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Abstract. In this paper, we firstly study the Besov regularity of 
the local time of symmetric stable processes and of its fractional deriv- 
ative. Secondly, we establish Limit theorems for occupation times of 
u-symmetric stable processes with 1 < u < 2 in some Besov spaces. 
Finally, we give the strong approximation version of our limit theo- 
rems. 
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1. INTRODUCTION 

In this paper we are concerned with limit theorems for the occupation 
times of I-dimensional stable processes in some Besov spaces. 

Let X = (X,: t 2 0) be a symmetric stable process of index 1 < u < 2. 
That is, Xo = 0, X has stationary independent increments with the characteris- 
tic function 

E exp (izXJ = exp (- t lzla) for any z E R. 

This process admits a continuous local time process {L (t, x): t 2 0, x E R) (see 
Boylan (1964) and Barlow (1988)). 

It has been proved by T. Yamada (1986) for Brownian motion (o: = 2) and 
by Fitzsimmons and Getoor (1992) for stable LCvy processes that if g are in the 
range of fractional derivative transform (g = D$ f), then the process 
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converges weakly in the space of continuous functions, as n + CQ, to the pro- 
cess 

TD$L(t,.)(O), t 2 0 ,  

where DDg f stands for the one-side fractional derivative off (see Section 3 for 
the definition) and7 = J R  f (x) dx. Ait Ouahra and Eddahbi (2001) gave a gene- 
ralization of this resuft to Hiilder space. 

K. Yamada (1999) gave an extension of the results of T. Yamada (1986) 
and Fitzsimmons and Getoor (1992) to the case where occupation functions 
g are not necessarily in the range of the fractional derivative transform and 
belong to a more general class. 

In this work we establish an extension of the result of K. Yamada (1999) 
by proving that the convergence in law holds for the topology of the Besov 
spaces. We also consider occupation time problems in the case where y = 0, i.e., 
f=D" i .  

The rest of this paper is organized as follows. In Section 2, we present 
some basic facts about Besov spaces. Section 3 is devoted to the tightness in 
this functional framework. Section 4 contains certain regularity of local time 
and its fractional derivative transform in Besov spaces. In Section 5, we state 
our main results and we give the details of the proofs. The strong approxima- 
tion versions of our results are studied in the last section. 

Throughout this paper we use {X,, t >, 0) to denote the symmetric stable 
processes of index 1 < a < 2. We always denote by (L(t, x), t 2 0, XER) its 
local time. 

Most of the estimates in this work contain unspecified constants; we use 
the same notation for these constants, even when they vary from one line to the 
next. We shall sometimes emphasize the dependence of these constants upon 
parameters. 

2. BESOV SPACES 

In this section we will present a brief survey of Besov spaces. For more 
details on this functional framework we refer the reader to Peetre (1976), Rope- 
la (1976), Ciesielski (1993) and Ciesielski et al. (1993). 

Let I: = [0, 11 and I* : = (0, 11. For any Borel function f: I + R, one can 
determine its regularity by computing its modulus of continuity in H(1) (the 
space of Lebesgue integrable R-valued functions with exponent 1 < p < + a): 

For any 0 < p < 1 and v > 0 we set w,,,(t) = tp(l +log t-l)" and 

u p  LfY t )  Ilf ll,,,., = Ilf lip+ sup - 
mp.v (t) 
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The Besov space, denoted by is the space of real-valued continuous 
functions f on I such that 

Ilf flP.m,,v < + 

Endowed with the norm 1 1 .  llp,,cI,V, is a non-separable Banach space. 
For the sake of completeness let us now recall the isomorphism between 

93p+v and certain spaces of sequences (see Ciesielski et al. (1993)). Assume that 
f: b + R is a continuous function, its decomposition in the Schauder basis is 
given by 

(qo, q1, pj,k: j 2 0, 1 G k < 2j) being the Schauder basis in W (I), the real- 
valued space of continuous functions f on I. The coefficients off in this basis 
are given as foIlows: 

and 

The subspace L%~"".v.' of which corresponds to sequences Cfj,k)j,k such that 
2J 

lim 2-j(112-p+1/p)(l +j)-"llfj,,llp = 0, where Ilfj,.ll; = C lfj,klP, 
j-++ m k =  1 

is a separable Banach space. 
By Theorem 111.8 and Remark F4 in Ciesielski et al. (1993), one can check 

that for a11 p 2 1 the norm 11 f llp,mcI,v on L%Pv is equivalent to the norm 

Ilfll* = rnax((If (0)1, I fiI, 'Ip)(1 +j)-vIl f ,  .I.- 1 1  P ) 
j 2 0  

for p -  < min (p,  v). 
Let us remark that for 0 < p < $ and v 2 & we have 

(2) s ~ p 2 - j ( ~ / ~ - ~ + l / P ) ( 1  +j)-" J l  f .  J . .  11 P < ~ u p 2 - j / ~ ( 1  +j)-'I2 Ilfj,.llp, 
j20 j20 

which means, for example, that Ilf llp,cop.v < Ilf llp,m,/,,,/,. 

We shall also denote by %?a (I), for 0 < 6 < 1, the subspace of % (I), consist- 
ing of Holder continuous functions of order 6, and by %?,,,,,(I2) the subspace 
of V (I2) of Holder continuous functions of order (61, 62). Hence f belongs to 
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(P) if llf l l r  + llf lid is finite and f belongs to a a l , d 2  (1') if llf llr2 + Ilf 118,,82 is finite-. 
where 

I l f  l l 1  := sup If (t)l9 Ilfll* := 
ter 

and 

2.1. Tightness in Besov spaces. For the proof of our result we need the 
tightness in a suitable Besov space. As a consequence of a famous Prohorov 
theorem (see Billingsley (1968), Theorems 6.1 and 6.2), the study of weak 
convergence of random elements of ~ ? 4 y - ~ ~ ~  is reduced to the following result. 

PROWSITION 1 .  The weak convergence in .B;fiv~'~ of u sequence ofprocesses 
(&, n 3 1 )  is equiualent to the tightness in B?pv-O of the distribution F, = Po 
of random elements 5, and the convergence of the finite-dimensionaE distribution 
of cfl. 

Since w,*~,v" is separable, it is convenient to work with this space instead 
of As the canonical injection of in B , " C p v  is continuous, weak 
convergence in the former implies weak convergence in the latter. A sufficient 
condition for the tightness in gg*#v.o is given by some preliminary lemmas. 

We denote by d the set of measurable functions f: I -t R such that 
(i) SUPl, Ilf lla?g-#.. < + Y 

limsup~+~SUPfEb H ~ ( f y  p, v~ P) = 
Then d is relatively compact in 

Proof .  By Riesz-Frkhet-Kolmogorov's theorem (see for instance Yosi- 
da (1965)) one can check that (i) and (ii) imply that & is relatively compact in 
E(I). Hence, for any sequence ('jJnB1 of 8 there exists a subsequence (also 
denoted by V;JnB converging in E (I) to some function f E LP (I). TO complete 
the proof it suffices to show the following two assertions: 

(a) f E gpv-O, 
(b) Cf,) is a Cauchy sequence in 
For (a), let us choose a subsequence of Cf,),31 that converges almost surely 

to J: By Fatou's lemma we get 
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Therefore for all ~ E I  we have 

and, by condition (i), we deduce that 

(3) sup - t, i sup sup "PLf.5 t )  < +m. 
*GI* Wlr.v (t) n 2  1 ~EI* w ~ , ~  (t) 

Moreover, (ii) implies that for any E > 0 there exists E ,  > 0 such that 

for all n 2 1. 

Then, by (3), we obtain 

up Cf, 4 = (afl,, (t)) as t + 0, 

which completes the proof of (a). 
To prove (b) ,  let n, n' 2 0. We get 

Recall that 

I -  + 0 as n, n' + + a .  

Now, assume that EO > 0 is small enough. Then it follows that 

SUP < sup 
a p  (Cfn -h*) 3 t) up (Cfn -fn,), t) + sup 

id* Wp,v It) ~ < t < e o  ~ # , ~ ( t )  t>eo  up , ,  (t) 

Hence 

which completes the proof of Lemma 2. 

LEMMA 3. Let p > p-l and 0 < v < v'. Then the space 91pv is compactly 
embedded in B?,V',~. 

P r o  of. Let at be a bounded subset of BpV. Lemma 3 is a consequence of 
the assumptions (i) and (ii) of Lemma 2. 

It is clear that if v < v', then Il f 11, ,,,, . < 1 1  f 11, which gives (i). 
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In order to show (ii), we notice that 

which shows that 

because v' - v > 0. Therefore, by Lemma 2, sB is relatively compact in W , " p t q ' . O .  

LEMMA 4. Let (X:: t ~ b ) , ~ ~  be a sequence of stochastic processes satis- 
fying : 

(i) X+ 0 fur all n 2 1. 
(ii) For all p 2 2 there exists a positive constant C such that 

E 1X:- X:IP < C )t -slPp for all s,  t E I .  

?hen (X: t EI),> is tight in the space B ~ . V . O  for a11 0 < p < 1, v > O and 
p > max(p- l ,  v -I ) .  

Proof.  Observe that by the assumption (i) we have X", 0 and 
(Xf), = X", w e  will prove that for any v > 0 there exists a positive constant 
C > 0 such that for all n > 0, A > 0, and p-I < v' < v we have 

P [IIXllay > A] < C/AP for all n 2 1, 

which implies that for all E > 0 there exists Lo large enough such that 

P [((r((ap.+ > LO] < E for all n 2 1. 

Applying the characterization theorem of Ciesielslci et al. (1993), it sf l~ces to 
show that 

Now, by Tchebyshev's inequality, we have 

On the other hand, the coficients XYvk are given by 

XJ,k = 2.2jI2 ( X ~ 2 k - ~ ) / 2 ~ + ~ - ~ ( X ~ ~ ~ j + 1 + ~ 2 k - 2 ) / 2 1 + 1 ) ) -  
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Thus, we get 

where the last inequality holds due to pv' > 1, Therefore, I < Cd-P, which 
completes the 

3. REGULARlTY OF THE LOCAL TIME AND RELATED TRANSFORMA'IXONS 
IN IBESOV SPACES 

Let 0 < 6 < 1 and g: R -, R be a function that belongs to V, (R)nL' (R). 
For 6 > y > 0 we can define the fractional derivative of g of order y by 

The operators D r  and DL are called right-hand and left-hand Marehcsud frac- 
tional derivatives of order y, respectively. 

We put D Y : = D $ - D t ,  
It is known from Hardy and Littlewood (1928) that DY, g is (6 - y)-Holder 

continuous when g is'd-Hiilder continuous for any y < 6. 
Fractional derivatives and integrals have many uses such as fractional 

integro-differentiation which has now become a significant topic in mathemati- 
cal analysis. For a complete survey on the fractional integrals and derivatives we 
refer the reader to the book by Samko et al. (1993) (and the references therein). 

Since y-I  is not integrable at infinity, we define D5 for y = 0 as 

Define also Do : = D: - D? . 
Assume that the function g belongs to I?@). We consider the Hilbert 

transform & of the function g defined by 

&g (x) : = n: (v.p. (;) * g) (x), 

where v.p. denotes the Cauchy principal value of l/x. 
From the theory of singular integrals it is known that the operator 

Do = x& maps E(R) into E(R) for 1 < p < GO. Moreover, for any 
SEE(R) ,  P > 1, 

(4) . l l D O  gllU(I?) ~p / I s I I L P ( R ) ,  
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where c, depends only on p. However, (4) fails in the case p = 1 in which 
g belongs to I.! (R). In the particular case p = 2 the operator &' is an isometry 
on C ( R )  and S-' = -S. For the proofs of these properties we refer the 
reader to Titchmarsh (1948), Chapter V. 

Integral transformations including Fourier and Hilbert transforms play 
a significant role in signal processing. A selected application of HiIbert trans- 
forms, which serves as a theoreticaI basis of the complex notation of signals, 
can be found in Hahn (1996). 

PROPOSITION 5. Let 0 < y < S < 1 .  i f  g belongs to V, ( I ) ,  then thefiactional 
deriuative DY g of g of order y belongs to %'a-y (I) .  

The proof of the proposition can be found in Samko et al. (1993); see also 
Boufoussi et al. (1997) for the regularity in Besov spaces. 

We have the following well-known regularity property of the local time of 
a symmetric stable process X and we refer the reader to Marcus and Rosen 
(1992) for a proof. 

Let X = EXt: t 2 O }  be a symmetric stable process of index 1 < or < 2. Its 
local time L ( t ,  x) at the moment t €1 and the level x E R can be defined as the 
density at the point x of the occupation measure 

t 

At+SlA(XJds and A E B ( R ) .  
0 

LEMMA 6. Let J be a compact of R + .  Then the trajectory t H L( t ,  x )  be- 
longs a.s. to %?& (J) for any 0 < 6 < (a- 1)/a and all 1x1 ,< M ,  where M is a con- 
stant. The mapping x H L ( t ,  x )  belongs a.s. to $?& (Kl )  for any 0 < S < (a - 1)/2 
and all t €1, where K, is a compact of R. 

The following lemma, which gives a regularity property of the local time 
L( t ,  x) as a function of two variables, is a basic tool for our limit theorems, and 
its proof can be found in Ait Ouahra and Eddahbi (2001). 

LEMMA 7. Let K ,  be a compact of R+ x R. Then the trajectory (t ,  X)H L (t ,  x) 
belongs as. to %'a,,az (&) for any 0 < a1 < (a - 1)/2a and 0 < d2 < (a - 1)/2. 

The main results of this section are the following. 

LEMMA 8. The trajectory t H L ( t ,  x) belongs a.s. to Besou space 
B;(Q-')/~.~~* for any v > p-' and all 1x1 6 M ,  where M is a constant. The mapping 
x w L ( t ,  x) belongs a.s. to for any v > p -  ' and all t €1. 

Proof .  To prove that t I+ L ( t ,  x) belongs to L ? # ; ( ~ - ~ ~ J ~ . ~ * ~ ,  by the charac- 
terization theorem it s f l~ces  to show that almost surely 

2-A112 -(a- l ) / a +  lip) 2i 

lim 
j-r  + rn ( 1  +]Iv ( C lL( j ,  k, = 0 ,  

k =  1 
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where 

For any A > 0 

By using the Tchebyshev inequality, we obtain 

Q 
C 2JE l ~ ( j ,  k, X ) ~ ~ j l - ~ 2 - ~ j ( 1 / 2 - ( ~ - l ) l ~ + l / ~ J ( ~  + 5 3 - ~ v m  

j30 

In view of the definition of L(j ,  k,  x )  and Lemma 6, we get 

If we choose pv > 1 and 1 large enough, the series zj,, (1 +J)-Pv is convergent. 
Then the result is a consequence of the Borel-Cantelli lemma. 

Now, we show the second regularity property in our lemma. We only need 
to prove 

where 

The result follows in a similar way as above. 

LEMMA 9. Let 0 < y < (or - 1)/2 and D E (D? , D L ,  D y ,  Do). The trajectory 
t w D L ( t ,  .)(x) belongs a.s. to g p - l ) l a - ~ - v ' O  for any v > p-I and all 1x1 < M ,  
where M is a constant. The mapping x H D L  (t, .)(x) belongs a.s. to 
a;(.- 1 ) / 2 - r 9 v . 0  for any v > p- 1 and all ~ E I .  

Proof.  At first we prove that x+ DL(t, .)(x) belongs a.s. to 
B F a - 1 ) / 2 - r - v . 0  for any v > p-l, We treat only the case D = DY, (the other cases 
are similar). We consider separately the two cases y = 0 and 0 < y c 1. 

0 < y < I. By Lemma 8, x w L ( t ,  x )  belongs as. to ~ ~ ( m - l ~ ~ Z . v , o  for any 
v > p - I .  Then, by virtue of Lemma 3.1 in Boufoussi et al. (1997), the mapping 

x H D L ( t ,  -)(x) belongs a.s. to 9 ; ( a - 1 ) j 2 - y . v 9 0  for any v > p - l .  
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y = 0. Using similar calculations to those in Lemma 2.12 of Fitzsimmons 
and Getoor (1992), one may easily prove Lemma 3.1 in Boufoussi et al. (1997) 
for y = 0. The desired result then follows. 

Now, we are going to prove the second part of the lemma. By the charac- 
terization theorem it suffi~es to show that almost surely 

where 

For any A >  0 
21 

Q : = p [sup 2-j~(1/2-((@-1)\~-~)+1/~~ (1 + j j - P Q  ( ]DL ( j ,  k ,  .) ( x ) l P ) l i p  >- AP]. 
j 3  0 k =  1 

By Tchebyshev's inequality, we get 

Q < A-P C 2 j ~  IDL(j, k ,  . ) ( x ) l ~ ( l  + l ~ - ~ ~ 2 - ~ . ' ( 1 / 2 - [ ( . : - l ) / ~ - ~ ) + ~ / ~ ) ,  

j 3 0  

In view of the definition of D L ( j ,  k, - ) ( x )  and Theorem 2 in Ait Ouahra and 
Eddahbi (2001), we deduce that 

If we choose v > p - I  and we use the fact that 1 < a < 2, it follows trivially 
that Q < + m. The result is a simple application of the Borel-Cantelli lemma. 

4. LIMIT THEOREMS 

The aim of the present section is to obtain a limit theorem for normalized 
occupation time integrals of the form 

where u is a certain function and f EL? (R) Cfnot necessarily in the range of the 
fractional derivative transform). Our result is an extension of the limit theorems 
given by K. Yamada (1999) in the space of continuous functions to Besov space. 

In what follows we state our main results of this section. 
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THEOREM 10. Let 0 < y < {a - 1)/2, v > 0, cand p > max (2u/(a - 11, l/v). 
Assume that afisnction f EL? (R)  with a compact support sa t i$es j  = 0 and that 
Ixl"'Yf ( x )  is bounded and 

lim l ~ l l + ~ f  (x) =f+ (f-). 
x -  + m(- m) 

Then the processes 
1 nt 

n l - ( l + ~ ) l e  S f ( x A d s ,  t > 0 7  
0 

converge weakly in ~ % ~ ~ - ~ l l ~ ~ ~ ~ - ~ ,  us n + m,  to  the processes 

THEOREM 11. Let f EL:,,(R) with a compact support satisfy 

lim j f ( x ) d x = O .  
N+ + {I,[< N) 

~ n t i s c a s e ,  f, = f- = fo. Weassupnethat - 1  < y < O a n d p  > max(u/(u-l), l/v). 
Then 

contlerges in the sense of law in &#g(a-lya.q.O, as n + GO,  to the process 

Proof of The o r  em 10. By K. Yamada (1999), the finite-dimensional 
distributions of 

converge, as n -, GO, to the finite-dimensional distributions of 

So to prove the theorem, we need only to show the tightness of the processes 
A: in the separable Banach space i 4 ? ~ ~ n - 1 ) ~ Z a ~ v  , where a ~ ( 1 ,  21, v > 0 and 
p > max (2401 - I), l/v). By the occupation density formula and scaling prop- 
erty of the local time, we have for any m 2 1 
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since 7 = 0. 
Let (2m, m') be a pair of positive real numbers such that 1/2m + l/m' = 1. 

By applying Hiilder's inequality, we obtain 

2m/m1 where K is the compact support of f and C (m) = [jK 1 f (x)lm' dx] . Next, by 
Lemma 7, we get 

where the last inequality is due to the fact that 0 c y < (a-  1)/2. Therefore, by 
Lemma 4, the sequence (A:)nb is tight in the Besov space ~ ; ( 1 - 1 ) j 2 a ~ v ~ 0  and the 
proof of the theorem is complete. 

Proof of Theorem 11. As in the proof of Theorem 10 it suffices to 
show the tightness of 

in the Besov space 3?~@-1)~a.v~0. As above, for any rn 2 1 we have 

From the inequality 

EIL(t, x)-L(s ,  ~ ) 1 ~ ~  < C I ~ - s ] ~ ~ ( ~ - ~ ~ / ~ ,  

due to Marcus and Rosen (1992), it follows that 
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Since - 1 < y < 0, we have (nZmY'" < 1 )  

The desired result is now an immediate consequence of (5) and Lemma 4. 

5. STRONG APPROXIMATION 

A strong approximation version of T. Yamada's (1986) results, obtained in 
the case a = 2 (that is, X, is a Brownian motion), was given by Csaki et al. (2002). 

The airn of this section is to obtain a strong approximation version of Theo- 
rems 10 and 11. For a random variable, say 2, on the probability space of the 
stable process X, we denote by llZllr the E-norm of Z with respect to Po, the 
probability measure of the process which is zero at zero time, i.e. llZlll = CE]Z1'-J1/'. 

Here are the main results of this section. 

THEOREM 12. Let f be in (R)  such that 7= 0. Assume that, for 
0 < y < (a-1)/2, f (x)  is bounded and 

lim Ixll'y f (x) = f+ ( f - ) .  
x-++m(-m) 

Then for ail suficientiy small E > 0 and rn 1, as t + a, 
t 

111 f ( ~ , ) d ~ l l , ,  = llf+ D? L ( t ,  .)(O)+f- DL L( t ,  .)(0)112111+~(t1-(1+y)/a+e 1-  
0 

THEOREM 13. Let f e 4, (R)  and lim,, , , Juxl < f ( x )  dx = 0. In this case, 
f+ = f- = fo. We assume that y = 0. Then for all suficiently small E > 0 and 
m B 1 ,  as t + m ,  

The following is the key lemma. 

LEMMA 14. Let 0 < y < (a- 1)/2 and D E (D;, DY, Dy, Do). Then there 
exists a constant C > 0 such that for euery ( t ,  s) ER;, x E R and m 2 1 

llDL(t, .)(x)-DL(s, -)(x)lfzm < C I ~ - S I ~ - ( ~ + ~ ) / ' .  

P r o  of of Lemma 14. Let us give the proof for DO,, the other case can 
be derived similarly and by linearity (see Ait Ouahra and Eddahbi (2001)). 

From the definition of DO, we have for all integers m 2 1 



276 M. Ait  Ouahra et d. 

where 

Let h = It-sla (a > 0). Then 

i 
! Consequently, 
I 

If we choose a = 2/01, we get 

(6) I l  < C [ ~ - S ~ ( ~ - ~ ) ~ ~ .  

Now, we deal with I , .  We have 
I 

where A(x)  := (y :  Ix+ yl $ C )  has measure less than or equal to 212, and 
supp L (t, - ) c [- C, Cj.  We deduce that 

(7) r2 < CIt-s(("-1)/=. 
It follows from (6) and (7) that 

llD"+(ty - ) (x)-D$ L(s,  .)(x)llzm < C I ~ - S ( ( ~ - ~ ) ~ ~ ~  

which gives the desired estimate. 

Proof of Theorem 12. Set 

Using the occupation time formula and the fact that J =  0 ,  we obtain 
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Then, for all integers m >, 1, 

+ I f + ]  llD5 L(t7 ')(0)112m+lf-l llD'- L( t ,  .)('3112rn. 

Since ]yI1'Y 1 f (y)I is bounded, we get 

IlI(t)llam 6 C(IIDPL(t9 .)IO)ll~rn+llDYLIt, .)(0)112rn}G C (11 (t)+12(t)). 

Now we consider the estimates Ii (t) and la (t). Using Lemma 14 for x = 0, 
s = 0 and D = D:, we infer that there exists a constant C > 0 such that 

(8) Il  ( t )  = llD$ L(t, .)(0)llZrn < Ct'a-l)ia-ria. 

Similarly, for D = DL we obtain 

(9) I 2  ( t )  = I[DL L ( t ,  .) (0)112, < Ct(a-l'la-YIQ. 

Now, combining (8) and (91, we deduce that 

(10) 1 1 1  (t)llanr 4 ~ t ( ~ - ' ) ' ~ - ' / ~ .  

Then the proof of the theorem is complete. 

Proof of Theorem 13. Set 

By the occupation density formula we have 

(I1) llJ(t)112ni G JI ( t)+J2(t)+J3(t) ,  

where 

We want to estimate J i ( t )  for i = 1,  2,  3. Using the fact that L(0, x) = 0, 
we obtain 

with 

5 - PAMS 24.2 
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and 
K = suppL(t, * )  c [-C,  C]. 

We will use Lemma 6 to conclude that 

Similarly for 3 we have 
B < Ct(" - l"". 

It follows that, for all suficiently small E > 0, 

Now, we deal with J 3  (t). In view of Lemma 6, we deduce that 

for all sufficiently small E > 0. 
Wow, we are going to estimate J l  (t). We have 

By Lemma 6, we get 

(14) J ,  (t) < Ct(a-l)Ja. 

Now, combining (1 lH14), we get 

IIJ(t)llzm = 0 (t 
1-lJa+e 1, 

which completes the proof of the theorem. 

Remark. It would be interesting to prove that 

and 
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