XI (see also [6]), which is compactly supported 
and it has the absolutely continuous part and the discrete part in general. 
Using the result in [8], we can give the probability measure pl exactly as 
follows: 

f (x) = (b- 1)x2+(;1+aA+ 1 -2b;l)x-(a-b)R2. 

Then the absolutely continuous part pf of the t-deformedfree Poisson measure 
PA is given by 

and the discrete part pfl is 0 except possibly in the following cases: 
Case 1. f ( x )  has two real roots yyl and y,. Then 

where 

In this case, the parameters should satisfy the inequality 

(A+1)2-taA(aR-2A+2)-4Rb > 0,  

and two real roots can be giuen by 
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Case  2. b = 1 and i # uaR + 1 so that f jx) has one real root 

Then 

d p f ( x )  = max 0, 1- 
bL 

( (i - aa - 112) J Y .  

5. DEFORMED FERMI CONVOLUTION 

In this section, we consider another special case of the t-transformation, 
which will give an interpolation between free and Fermi convolutions in the 
deformed free case. 

DEFINITION 5.1. For T 0, we shall call the t (= (1, z))-deformed free con- 
volution the z-free convolution. 

The r-free convolution will give a deformation of Fermi convolution in- 
troduced in [7]. Actually, it follows from Theorem 3.2 that the moment-cumu- 
lant formula for the z-free convolution can be given by 

mn (p) = C znSi(X1 n R$, (p), 
mNC(n) BEX 

where nsi(n) is the number of non-singletonic inner blocks of non-crossing 
partition n. In the case of z = 0, this formula will be reduced to the following 
one for the Fermi convolution: 

where AIP (n) denotes the set of almost interval partitions of n elements, which 
are non-crossing partitions that do not contain inner blocks other than sin- 
gletons (see [7]). Thus the z-free convolution interpolates between free and 
Fermi convolutions at z = 1 and at z = 0, respectively. 

As we have mentioned before, the z-free Gaussian law is the same as for 
the t-free case in [4] and the model of the z-free Gaussian random variables 
would be also realized as in E5] on the .t (= t)-free Fock space. Here, we shall 
give the model of the z-free Poisson processes on the z-free Fock space using 
the knowledge of the z-free Poisson law, which can be easily obtained from the 
previous section. 

For our convenience, we shall begin with recalling the definition of the 
z-free Fock space that is a deformed full Fock space introduced in [ 5 ] .  
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DEFINITION 5.2. For z 2 0 and a given Hilbert space # with the scalar 
product ( I ) (later, we will specialize to Jf = I? (R+)), the r-free Fock space is 
defined as the full Fock space 

completed with respect to the following scalar product: 

where D is the distinguished unit vector called uacuum. 
For a vector E X, we define the z-creation operator a(')* (5) on 6(') (2) by 

and the z-annihilation operator a('](<) on B( ' ) (X)  by 

where c,, r,, . . . , 9, are arbitrary vectors in %. 

Remark 5.3. The operators a(')(t) and a(')*(t) are adjoint of each other 
with respect to the scalar product (I),, that is, a(')* (c) = a(') (5)". 

The vacuum state cp on all bounded operators b on the Fock space F(")(X) 
can be defined as 

cp (b) = 1 a. 
Re mark 5.4. The position operators 

are the model of the z-free Gaussian random variables, that is, the distribution 
of the operator g("(5) with respect to the vacuum expectation can be given by 
the z-free Gaussian law (see [5]).  

Furthermore, in order to give the z-free Poisson processes, we shall adopt 
the analogue p (T) of the gauge operator for T E  B(%) introduced in [9], which 
is defined as 

P ( T )  52 = 0, 

The operator p (T) can be also regarded as the differential second quantization 
operator for the free case. 
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Here we take 2 = L2 (R +) with the canonical inner product, and consider 
the r-free Fock space F(')(J!.? (R+) ) .  For k EL" (R,),  we define the multiplication 
operator by Cf) = h i  where f GI? (R,), and write p (h) = p (T,). 

Let us consider the sum of the basic processes a, = a(')(~L,, , )) ,  
* - (TI - a ( X I O , ~ ) ) * ,  P X  = P ( x ~ o , ~ ) ) ,  and the scalar 

c, = p,+a,+a,*+xl (XE R + )  

on the z-free Fock space, 9(" (I? (R+)), where Xro,xl is the characteristic function 
on the interval [0 ,  x). 

We shall see that the process c, is our desired T-free Poisson process. 

LEMMA 5.5. For x >, 0, let { Q ~ * " ) ( X ) ) , " = ~  be the orthogonal pulynomiaEs 
with respect to the z - - e e  Poisson measure of parameter x (cf. Proposition 4.2). 
Then we have 

where x$$, meam n. 
Proof.  We shall show the lemma by induction on n. It is clear that 

Q:."] (c,) 62 = 1Q = 9, QFx) (ex) 52 = a: In -xlo = X ~ O , , ) ,  

Q p x )  (c,) fi = (c, - (x  + 1) 1) QfmX) (c,) In - X Q ~ ' ~ )  (cJ fi 

= CPx + ax + a,* - 1) X I O , ~ )  - xi-2 
8 2  

= X r o , ~ )  + xQ + ~ $ 5 )  - ~r0.x) -xQ = X r o , ~ ) .  

Assume Q p x ) ( c x ) 9  = x$:, for k 6 n. Then we obtain, for n > 2, 

It  follows from Lemma 5.5 that if k # rn, then we have 

because the operator c, is self-adjoint with respect to the inner product (I),. 
This means that, for any polynomial f, we have 

(f ( c 3  Q I fi), = J f (Y) dP!' (Y) 2 

Y ~ R  

where p$) is the z-free Poisson measure of parameter x. Here we have obtained 
the following theorem: 
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THEOREM 5.6. The moments of the process c, (x 2 0) with respect to the 
vacuum expectation can be given by  the z-free Poisson law of parameter x, 
namely, 

where NC(n, k )  is the set of non-crossing partitions of n elements with precisely 
k blocks. 

Remark 5.7. In [9], it can be found that the free Poisson process on the 
full Fock space is of the same form as c,, which corresponds to the case of 
z = 1. Therefore the (z = 0)-free Poisson process can be regarded as the model 
of the fermionic Poisson process. 
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