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Abstract. In the present paper we consider a continuous time 
random walk on an anisotropic random lattice. We show the existence 
of a steady state 0, for the environment process (( (t)),ao corresponding 
to the walk. This steady state has the property that the ergodic ave- 
rages of (~( i  (f)))rbO, where F is IocaI (i.e. it depends on finitely many 
bonds of the lattice only), converge almost surely in the annealed 
measure to j Fd,G2. 
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1. INTRODUCTION 

In this paper we consider a model of motion of a tracer particle under the 
influence of an external force in a random environment. The motion is assumed 
to take place on a d-dimensional integer lattice Zd and it is a Markovian 
random walk on the lattice. The environment in question models a thermal 
system in equilibrium and is usually assumed to consist of a very large number 
of components, or degrees of freedom, e.g. it could be a gas for which the 
number of molecules is of order loz3. For that reason it is appropriate to 
describe the interaction of the tracer with the medium using random transition 
probability functions. More precisely, we denote by Bd the set of bonds on Zd, 
i.e. the set consisting of all unordered pairs ( x ,  x + e ) ,  where x ,  e € z d  and 
lei = 1. Suppose that v is a Bore1 probability measure on [c, ,  c*], where 
0 < c, < c* < -t- oo. Let B be a compact state space given by LC,, c*IEd on 
which we define a product probability measure p : = v@~". The dynamics of the 

* The research of both authors was supported by KBN grant nr 2P03A 031 23. 
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tracer can be described then as follows. For a given realization of the medium 
q E D  the particle located at given time t at site x waits for an exponential time 
of unit intensity and performs a jump from site x to a neighboring site x+e 
with probability p,  (x, x + e) that is a random variable over (D, (a), p). 
Throughout the article we denote by B(X) the G-algebra of Bore1 sets d any 
metric space X. We assume that, for a given x, the transition of probability 
p,(x, x+e) depends only on the bonds neighboring x. The fact that the en- 
vironment is in thermal equilibrium should be reflected by the assumption that 
for each q there exists a measure m, on Zd satisfying the detailed balance 
equation 

p , ( x , x + e ) m , ( x ) = p , ( x , x f e ) m , ( x + e )  for all x , e € Z d ,  lel=1. 

Let us describe first the motion of a particle without any external forcing. 
Then, for any q: Bd -+ [c*, c*] we set 

where Z (x; q)  : = = g ( { x ,  x + e')). It is obvious from the above definition 
that el =, pq(x,  x + e) = 1. The measure m, (x) in this case equals Z ( x ;  q), 
x E Zd. .or a fixed environment q the trajectory of the particle can be described 
as a Zd-valued Markovian process (Xtl(t))tBO whose generator equals 

where d, f (x) := f (x+e)-f(x), x ,  e € Z d ,  lei = 1 .  The space Co(Zd) consists of 
all compactly supported functions on Zd. 

An important tool used in the large scale, long time analysis of the tracer 
particle m&on is the environment proiess, see e.g. [s]. We describe it in more 
detail in Section 2.2 below, here we only mention that it is an Q-valued stochas- 
tic process given by 5(t;  g, z) := Txl(gl(~), t 2 0, where the shift operator 
5: B d + B d  is defined by q{x ,  xfe) := {x+y, x+y+e) for any y € Z d .  The 
process (5 (t)),30 is Markovian and has an ergodic invariant measure, which we 
also call a steady state, given by 

with Z (PI) : = Z (0, q )  and the normalizing factor Z : = 1 Z d p .  
Suppose that 1 €Sd-l and a E R. If the particle moves under the influence of 

a uniform external force field acting in the direction 1 with the uniform strength 
a, we consider a perturbed trajectory process (Xr)(t))r30 that corresponds to 
the following generator 
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where c'"' (x, e; r )  : = exp {al .  e) p ( x ,  x + e ;  q). Also in this case the environ- 
ment process ([(t)),3D, introduced in the same way as in the unperturbed case, 
is Markovian. However, p ,  is no longer invariant for ([ (t)),ao. In fact, the 
question of the existence of a steady state ii, for this process that is physically 
relevant becomes a non-trivial issue, The construction of such a measure is the 
main subject of the present work, see Theorem 3.1 below. One of the con- 
sequences of the construction we carry out in this paper (see part (4) of Theo- 
rem 3.1) is the law of large numbers for any additive functional of F (5 (t)), t 2 0, 
where F is a local functional on a, i.e. it is measurable with respect to the 
a-algebra generated by finitely many sites of the lattice (see Section 2.1 below). 

We should also mention that the model considered in the paper has quite 
strong physical motivation. It could be used e.g. to describe the motion of 
a charged particle that moves under a constant electric field in the environment 
that is in thermal equilibrium. Its degenerate version has been discussed in the 
physics literature in the context of random walks on an infinite percolation 
cluster. In that case ~ ( { x ,  xfe))  can take only two values: 0 or 1, i.e, v is 
a Bernoulli measure, see [3], pp. 136-146. The law of large numbers and 
central limit theorems under the non-degeneracy assumption have been shown 
by Shen in [9]. The existence of a steady state however does not seem to follow 
directly from the argument used ibidem. The fact that, due to part (4) of Theo- 
rem 3.1, we have the law of large numbers for additive functionals of local 
functions of the process has a fundamental importance in the proof of the 
existence of the mobility of the particle. Namely, for fixed I and a let us denote 
by v(a, I )  := lim,,,, t - ' X r l ( t )  the mean velocity of the perturbed notion. 
Using the results of this paper the first-named author and Olla establish in [6] 
that the function a I+ v (a,  I )  is differentiable at a = 0 for each 1. The matrix 
M = [u),(O, e,)] is called the mobility of a particle. One can also establish (see 
[6])  that for this model M = D. In the physics literature the above equality is 
known as the Einstein relation. 

2. PRELIMINARIES 

2.1. Natation. If d is any G-algebra of subsets of O, we denote by &(at) 
the set of all bounded and d-measurable real-valued functions. When q E $2, we 
denote by q ,  the restriction of q to the set A. Let C(Q) denote the space of all 
real-valued continuous functions on 62. By C,(Q) we denote the space of all 
local functions F: D + R, i.e. those for which there exists a finite set A c Bd and 
a function G :  -+ R such that F ( q )  = G(qA), where Q A :  = [c,, c*IA. If the set 
A, in the definition of a local function, equals A ,  : = [ ( O ,  e): lei = 11, then we 
call such a function 0-local. 

Let us fix s < t and let be the a-algebra generated by bonds b having 
non-empty intersection with the slab [x E Zd:  s 6 1 - x 4 t ]  that do not intersect 
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the half-lattice 6-H : = [x E Z ~ :  x 1 < s]. For a fixed s E R we let %+ : = Vsc, -Y-: 
and for a fixed ~ E R  we let := Vs<,Yi. 

For a given q E O, 1 E Sd and a€ R we consider a continuous time nearest 
neighbor random walk (~t)(t)),,, on Zd, starting at 0, with the generator given 
by (1.2). When u = 0, the generator of the walk can be rewritten (regardless of 
the direction I )  in the following form: 

Herea& f := a,, f, where el, . . ., ed is the canonical basis in Zd. We shall always 
assume that the random walk is defined over the canonical path space 
9 := D([O, + co); Zd) equipped with the standard a-algebra A and the filtra- 
tion (A,). The corresponding transition of probabilities, path measures and the 
expectations shall be denoted, respectively, by p t )  ( t  , x, y), P",,,, E:,,, x, y E Zd. 
As a rule we omit the subscript x when the walk starts at 0. 

2.2. The environment process. Let us fix ~ € 2 ~ .  With the help of T,, the 
shift operator on Bd, we define the shift operator on 9 ,  which we also denote 
by T,, via T, (Q) (b)  : = q ( ~ , ( b ) ) ,  b  €Bd. For any function F: i2 -+ R we let 
D , F : = F o T , - F  and D , F : = D , F ,  p =  1 ,..., d. 

Let 5?(e': C(Q) 4 C(Q) be a linear bounded operator given by 

with c(")(e; q) := c(")(Ol e; Q). It is a generator of an O-valued Markov process 
given by ( t ;  q ,  n) : = T,(,, (q),  t 2 0, q E 9, n E E, defined over the probability 
space (9, A, P:). The transition of probability semigroup corresponding to 
the generator (2.2) is given by the formula 

(2.3) P ; F ( q ) : =  pF1(t ,  0, x)F(T,g), F E C ( Q ) .  
X E Z ~  

The annealed measure is defined on (9 x 9, A x A9 (SZ)) as 

P (dn, dq) : = Pt(dx)Op(dq). 

A standard argument shows that the measure yo, given by (1.1), is invariant, 
reversible and ergodic under the semigroup defined by (2.3) for ol = 0. 

3. THE STATEMENT OF THE MAIN RESULT 

Throughout the remainder of the paper we fix a direction I€Sd-'  and 
assume that ol # 0. Our first principal task is to show that there exists an 
invariant measure for the tracer particle in that case. This measure is equivalent 
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to ji, when restricted to the s-algebra VfN for any N 3 1. Also, we prove 
a version of the strong law of large numbers holding with respect to Pa. 

To make the statement of the result precise we need some notation. Let 
3, : = D ( [ O ,  + a); a) and {6t)tB0 be the semidynamical system defined by the 
temporal shifts on B,, i.e. 0, cu (.) : = w (. + t), w E 93,. For any a F R we denote 
by 0: the smallest sub-a-algebra of 9# (9,) generated by mappings 5 + F (5  ( t ) ) ,  

~ E B ~ ,  where F is *yb+-measurable and t 2 0. Note that each 0, is 0; to 
02 -measurable, i.e. 0;' (A) E 0: when A E 0:. For any Borel probability mea- 
sure v on D we denote by P ~ s  the path measure in gn that corresponds to the 
Markovian dynamics determined by the semigroup (PL) with the initial distri- 
bution v. When v = p, we simply write P" to determine the law of the environ- 
ment process in 9,. 

THEOREM 3.1. Under the assumptions made in Section 2 there exists a Burel 
probability measure ji, on fi satisfying the following conditions: 

(1)  it is invariant, i.e. 

(3.1) j ~ : F d j i , = j ~ d j i ,  for aEE t > O ,  F E C ( S ~ ) ;  

(2) for an arbitrary N 2 0, ,i& is equivalent to.p0, when resm'cted to YfN, ix. 

(3.2) Po (A) = 0 iff ,%(A) = O for all A E Y?N; 

(3)  it is ergodic, i.e. if F E C(Q) is such that Pk F = F for all t 2 0,  we have 
F = const ji,-a.s.; 

(4)  the law of large numbers holds, i.e. for any N 2 0 and F E B ~  (0 tN) we have 

lim T J F (9, g) dt = j Fd&= for Pa-a.s. E gn; 
T f i m  0 

(5 )  Pa is unique, i.e. any other Borel measure on Q satisfying conditions 
(1H4) listed above coincides wiih ji,. 

By substituting for F the components of a random vector u(") : = (u',"', . . ., u$)), ' 
where 

(3.4) 4=)(rt) = z- (49 Cexp ? ((0, ep}) -exp {- alp) ? (1 -e,, O}11, 1 E a, 
we can immediately conclude from part (4) of the previous theorem the fol- 
lowing annealed version of the strong law of large numbers. 

COROLLARY 3.2. For each E E R  we have 

?-L ( t )  v (a) : = lim - = j ~ ( " 1  dPa ii,-a.s. 
t t + m  t 

Remark  3.3. It  shall follow from the proof of Theorem 3.1 that the 
component of the mean velocity v(a)  in the direction I is non-zero. sa 
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4. SOME AUXILIARY RESULTS 

4.1. Transience property of anisotropic wdks. For any .n E g, u E R we let 

and set D (n) : = D ( i n  x (0); n). Let also T, (n) : = rnin [ t  2 0: 1 .  x (t) 3 u] and 

(4.2) M S ( z )  := sup[l-(x(t)-x(0)): 0 6 t < ~ ( z ) ] .  

The last random variable is defined for those paths for which D (R) < + CK). 
For any t 2 0 we define also the event 

By analogy with [lo] we introduce the sequence of (At)-stopping times 
(SklkBO, (Rklk3 and the sequence of successive maxima (M,), , ,  letting 

(4-4) Si := T.,+z < +W, R1 := D o B s , + S 1  6 +GO, 

MI := max[E.n(t), 0 < t < R,] < +a. 
By induction we set for any k 2 1 

Let K : = inf {k > 1: R, = + co), or K = + m if the respective event is impos- 
sible. 

Let UL (x) (UL : = UL (0)) be a box centered at x with width 4L in the 
direction I and radius 4I? in the directions normal to I, i.e. 

UL(x):= {z€Zd:  II.(z-x)I < 2L, le.(z-x)l < 4 ~ '  for any e l  I, le[ = 1) 

and a+ u,(x):= {z€dUL(x): I.(z--X) B ~ / 2 )  (a+ u,:= a+ u,(o)). 
The results stated below correspond to the results of [9] where they have 

been proved in the case of walks with discrete time. For convenience of a read- 
er we present their proofs in the continuous time case in Appendix A. All the 
constants appearing throughout this section do not depend on the realization 
of the environment q and the starting point of the walk x. 

PROPOSITION 4.1. There exist deterministic constants e l ,  c2 > 0 such that 

infP",,, [D = co] 2 c2. 
x,r/ 
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In addition, we h ~ v e  

(4.81 sup PE,, IS, < co] < (1 - c,)k- 
x,w 

hence also 

SUP P!,, [Rk < 001 $ (1 -c,) L 
x,v 

and 

P : , , [ K <  +m, S K <  + m ] = 1  f o r  all x € Z d ,  ~ E Q .  

We define the first non-retraction time zl : = Sg < -I- m P:-a.s. for all x E Zd 
and u + 0. Note that the random variable T, is not an (Ad-stopping time. The 
subsequent times of non-retraction T,, n 2 2, are defined by induction: 

(4.91 T , + ~ = z , + T ~ o ~ , ~  for n > l .  

The following result shall be shown in Appendix A. 

LEMMA 4.2. There exist constants c3 ,  c4 > 0 such that 

c4 
sup P",,, [ T I  > ul $ - 
x,tl 1 +u2 

for all u > 0. 

5. THE PROOF OF THEOREM 3.1 

5.1. The operator 9 and its properties. Let F E C (a). Denote by 23; the set 
of those bonds b  that intersect the half-space [x  E Zd:  x - I $01 and by B; the 
set consisting of the remaining bonds. Let I F ( q ,  q l ) : =  F(ij), where 
q(b):= q(b), b ~ 2 ? ; ,  and fi(b):= qf(b) ,  b ~ 2 3 g f .  For any event A E A  we define 
P",,,,,. [A] : = 3 (P:,. [ A ] )  (q ,  rf). For any F  that is bounded and Y;-measu- 
rable define 

(5.1) SF I?') : = S 3f ( v Y  ?'I F (r l )  P (d?), 

where 

and A k ( x ,  v ,  v f ) : =  P i , t l , [ B k ( ~ ) ] .  Here Bk(x) :=  [ x :  ?r(Sk) = X ,  Ak,  Sk < +a] 
and A, :=  [n: I - ( n : ( t ) - ~ ( 0 ) )  3 0, t € [ O ,  S,]] .  Let I j  := P*[D  = +co] and 
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and : = (52, 6-, p5). Let n,  N be positive integers, 0 < t ,  < . . . < t ,  and 
F1, .. ., F,: 0 4 R are 0-local functions. Define r.v.'s 

p= 1 

Here to : = 0. Let q be a positive integer, dq) (s) = T E ( S  A tq) and 

PROPOSI~ON 5.1. Let n 2 1 be an arbitrary integer. Suppose that f k ,  @I, 

k 2 1, are defined as above. Assume also that F :  (R  x R x Zd)N + R and G :  L' 4 W 
are bounded and Borel- and G-meamrabb, respectively. Then: 

(1) We haua 

(2) In addition, suppose that q 2 q, 2 N are certain integers, the function 
H :  ( R  x R x ZdIN 4 R. Then there exists an r.u. Y E  LW (X;) such that 

The r.v. Y is nonnegative when G, H are nonnegatiue and 

P r o of. For any sequence m : = ( m 1  , . . . , m,) E 25 we define a sequence of 
Markovian times 

(5.8) t$:= 0 and c+, := ~ + S m r + , o B e ,  r = 0, ..., q-1. 

The sequence is defined on the set of paths satisfying 

B(m) : = [n: all random times appearing in (5.8) are finite and 

inf l . ( x ( t ) - ~ ( c r f ) )  2 0 ,  V r  = 0 ,  ..., q-11 .  
t~CaF,a?+ 11 

Let 
n 

f::= (JJ F,(i(t,f OF)), e + , - c ,  n(cF+,)-n(c?)), 
p = l  

and 
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With H : = H (e0), . . ., @D)) we can write 

(5-9) ~ - ' j ~ ~ ( ( f k + q 1 k 3 1 ) ~ ~ ( ~ ) 1 [ D = + m ] ( ~ ) ~ " ( d ~ ? ~ ~ )  

Using the strong Markov property and stationarity of the environment we can 
recast the right-hand side of (5.9) in the form 

where Y is a certain F&-measurable r.v. Note that Y can be chosen so that it is 
nonnegative when H and G are nonnegative. Choosing F = 1 in the argument 
above we conclude also that Y satisfies (5.7). 

In the special case when q = 1, q, = 0 and H = 1 we can rewrite the 
right-hand side of (5.9), using the homogeneity property of the environment, in 
the form 

X Ea,, IIF ( ( f k  S 1 4 ) k  3 1)) D = + 001 G (v) fi (W. 
Since the second and third factors appearing in (5.10) are -yb+- and Yo-- 
measurable, respectively, we can rewrite the entire expression in the following 
form: 

p- 1 C d k  (XY v 9 v') E%xvr [F ((&)k 3 1) , D = + a] G (fl) p (dq) p (d$) 
xEZd,m 3 1 

= JE",~((fk)k81), D = + ~ ] 9 ~ ( f l ) ~ % ( d l j ) .  

Therefore we have proved (5.5). To obtain (5.6), thus completing the proof of 
the proposition, it suffices only to apply the above argument q-q,  times to the 
expression on the right-hand side of (5.6). 

From part (1) of Proposition 5.1, upon taking F = I, we conclude 

COROLLARY 5.2. FOP any nonnegatiue GE L1(Ni) we have 

For any probability triple 'ill let D(2I) be the set of all densities, i.e. those 
nonnegative elements whose integral equals 1. With this notation we formulate 
our next result. 

THEOREM 5.3. There exists a unique density H*~D('ill$) such that 
2H* = H* and H* > 0 ,u%-a.s. In addition, there exist deterministic constants 
c ,  ~ ( 0 ,  I), C6 > 0 for which 

(5.12) lIL2"F-H+Idp$<c6c; for allF~D(%fZ,), n 2 1 .  

4 - PAMS 24.1 
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The conclusions of the theorem are consequences of Theorem 5.6.2 of [7] 
and the following 

LEMMA 5.4. There exists a deterministic constant c7 > 0 such that 
$F 2 c7 pz-a.s. for all F E D  (Wn). 

Proof  of t he  lemma. Suppose that BE%. We have 

Using (4.7) we can estimate the right-hand side of (5.13) from below by 

where c8 := P-lc2,  Let G be a certain bounded subregion of the layer 
[X E Zd: 0 < 1 x 6 21 containing 0. We assume that a nonempty subset A of 
dG is contained in the half-space W : = [x E Zd:  1 .  x > 21. The expression in 
(5.14) can be therefore estimated from below by 

There exists c9 > 0, independent of q, such that 

(5.16) P ; [ n : ( T G ) = ~ ] > c g  for all x ~ a G , q , q ' ~ Q .  

Indeed, to show (5.16), we use the Girsanov formula for jump processes, see 141, 
Proposition 2.6, p. 320. Let 

and let also 

k+ 1 

(5.19) Qk,, (n )  : = exp { 1 [I, ,  ( n  (s))  - A*] ds  
0 
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for k 2 0. For a given time t > 0 we denote by N ,  (n) the number of jumps that 
occurred before that time. Using the Girsanov formula we obtain 

Here EA* is the expectation with respect to deterministic path measure FA, cor- 
responding to continuous time random symmetric simple random walk, i.e. the 
walk whose probability of jump occurring from x to x + e  equals lJ(2d) with 
intensity constant and equal to A*. The right-hand side of (5.20) can be further 
estimated from below by 

for a certain choice of c > 0 and (5.16) follows. 
By (5.16) and (4.7) (recall that F is a &-density) we can bound (5.15) from 

below by 

where c,, > 0 is a certain deterministic, positive constant and JAJ is the car- 
dinality of A, s 

5.2. The construction of an invariant measure. Denote by PH*(dy, dx) the 
Bore1 probability measure over i-2 x 59 given by H* (q)  P"Ddy, dx). Throughout 
this section we let n be a positive integer, 0 < t l  6 . . . < tn ,  F , ,  . . ., F,: D + R 
be 0-local functions and 

We let 
Zk+ 1 

(5.22) i ,:= j F(s)ds and ~ k : = ( 5 k , ~ k + l - ~ k , x ( z , + l ) - n ( ~ k ) ) .  
Tk 

By analogy with (5.4) we introduce 6;) using dq) ( . )  instead of n (. ) in formulas 
(5.22). 

THEOREM 5.5. The sequence (Ck)ka0, given by (5.22), is stationary and er- 
godic ooer the probability space (D x g ,  a(52 x g),  P&). 

P r o  of. Stationarity is a direct consequence of part (1) of Proposition 5.1 
and the definition of H , .  To prove ergodicity we show that any bounded 
measurable function K: (R x R x ZdlN + R for which 
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satisfies K ((Llk = const, Pg*-a.s. Let E > 0, N 2 1 be arbitrary. We can find 
K? ( R  x R x ZdIN + R bounded, continuous and such that 

JJIK((ikh31)-K("1(i1, ..., rN)ldP", < e. 

Then 

(5-24) J I I K  (([k)k3 I) [K ((rk)k2 l)-K'N' (&, . + ., L)]1 < sup l K l m  
On the other hand, for any q 2 q ,  we have from (5.23) 

(5.25) J J ~( ( f , )k  3 1) K(N)  (Pf'), - ., @')) d G *  
= J .F K ( ( r k + ~ k B  1) K(EI1(F:Ol, . . ., FdD1) dPPB*. 

By virtue of Proposition 5.1 we conclude that the right-hand side of (5.25) 
equals 

J J K ((rk), 3 1) sq - qo Y d E  

for a certain Yo--measurable Y such that 

1 j YdPS = S J K'N' (pJ, . . . , &)) a&*. 
Letting first q t + m, and then qo + m we conclude that 

(5.26) [ K ((i")k> I) K ' ~ '  (L - - - 9  rN) d p ~  

= ~ ~ ~ ( ( & ) k 2 l ) d ~ " , ~ 1 ~ ( ~ ) ( c l ,  -- . :  r N ) d ~ ,  

which, by (5.24), yields 

Il [K ( ( r k ~ k  3 I)]' [j 1 K ((G)k, 1) d~b,.]'l < 2~ sup lKl- 

Since E > 0 was chosen arbitrarily, we conclude that K((i",),>,) = const 
&*-as. 

PROPOSITION 5.6. We haue 

(5.27) n (7,). 1 > 0 Pg*-a.s., 

(5.28) SSzi dP&* i* + a, 

and 

(5.29) JjIn(zl)ldPk < fa- 

P r o  of. (5.27) is obvious. (5.28) is a consequence of Lemma 4.2. We prove 
(5.29). Let us denote the expression in (5.28) by t, . Let (l,), B l  be a non-decreasing 
sequence of integers which tends to + oo pans., defined by TI,, < n < z,,,+,. 
We have limnT +, n/ln = t ,  p-a.s. Note that 
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For any a > 0, set 

Using Theorem 5.5, (5.28) and the Individual Ergodic Theorem we conclude that 

1 
(5.30) lim E: = -- j (a A la (tl)l) dPg* P&*-a.s. 

n-'+ a! t* 

In addition, we can easily estimate < 2Varro,,l (n)/n, where Varl,,,,(n) de- 
notes the total variation of the path on [ O ,  n]. Since the jump rate of n ( ' )  is 
deterministically bounded, the expectation of the total variation of the path can 
be estimated by c , ,  a, where the constant c,, > 0 does not depend on n, y 
nor a. An application of Fatou's lemma yields that 

(5.29) follows upon passage to the limit as a 4 -k co. 

As a consequence of Proposition 5.6, Theorem 5.5 and the Individual 
Ergodic Theorem we obtain the following 

COROLLARY 5.7. We have 

The convergence in (5.32) holds both P,+-a.s. and in the L? (P$)-sense. 

We set 

By the definition of the event A(s) (cf. (4.3)), we have Z , ( x ,  s) = 0 for x .  1 > 0 .  

LEMMA 5.8. We have 
+ m  

(5.33) ~ ~ ~ F ( 0 ) 2 r n ( x , s ) d s d P "  
x€Zd,m$ 1 0 

rl 

= j ~ " , j F ( s ) d s ,  = f r n l K * ( r l ) ~ ( d ? ) .  
0 

Proof .  Let 1, r n ~ R  and let M , ( I ) : = m a x [ n ( t ) . E :  O <  t < D(l ) ] .  On the 
event D (I) < + oo (see (4.1)) we let 



134 T. Komorowski  and G. Krupa 

and 

Ril) (1, rn) : = D o Bsy)( l ,m)  + SI1) ( 1 ,  pn), 

Mil ) ( l ,  m) := max [n: ( t ) .  I: 0 < t < RI1)(E, rn)]. 

We adopt the usuaI convention that the minimum of an empty set equals + m. 
The subsequent times Ri') ( 1 ,  m), S t )  (I, m) and maxima Mi1) (1, m) are defined as 
follows: 

Similarly, for 1 2 x (0) - E we define 

~ y ' ( 1 )  := rnin [ t :  [x ( t ) -~c(O)] .E  2 1+2] 
! 

I 
and 

I R',2) ( l )  : = D o HSy)(I) + S(12) ( I ) ,  M y )  (I) : = max [n (t) . I :  0 < t d R(:) ( l ) ]  . 

The subsequent times Ri2) (I), S f )  ( 1 )  and maxima Mi2) (1)  are defined by means 
of (5.34H5.36) with the obvious replacement of superscripts and arguments 
(1,m) by I .  Let 

K(l)(E, m) : = rnin [k: Rp)(I ,  m) = + co] and 

K(2 )  ( I )  : = min [k: Ri2) (I) = + 001. 
A straightforward adaptation of the argument used to prove Proposition 4.1 
yields that for each E ,  ~ E R ,  x€Zd we have 

(5.37) P!,, [ ~ ( ' ' ( l ,  m) < + cc , ,(,,,, (I, m) < + co] = 1 for all g ~ S 2 ,  

(5.38) P", , , [K(~)  ( I )  < + oo , Sg)2,0, ( I )  < + co] = 1 for all 7 E a. 

For abbreviation sake let us define B, : = [ D  o Bsm = + a, D = + m] and 
dfi  : = H ,  d p .  The right-hand side of (5.33) equals 
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Let N ,  (s) : = max [n ( t )  . I: t E [ S ,  A S,  s]]. Using the strong Markov property 
and the definition of stopping times Si l ) ( l ,  m) we can rewrite the first term on 
the right-hand side of (5.39) as being equal to (cf. (4.3)): 

where 

Using (5.37) we conclude that the expression in (5.40) equals 
+ m  

(5.41) C 1 {J E: Clrs,,,R,,) (31, A Is), ($1 = XI 
m1S.O 0 
x€zd 

x E:,, [F (O), D (0) = + 031 dji)  ds. 

Using homogeneity of p and changing variables x : = - x we conclude that the 
expression in (5.41) equals 

Repeating the same type of calculations for the second term on the right-hand 
side of (5.39) (using stopping times Sf) (I) instead of Sil) (1, m)) we conclude that 
it equals 

and (5.33) follows. 

Let 

where 2 : = 1 j z l  P&* (dq, dn) < + c ~ .  In the following series of results we list 
some properties of measure pH*. 

LEMMA 5.9. For any h 2 0 we have 
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Proof,  Let d : = P/z. According to Lemma 5.8 the left-hand side of (5.45) 
equals 

where the equality holds by Corollary 5.7. Since the integration over an inter- 
val of length h does not influence the value of the expression on the right-hand 
side of (5.451, we conclude that it is in fact equal to 

where the equality holds by Lemma 5.8. rn 

Remark  5.10. Changing only slightly the argument used in the foregoing 
we can generalize the conclusion of the previous lemma to functionals of the 
form 

where F,,, are bounded and measurable and x,,, €Zd are such that x,, . I 2 0. 

Denote by the probability triple (D x 9, 99 (52)0A, pH*). Suppose that 
pH* is the law in 9, of the stochastic process c ( - )  considered over %. 

THEOREM 5.1 1. Then the semidynamical system (OJt a considered over the 
measure space (9,, 0;)  is and ergodic. Moreover, we have 

1 * 
(5.48) lirn - j F (0,c) dt = F  (0 pH, ( d l )  for each F E B, (O:), Pa-a.s. 

T+m T o  

Proof.  Stationarity of the system is a straightforward consequence of 
Lemma 5.9 and a standard approximation argument. We show ergodicity. 
Suppose that there exists a function F E B , ( O ; )  such that, for each t 2 0 ,  
F o 0,  ( c )  = F(c)  pH*-a.s, With no loss of generality we may assume that 
t HFO has continuous trajectories for each l and there exists an event 

E 0; for which pH+ (fl = 0 and F  o 0,  (c)  = F (i;) for all t 2 0 and 5 4 N .  
Indeed, instead of F we could consider an element E?; : = s-' 1; F  o 0, dh for 
some s > 0 ,  which satisfies the above requirements. The above in turn implies 
that 

where for any event we put A := [ (q ,  n): [(a; q ,  z ) E ~ ] .  Obviously, 
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I 

pH, ( N )  = 0. We show that in fact pH* [ N ]  = 0. From Lemma 5.8 and Proposi- 
tion 5.1 we have 

Tk 

O = ~ ~ ~ [ J ~ ~ ( c ( ' ; ? , 0 ~ n ) ) d ~ , D = f m ] ~ , ( q ) ~ ( d ~ )  for all k21, 
0 

which in turn implies that 

I 

O = [ ~ ~ [ j ~ ~ ( l ( . ; q l B s ~ ) ) d s , D =  + m ] ~ * ( q ) p ( d ~ )  for all T>O. 
0 

Due to the fact that H ,  > 0 p-a.s. we conclude that 

(5.50) 0 = E: Eli (5 (a; q, 0, x)), D = + co] for p-a.s. q, rn-a.e. s 2 0, 

where rn is the one-dimensional Lebesgue measure. Let fi, : = 8; ' (G). From 
(5.50) we conclude therefore that there exists a sequence s, 4 0 + as n + + co 
such that Pb*(NSm) = 0 for all n 3 1. Note that fl c U n  fl,"; hence P&*[N] 6 
En P&* [NSn] = 0. Using a slight modification of the argument used to prove 
ergodicity in Theorem 5.5 one can show that there exists fil E 0; such that 

i P&*(N1) = O  and F ( 1 )  =f for some f E R  and all ( $ ~ , .  Let ( q ,  n ) $ N u N l .  

i 
Then 

I 
I so ( p l ,  8, x) $ N 1  for all t 2 0. Hence 
I 
1 ~ = S E ; C ~ ~ , ( C ( . ; ~ , ~ , R ) ) , D =  + ~ 0 ] ~ * ( q ) ~ ( d ~ )  for all t 2 0 ,  

and therefore = 0. We have proved therefore that F is pH*-a.s. con- 
stant, and ergodicity follows. 

P roo f  of (5.48). Recall here the definitions of t ,  > 0 and the sequence (I,) 
given in the proof of Proposition 5.6. Note that, in consequence of Theo- 
rem 5.5, we have 

for any F E  B,(60+). Since we obviously have 

we conclude, by virtue of (5.51) and the definition of (in), that 

I n J? 
r * lim 5 J F (( (.; q ,  0, rr)) dt  = - P",-as. 

nt +a n o  t * 
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Let 

From (5.51) it follows that 

(5.54) IE ((gn r n  -i- I - ~ n ) ~  B I )  dPk* = 0 

where g, : = ST"" F (( ( a ;  q ,  0, n)) dt. Hence 
tn 

JE;[~E((s~I ~ n + l - ~ n ) n ~ ~ ) ~  D = + a ] H * ( ~ ) ~ ( d q )  = O n  

Since H ,  > 0 p a s . ,  we conclude that 

However, repeating the calculation made in (5.9)-(5.11) we obtain 

where the last equality holds by (5.55) and 

which is strictly positive for p-a.s. q'. From the definition of the set E we get 
1 '" F* Tn 

lim - 1 F (5 (-; q, Bt n)) dt = - and lim - = t, Pa-as. 
n t + m t n  0 t * n T + m  n 

Hence we conclude that the limit in (5.53) holds, in fact, P-a.s. rn 

Re mark  5.12. We can generalize the conclusion of Lemma 5.9 even fur- 
ther to functions of the form (5.47), where X, E Zd are such that x, - l > - N 
for some N 2 0 but that requires an appropriate adjustment of the definition 
of time z,. Let N 2 0 be any integer. We can modify the definition of z1 
by using stopping times Sk : = T,,,,,, (cf. (4.4)), and then adjusting appro- 
priately the definition of the transport operator 2. We can prove, exactly in 
the same way as Theorem 5.3, that is has a unique positive invariant density. 
Eventually, the procedure described in the foregoing leads to the construction 
of a measure psr for O( # 0 defined over the measure space (52 x 9,, W (Q)@9) 
that is absolutely continuous with respect to P". In addition, if ps: denotes 
the respective law of [(.) in g n ,  we have the following analogue of Theo- 
rem 5.11. 

THEOREM 5.13. The system f6t)t20 considered ouer the measure space 
(g*, O?,) is &:-preserving. Moreover, the measure is ergodic and formula (5.48) 
holds for all FEB, (O? , )  with an obvious replacement of pH* by pi:. 
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Let piN) be defined by 

jFdp6N1:=jjF(q)d~i~(dg,dx) for all F~c(f2). 

Obviously, pLN) is absolutely continuous with respect to p. Note that from (5.48) 
formulated for any pair of nonnegative integers N 2 N' we obtain 

(5.57) 1 Fd,iiLN'1 = 1 ~ d , i i : ~ )  for any F E B, (V+,,). 

Since SZ is compact, the sequence (p$N))N31 is tight. From (5.57) we conclude 
that it is in fact weakly converging to a certain measure Ji,, which for any 
N 2 1 satisfies 

(5.58) j Fdlii, = S ~ d p i ~ )  for any F E 3, (Y,). 

5.3. The proof of The~rem 3.1. In this section we show that the measure 
pa satisfies the conclusions of the theorem. Conclusion (2) follows directly from 
construction. Set 

where FPg B,(Y-++,"I for a certain N 2 0 and 0 d t~ 6 . . . < t,. Define 

(5.60) G,  : = Pf--*-- F,,  Gk : = FkPtk- tk - i  G k + l ,  k = 1 ,  ..., n-1. 

LEMMA 5.14. For any E > 0 there exists N' 2 N and #EB,(Y-?$') such 
that I I G ~ - E H ~  < E .  

Proof.  After n applications of the Markov property of P; we get 

Thanks to the fact that the jumps of the walk are of size 1 and their intensities 
are bounded uniformly in q and x (see (5.18)) G, can be approximated, uniform- 
ly in ?, by the elements of the form 

p= 1 

for sufficiently large N' (see (4.1) for the definition of D (-N')). 

Let P,; be the Markov path measure on (9Q, d) corresponding to the 
transition of probability semigroup (Pi),,, (see (2.3)) and the initial measure pa. 
Part (1) of Theorem 3.1 can be concluded from Theorem 5.13 and the following 

PROPOSITION 5.15. For any F of the form (5.59) we have 

(5.61) 
1 

lim - S (S F (8, i) Pa (d l ) )  dt = 1 FdPFa. 
T+m T o  
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Proof.  According to Theorem 5.13 the limit of the expression on the 
left-hand side exists and equals j ~ d p ; * N .  Assume that GI corresponds to F via 
(5.60). Suppose that s > 0 is arbitrary and Iet N' 2 N be chosen so that there is 

such that IIP - Gillm < E and E Bb(V2N') .  On the other hand, the left-hand 
side of (5.61) equals the limit, as T + + m, of 

Hence, by virtue of Theorem 5.13, the limit lim,,,, I~,-!Pdp,l can be es- 
timated from above by 

We conclude therefore that 

IS F~P;; - j F ~ P ~ ~ J  = lim IG, - j F H P ~ J  
T + + m  

where the first inequality holds by (5.62). Since E has been chosen arbitrarily, we 
have (5.61). 

To prove part (3) note that, according to the Individual Ergodic Theorem 
(see [I], Theorem VIII, 7.5, p. 690), we have 

lim I j Pi Fdt = E ,  [F 1 %,,I, j,-a.s., 
T - + + m T o  

where EEz [. 1 is the conditional expectation of pa with respect to the 
a-algebra generated by all G-invariant functions under the semigroup, i.e. 
P& G = G for all t 2 0. One can approximate any such G in E (p,) by elements 
G, E Bb (-Y-yfN,) for some N ,  2 0. However, by virtue of Theorem 5.13, we have 
E,[G, 1 ?5,,,] = SG, d,Ea for each n. Hence, passing to the limit as n 4 + m, we 
conclude that also G = ETi, [G I cn,] = j Gdji,. We showed therefore that the 
only elements that are %,-measurable are constants, which in turn proves that 
Knv is trivial. 

To prove part (4) note first that by virtue of Proposition 5.15, Theo- 
rem 5.13 and a standard appoximation argument we conclude that 

= SFdP,  for all N 2 0, FEB,(O:N). 

Part (4) follows then easily from (5.64) and Theorem 5.13. Uniqueness is stan- 
dard in view of the requirements put on the invariant measure in conditions 
(1H4). 



Perturbed random walks in random environments 141 

APPENDIX A. THE PROOF OF THE RESULTS OF SECTION 4.1 

Throughout this appendix we fix q E CJ and x E Zd. AS it becomes apparent 
in the course of our proofs, we can assume with no loss of generality that x = 0. 
No constants involved in our subsequent estimates shall depend on q and x. For 
a given ZE 9 denote by (~?,~(n)),,, the times of successive jumps of the path n. Let 
X,(n) := n(Ck), k 3 1. It is well known (see [4], Section 2 of Appendix 1, pp. 
314-321) that the random sequence (X,),,, considered under the measure Pi is 
a discrete time nearest neighbor random walk whose transition probabilities equal 

p?) ( x  , x + e) = c(=) ( x  , e)/( C c'") (x , e')) . 
l e ' l=  1 

Let p ,  : = inf ,,,,, p, (x, x + e) > 0. The jump rate A, (x) and constants A,, A* 
(ibidem, p. 314) are given by (5.17) and (5.18), respectively. Let also 
Nu,:=  min[k 2 0: X k ~ a U L ] .  

A.1. The proof of Proposition 4.1. For a given sequence (X,),,, we can 
define the sequences &, xk,  Mk, k 3 1, the random times D", a and the ran- 
dom variable u,, by a complete analogy with the definitions contained in 
Section 4.1 (cf. formulas (3.6) and (3.7) of [9]). We obviously have - 
(A- 1) M , = M , ,  [ D <  +co]=[D"< + a ] ,  
(A.2) [S ,<+co]=[%<+co] ,  [ ~ ~ < + c o ] = [ x ~ < + m ] ,  

(A.3) [ K <  + a ] = [ K <  +m], [ S K <  +a]=[&< +*I. 
In the following statement we essentially gather the results of 191 that pertain 
to the assertions made in Proposition 4.1. 

PROPOSITION A.1. (a) (Lemma 4.2 of [9]) There exists a constant C1 > 0 
such that 

sup Ez,, [exp {C, a,), D" < + oo] < + oo . 
XaI 

(b) (Corollary 2.3 of [9]) There exists a constant C2  > 0 such that 

(c) (the proof of Lemma 3.1 of [9]) There exists a constant Cj > 0 such that 

(A.4) sup Pi, ,  [fk < m] < (1 - ' , SUP P:,, [ f ik  < a1  < (1 - C3Ikm 
x,'l x,, 

(d) (Lemma 3.1 of [9]) For all x, q we have 

The assertions of Proposition 4.1 follow from the respective results of 
Proposition A.l and formulas (A.lHA.3). 
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A.2. The proof of Lemma 4.2. Obviously, T L ( Z ~ )  = XG. The estimate (4.10) 
follows directly from Theorem 4.3 of [9] which states that the exponential 
moment of X;;I exists. To show (4.11) we shall need the following 

LEMMA A.2. There exist deterministic constants clz, cI3 > 0 independent 
of L > 0 such that for all x € Z d ,  q E 

Proof.  As usual we assume that x = 0.  We invoke the estimate (2.20) of 
[9] which states that 

for some constants el, > 0 ,  y > 0. We suppose also without loss of generality 
that L > y/4. Therefore we can write 

(A*') P; [Tu, > cLI G P: [NuL > (4L)/y J + P: [Nu,  G (4L)/y, Tu, > cL] 

The first term on the right-hand side of (A.8) can be estimated from (A.7) by 
- 

c l 4 e  L. The second term is less than or equal to 

where the equality holds by the Girsanov formula, Qk,, ( - )  is given by (5.19) and 
C ( k ,  L) : = [Tu, E [k ,  k +  l ) ] .  The measure FA* together with the corresponding 
expectation operator En* have been introduced after the formula (5.20). 
For any a < b and r n ~ Z  denote by A(rn; a, b) the event consisting of 
those paths with m jumps in the time interval [a, b] ,  with the obvious 
convention that A (rn; a, b) = 0 if m < 0. With the notation E: = [4Ly -I], 
log- r : = max { -log P, 01, the right-hand side of (A.9) can be estimated by 

+ m  L" + m  

< z exp {m log- (2dA, p,/A*)) Fp [ A @ ;  0, k), A(m-p; k, k+ l ) ]  
k=[cL]  p=O m = p  

+ m  L" + m  

= C C C  ex^ {m log- (2dlw* p*/A*)) ("Irn kp exp { - A* (k + 1 ) )  
k = [ c L ]  p=O m = p  P !  (m-p)! 
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where 

cl, : = exp { - A*) exp (n [log- (2dI, p,/A*) +log A*])/n ! . 
n 3 O  

Let a, : = (A* k)%!. If [cL] > E/A*, then a,+,/u, = I *  k / b +  1) 3 A* [~L]/L > 1. 
Hence n, < ai = (1' kji/Z! for p $ f: and we can estimate the utmost right- 
hand side of (A.lO) by 

2~15 + w  

(A. 1 1) exp {E log- (2dL, p,/X*)} exp { - A* k} ki. 
(L-  I)! k = [cL] 

Choosing c > 2L/(1* L) we can guarantee that the function xEexp ( -A* x/2} is 
decreasing for x 2 [cL], so the expression in (A.11) can be estimated by 

2c" exp { I  logu (2d& p*/A*)} ( c ~ ) ~ e x ~  { - c i *  L/2) (A.12) - ( E -  I)! 

- - 4c1s exp { L  log- (UA, p,/~*)} ( c ~ ) ' e x ~  - CL* L] . 
A* ( I -  I)! 

Using Stirling's formula (see e.g. [2], p. 4061, we can write 

where 8 ~ ( 0 ,  I), so the right-hand side of (A.12) can be further estimated by 

4~15 2'l2 exp {l [I +log- (2dX, p,/A*) +log (LIZ) + log c] - cR* L) . f i  A* 

Choosing c > 0 sufficiently large, and denoting it then by c, , ,  we conclude that 
the above expression is less than or equal to c,, exp {-L/c16) for a suitable 
constant E l 6  > 0. 

Let c12 be the same as in (AS). To obtain (A.6) we shall use the estimate 
that follows from (2.26H2.28) of [9 ] .  It states that 

(A. 13) P; [N, < (4L)/Y, X N ~ ~ ,  $ a+ UL] c17 exP 1 -L/ci71 

for a suitable constant c17 > 0. Note that since ~(7''~) = tNuL, we can write 

(A.14) P;C7'uL G c12.L R ( T , J $ ~ + ~ L I  

< Pt [Nu, G (~L)/Y, XN,= $8 + u ~ l  + P: CN, > (4L)/~l. 

The first term on the right-hand side of (A.14) is, by virtue of (A.13)' less than or 
equal to c17 exp { -  L/cI7). The second term, on the other hand, can be esti- 
mated from (A.7) by c14 exp { -  L/cI4). Hence both (A.5) and (A.6) follow upon 
choosing c13 : = max LCl4, CI6, c17]. rn 
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To complete the proof of Lemma 4.2 note that 

By virtue of (4.10) and Chebyshev's inequality the second term on the right- 
hand side of (A.15) is less than or equal to clB/u2 for some constant c, ,  > 0. 
On the other hand, the first term there can be estimated as follows: 

where L = u/c,,. Using (AS) and (A.6) of Lemma A.2 we conclude that the 
right-hand side of (A.16) is less than or equal to 2c13 exp ( -u/(c,, c,,)} and 
(4.11) follows. 
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