A NOTE ON THE ALMOST SURE CONVERGENCE OF CENTRAL ORDER STATISTICS

SIEGFRIED HÖRMANN (Graz)

Abstract

We prove almost sure versions of distributional limit theorems for central order statistics. We develop a new method which not only gives a simplified proof of existing results in the literature, but also extends them for general summation methods, leading to considerably sharper results.

2000 Mathematics Subject Classification: 60F05, 60F15, 40G99.
Key words and phrases: Central order statistics, almost sure limit theorem, summation methods.

1. INTRODUCTION AND MAIN RESULTS

Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s and denote their order statistics by

$$
X_{1: n} \leqslant X_{2: n} \leqslant \ldots \leqslant X_{n: n}
$$

If $r \geqslant 0$ is some fixed integer, then $X_{n-r: n}$ is called an extreme order statistic. It is well known that if

$$
\begin{equation*}
a_{n}\left(X_{n-r: n}-b_{n}\right) \stackrel{\mathscr{L}}{\rightarrow} G \tag{1.1}
\end{equation*}
$$

for some non-degenerate distribution function G, then G belongs to one of three classes of distribution functions, the so-called extremal distributions (cf. Galambos [12]). If $r_{n} \in\{0, \ldots, n-1\}$ satisfies

$$
\begin{equation*}
\min \left\{r_{n}, n-r_{n}\right\} \rightarrow \infty \tag{1.2}
\end{equation*}
$$

$X_{n-r_{n}: n}$ is called a central order statistic. It is also well known that under weak conditions on the underlying distribution function, central order statistics are asymptotically normally distributed (cf. Reiss [19]), i.e. for some numerical sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$

$$
\begin{equation*}
a_{n}\left(X_{n-r_{n}: n}-b_{n}\right) \xrightarrow{\mathscr{Q}} \mathscr{N}_{0,1} \tag{1.3}
\end{equation*}
$$

Recently several authors dealt with almost sure versions of the extremal limit theorems (1.1) and (1.3). In the case $r=0$, Cheng et al. [8] and Fahrner and Stadtmüller [10] proved that the weak convergence relation (1.1) implies

$$
\begin{equation*}
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} I\left\{a_{n}\left(X_{n: n}-b_{n}\right) \leqslant x\right\} \rightarrow G(x) \text { a.s. } \quad \text { for all } x \in C_{G} \tag{1.4}
\end{equation*}
$$

where C_{G} denotes the set of all continuity points of G. Relation (1.4) is called "a.s. max-limit theorem", and it is one of the natural extensions of the almost sure central limit theorem (ASCLT), a remarkable pathwise form of the classical (weak) CLT investigated intensively in the past two decades. In its simplest form the ASCLT states that if X_{1}, X_{2}, \ldots are i.i.d. r.v.'s with $E X_{1}=0$, $E X_{1}^{2}=1$, then

$$
\begin{equation*}
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} I\left\{n^{-1 / 2}\left(X_{1}+\ldots+X_{n}\right) \leqslant x\right\} \rightarrow \Phi(x) \text { a.s. } \quad \text { for all } x \in \boldsymbol{R}, \tag{1.5}
\end{equation*}
$$

where Φ denotes the standard normal distribution function. Relation (1.5) was proved by Brosamler [6] and Schatte [21] under more restrictive moment conditions and by Lacey and Philipp [16] and Fisher [11] under finite second moments. Later the ASCLT has been generalized in many directions. The main focus was to extend (1.5) for dependent or not identically distributed r.v.'s X_{1}, X_{2}, \ldots and studying refinements such as the corresponding CLT and LIL and a.s. invariance principles. We do not go into detail here, but refer to Atlagh and Weber [2] and Berkes [3] for surveys.

The papers of Fahrner and Stadtmüller and Cheng et al. cited above were the first examples for the a.s. version of a "nonlinear" limit theorem, i.e. a weak limit theorem for nonlinear functionals of independent random variables. Later, a.s. versions of other nonlinear limit theorems have been found, and Berkes and Csáki [4] showed that every weak limit theorem of a certain generic form and subject to minor technical conditions has an almost sure version. Such a result is known as "universal ASCLT". For a precise formulation and several examples we refer to [4].

In this paper we concentrate on almost sure limit theorems for central order statistics. Let us first review the existing results in the field. Stadtmüller [22] proved that if for some numerical sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ we have

$$
\begin{equation*}
a_{n}\left(X_{n-r_{n}: n}-b_{n}\right) \stackrel{\mathscr{L}}{\longrightarrow} G, \tag{1.6}
\end{equation*}
$$

with some non-degenerate distribution function G, and

$$
\begin{equation*}
r_{n} / n=q+O\left(\left(n \log ^{\varepsilon} n\right)^{-1 / 2}\right) \quad(\varepsilon>0) \tag{1.7}
\end{equation*}
$$

then the a.s. analogue

$$
\begin{equation*}
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} I\left\{a_{n}\left(X_{n-r_{n}: n}-b_{n}\right) \leqslant x\right\} \rightarrow G(x) \text { a.s. } \tag{1.8}
\end{equation*}
$$

holds for any $x \in \mathbb{R}$ with $G(x)=\Phi(x)$. He showed that (1.6) implies (1.8) also if

$$
\begin{equation*}
r_{n}=O\left((\log n)^{1-\varepsilon}\right) \quad(\varepsilon>0) \tag{1.9}
\end{equation*}
$$

Note that the last condition covers extreme order statistics. There is a gap between (1.7) and (1.9) which was filled by Peng and Qi [18], who proved the following result. "

Theorem A. Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s and assume that for some nondegenerate distribution function G there exist constants $a_{n}>0$ and b_{n} such that (1.6) holds. Then under the condition (1.2)

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} I\left\{a_{n}\left(X_{n-r_{n}: n}-b_{n}\right) \leqslant x\right\} \rightarrow G(x) \text { a.s. for all } x \in C_{G} .
$$

In particular, if X_{1}, X_{2}, \ldots are i.i.d. r.v.'s which are uniformly distributed over the interval $(0,1)$, the limit distribution G is normal and we can choose

$$
\begin{equation*}
a_{n}=\left(\frac{n^{3}}{r_{n}\left(n^{\prime}-r_{n}\right)}\right)^{1 / 2} \quad \text { and } \quad b_{n}=1-\frac{r_{n}}{n} \tag{1.10}
\end{equation*}
$$

The proof of Theorem A uses the classical method of covariance estimates (see [16], [21]), but such estimates are not easy to get and the argument of Peng and Qi [18] is very technical. In this paper we develop a new approach to the problem which not only yields a quick proof of Theorem A, but enables us to extend the theorem for a large class of summation procedures, leading to considerably sharper results. Before formulating our results, we make some preliminary remarks on summation methods.

Given a positive sequence $D=\left(d_{k}\right)$ with $D_{n}=\sum_{k=1}^{n} d_{k} \rightarrow \infty$, we say that a sequence $\left(x_{n}\right)$ is D-summable to x if

$$
\lim _{N \rightarrow \infty} D_{N}^{-1} \sum_{n=1}^{N} d_{n} x_{n}=x
$$

By a result of Hardy (see [7], p. 35), if \boldsymbol{D} and \boldsymbol{D}^{*} are summation procedures with $D_{N}^{*}=O\left(D_{N}\right)$, then under minor technical assumptions, the summation D^{*} is stronger than D, i.e. if a sequence $\left(x_{n}\right)$ is D-summable to x, then it is also D^{*}-summable to x. Moreover, by a result of Zygmund (see [7], p. 35), if $D_{N}^{\alpha} \leqslant D_{N}^{*} \leqslant D_{N}^{\beta}\left(N \geqslant N_{0}\right)$ for some $\alpha>0, \beta>0$, then D and D^{*} are equivalent, and if $D_{N}^{*}=O\left(D_{N}^{\varepsilon}\right)$ for any $\varepsilon>0$, then D^{*} is strictly stronger than D. For example, logarithmic summation defined by $d_{n}=1 / n$ is stronger than ordinary
(Cesàro) summation defined by $d_{n}=1$ and weaker than loglog summation defined by $d_{n}=1 /(n \log n)$. On the other hand, all summation methods defined by

$$
d_{n}=(\log n)^{\alpha} / n, \quad \alpha>-1
$$

are equivalent to logarithmic summation, and all summation methods defined by

$$
d_{n}=n^{\alpha}, \quad \alpha>-1
$$

are equivalent to Cesàro summation. The characteristic feature of a.s. central limit theory is logarithmic summation, but even in the simplest case when X_{n} are i.i.d. r.v.'s with mean 0 and variance 1 , there exists a large class of weight sequences $\left(d_{n}\right)$, other than $d_{n}=1 / n$, such that

$$
\begin{equation*}
\frac{1}{D_{N}} \sum_{n=1}^{N} d_{n} I\left\{n^{-1 / 2}\left(X_{1}+\ldots+X_{n}\right) \leqslant x\right\} \rightarrow \Phi(x) \text { a.s. } \quad \text { for all } x \in R \tag{1.11}
\end{equation*}
$$

where $D_{N}=\sum_{k=1} d_{k}$. For example, (1.11) holds for all $d_{n} \leqslant 1 / n$ with $\sum d_{n}=\infty$ and also for many sequences $d_{n} \geqslant 1 / n$. Moreover, in the case of independent, not identically distributed r.v.'s, the weights $d_{n}=1 / n$ are generally not suitable, and one should use different summation methods, see Atlagh [1] and Ibragimov and Lifshits [15]. The same holds for nonlinear limit theorems: for example, the a.s. versions of the Darling-Erdős theorem require loglog summation, see Berkes and Csáki [4]. By Hardy's theorem mentioned above, the larger weight sequence $\left(d_{n}\right)$ we choose in (1.11), the stronger the result becomes, and thus the strongest, optimal form of the ASCLT is obtained for the maximal weight sequence (d_{n}). This optimal weight sequence was determined, up to an unknown constant, in our recent paper Hörmann [14]. In this paper we will investigate the analogous problem for central order statistics and we will prove the following results.

Theorem 1. Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s and assume that for some nondegenerate distribution function G there exist constants $a_{n}>0$ and b_{n} such that

$$
a_{n}\left(X_{n-r_{n}: n}-b_{n}\right) \xrightarrow{\mathscr{Q}} G .
$$

Assume that (1.2) holds, that
(1.12) $\liminf _{n} n d_{n}>0$ and $d_{n} n^{\alpha}$ is non-increasing for some $0<\alpha<1$, and that for some $\varrho>0$

$$
\begin{equation*}
d_{n}=O\left(\frac{D_{n}}{n\left(\log D_{n}\right)^{\varrho}}\right) \tag{1.13}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{1}{D_{N}} \sum_{n=1}^{N} d_{n} I\left\{a_{n}\left(X_{n-r_{n}: n}-b_{n}\right) \leqslant x\right\} \rightarrow G(x) \text { a.s. for any } x \in C_{G} . \tag{1.14}
\end{equation*}
$$

As noted above, the larger the sequence $\left(d_{n}\right)$ is, the stronger the statement of Theorem 1 becomes. The second relation of (1.12) implies that $d_{n}=O\left(n^{-\alpha}\right)$ for some $0<\alpha<1$, which puts no restriction on the growth speed of $\left(d_{n}\right)$ since, as our next theorem will show, the conclusion of Theorem 1 already fails for $d_{n}=n^{-\alpha}$, which determines a summation equivalent to Cesàro summation. The first relation of (1.12) is also a natural one, since the theorem holds for $d_{n}=1 / n$, and thus by a similar argument to that given in [4] it follows for smaller sequences as well. The crucial restriction on $\left(d_{n}\right)$ is (1.13) which is an asymptotic negligibility condition resembling Kolmogorov's condition for the LIL, except the factor n in the denominator of (1.13), which is characteristic for a.s. limit theory. Of course, condition (1.13) fails in the Cesàro case $D_{n}=n$, but it permits

$$
D_{n}=\exp \left((\log n)^{\alpha}\right), \quad 0<\alpha<1,
$$

which borders on the Cesàro case $\alpha=1$, and thus we see the surprising fact that the optimal weight sequence in Theorem 1 is in some sense closer to Cesàro summation than to logarithmic summation.

Our next theorem states the fact, already mentioned above, that the statement of Theorem 1 becomes false for Cesàro summation. This is a usual feature in this circle of problems; note, however, that its proof presents substantial difficulties in the present case.

Theorem 2. Let U_{1}, U_{2}, \ldots be i.i.d. r.v.'s, where U_{1} is uniformly distributed over $(0,1)$, and assume that (1.2) holds. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be the same as in (1.10). Assume further that we have positive constants $\alpha_{1}, \alpha_{2}, C_{1}, C_{2}$ such that

$$
\begin{equation*}
C_{1}\left(\frac{k}{l}\right)^{\alpha_{1}} \leqslant \sqrt{\frac{\left(k-r_{k}\right) r_{l}}{r_{k}\left(l-r_{l}\right)}} \leqslant C_{2}\left(\frac{l}{k}\right)^{\alpha_{2}} . \tag{1.15}
\end{equation*}
$$

Then for any $x \in \boldsymbol{R}$

$$
\frac{1}{N} \sum_{n=1}^{N} I\left\{a_{n}\left(U_{n-r_{n}: n}-b_{n}\right) \leqslant x\right\} \rightarrow \Phi(x)
$$

does not hold almost surely or in probability.
It is likely that Theorem 2 holds without (1.15) but this remains open. However, (1.15) contains most cases of interest. For example, it is easily checked that if $r_{k}=q k+o(k), q \in(0,1)$, or if r_{k} is non-decreasing and r_{k} / k is non-increasing, then (1.15) is satisfied.

2. PROOFS

Our first lemma is the extension of the ASCLT for general summation methods, proved in Hörmann [13].

Lemma 1. Let X_{1}, X_{2}, \ldots be i.i.d. r.v.'s with $E X_{1}=0$ and $E X_{1}^{2}=1$. Assume that $\left(D_{N}\right)$ defines a summation method such that (1.12) and (1.13) hold. Then for any $x \in \boldsymbol{R}$

$$
\frac{1}{D_{N}} \sum_{n=1}^{N} d_{n} I\left\{n^{-1 / 2}\left(X_{1}+\ldots+X_{n}\right) \leqslant x\right\} \rightarrow \Phi(x) \text { a.s. }
$$

This result will be crucial in the sequel. Note, however, that for technical reasons we need Lemma 1 for triangular arrays as well; this is given by the next lemma.

Lemma 2. Let $\left\{\xi_{n, i}: 1 \leqslant i \leqslant n ; n \geqslant 1\right\}$ be a triangular array of r.v.'s satisfying

$$
\begin{equation*}
E \xi_{n, i}=0 \quad \text { for each }(n, i) \tag{2.1}
\end{equation*}
$$

(2.2) the sequences $\left(\xi_{n, 1}\right)_{n \geqslant 1},\left(\xi_{n, 2}\right)_{n \geqslant 2}, \ldots$ are mutually independent,
(2.3) \quad there is some C such that $E \xi_{n, i}^{2} \leqslant C / n$ for each (n, i),

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} E\left(\xi_{n, i}^{2}\right)=1 \tag{2.4}\\
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} E\left(\xi_{n, i}^{2} ;\left|\xi_{n, i}\right|>\varepsilon\right)=0 \quad \text { for all } \varepsilon>0
\end{gather*}
$$

Assume that $\left(D_{N}\right)$ defines a summation method such that (1.12) and (1.13) hold. Then for any $x \in \boldsymbol{R}$

$$
\frac{1}{D_{N}} \sum_{n=1}^{N} d_{n} I\left\{\xi_{n, 1}+\ldots+\xi_{n, n} \leqslant x\right\} \rightarrow \Phi(x) \text { a.s. }
$$

Lemma 2 is a common generalization of Lemma 1 and a version of the ASCLT for triangular arrays due to Lesigne [17], which states Lemma 2 in the case $d_{n}=1 / n$. As Lesigne observed, the standard proof of Lacey and Philipp applies also in the triangular array case, and in fact the proof of Lemma 2 is essentially the same as that of Lemma 1.

Proof of Theorem 1. As noted by Peng and Qi ([18], proof of Theorem 2), Theorem A can be reduced to the case of i.i.d. uniform r.v.'s by a simple quantile-transformation argument, and for the same reason it suffices to prove Theorem 1 for this special case. Our proof is based on the following useful and easily verified duality relation: For any sequence of random variables
X_{1}, X_{2}, \ldots we have

$$
\begin{equation*}
\left\{X_{r: n} \leqslant x\right\}=\left\{\sum_{i=1}^{n} I\left\{X_{i} \leqslant x\right\} \geqslant r\right\} . \tag{2.6}
\end{equation*}
$$

As our random variables X_{n} are uniform, we will denote them by $U_{n}(n=1,2, \ldots)$, and $U_{i: n}(1 \leqslant i \leqslant n, n \geqslant 1)$ will denote the corresponding order statistics. Using the values of a_{n} and b_{n} in (1.10), we infer from (2.6) and some simple algebra that

$$
\begin{equation*}
\left\{a_{n}^{-}\left(U_{n-r_{n}: n}-b_{n}\right) \leqslant x\right\}=\left\{-\frac{a_{n}}{n} \sum_{i=1}^{n}\left(I\left\{U_{i} \leqslant x / a_{n}+b_{n}\right\}-\left(x / a_{n}+b_{n}\right)\right) \leqslant x\right\} . \tag{2.7}
\end{equation*}
$$

By (1.10) and (1.2) we have

$$
\begin{equation*}
a_{n} b_{n}=\sqrt{\frac{n\left(n-r_{n}\right)}{r_{n}}} \rightarrow \infty \quad \text { and } \quad a_{n}\left(1-b_{n}\right)=\sqrt{\frac{n r_{n}}{n-r_{n}}} \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

Thus for any fixed $x \in \boldsymbol{R}$ we have $0<x / a_{n}+b_{n}<1$ if n is large enough, which we assume from now on. Define

$$
\begin{equation*}
\xi_{n, i}=-\frac{a_{n}}{n}\left(I\left\{U_{i} \leqslant x / a_{n}+b_{n}\right\}-\left(x / a_{n}+b_{n}\right)\right) \quad(1 \leqslant i \leqslant n) . \tag{2.9}
\end{equation*}
$$

Using (1.10), by easy calculations we obtain

$$
E \xi_{n, i}^{2}=\frac{1}{n}+\frac{x}{n}\left(\frac{r_{n}}{n\left(n-r_{n}\right)}\right)^{1 / 2}-\frac{x}{n}\left(\frac{n-r_{n}}{n r_{n}}\right)^{1 / 2}-\frac{x^{2}}{n^{2}}
$$

Clearly,

$$
\frac{r_{n}}{n\left(n-r_{n}\right)} \leqslant \frac{1}{n-r_{n}} \quad \text { and } \quad \frac{n-r_{n}}{n r_{n}} \leqslant \frac{1}{r_{n}},
$$

and hence by (1.2) we have $E \xi_{n, i}^{2} \sim 1 / n$. Now it is easily checked that the triangular array $\left\{\xi_{n, i}: 1 \leqslant i \leqslant n ; n \geqslant 1\right\}$ satisfies the conditions of Lemma 2, and the proof of Theorem 1 is completed by (2.7).

Proof of Theorem 2. It suffices to show that

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \frac{1}{N^{2}} \operatorname{Var} \sum_{n=1}^{N} I\left\{a_{n}\left(U_{n-r_{n}: n}-b_{n}\right) \leqslant x\right\}>0 . \tag{2.10}
\end{equation*}
$$

For this purpose we define $\xi_{n, i}$ as in (2.9) and again set $S_{n}=\xi_{n, 1}+\ldots+\xi_{n, n}$.
Lemma 3. Under the conditions of Theorem 2 there exists a $K>0$ such that for $\kappa_{1}=\frac{1}{2} \min \left\{C_{1}, C_{2}^{-1}\right\}$ and $\gamma=\frac{1}{2}+\max \left\{\alpha_{1}, \alpha_{2}\right\}$ we have

$$
\operatorname{Cov}\left(S_{k}, S_{l}\right) \geqslant \kappa_{1}(k, l)^{\gamma}, \quad K \leqslant k \leqslant l .
$$

Proof. Since the $\xi_{n, 1}, \ldots, \xi_{n, n}$ are i.i.d. and the condition (2.2) is satisfied, we have for $k \leqslant l$

$$
\begin{aligned}
\operatorname{Cov}\left(S_{k}, S_{l}\right) & =\operatorname{Cov}\left(S_{k}, \sum_{i=1}^{k} \xi_{l, i}\right)=k \operatorname{Cov}\left(\xi_{k, 1}, \xi_{l, 1}\right) \\
& =a_{k} \frac{a_{l}}{l}\left(\min \left\{x a_{k}^{-1}+b_{k}, x a_{l}^{-1}+b_{l}\right\}-\left(x a_{k}^{-1}+b_{k}\right)\left(x a_{l}^{-1}+b_{l}\right)\right) \\
& =\frac{1}{l}\left(x+a_{k} b_{k}\right)\left(a_{l}\left(1-b_{l}\right)-x\right),
\end{aligned}
$$

where we assumed first that $x a_{k}^{-1}+b_{k} \leqslant x a_{l}^{-1}+b_{l}$. Now we use (2.8) and conclude by (1.15) that

$$
\operatorname{Cov}\left(S_{k}, S_{l}\right)=(1+o(1))\left(\frac{k}{l}\right)^{1 / 2} \sqrt{\frac{\left(k-r_{k}\right) r_{l}}{r_{k}\left(l-r_{l}\right)}} \geqslant \frac{1}{2} C_{1}\left(\frac{k}{l}\right)^{1 / 2+\alpha_{1}}
$$

if $k \geqslant K$. (Here $o(1)$ is meant for $\min \{k, l\} \rightarrow \infty$.) Similarly one can show that if $x a_{k}^{-1}+b_{k}>x a_{l}^{-1}+b_{l}$, then

$$
\operatorname{Cov}\left(S_{k}, S_{l}\right)=(1+o(1))\left(\frac{k}{l}\right)^{1 / 2} \sqrt{\frac{\left(l-r_{l}\right) r_{k}}{r_{l}\left(k-r_{k}\right)}} \geqslant \frac{1}{2} \frac{1}{C_{2}}\left(\frac{k}{l}\right)^{1 / 2+\alpha_{2}}
$$

if $k \geqslant K$.
Lemma 4. Let $\left(T_{k}, T_{i}\right)$ be a 2 -dimensional Gaussian vector with zero expectation and the same covariance matrix as $\left(S_{k}, S_{l}\right)$. Let further $\varphi_{k, l}(s, t)=$ $E\left(\exp \left(i s S_{k}+i t S_{l}\right)\right)$ be the characteristic function of $\left(S_{k}, S_{l}\right)$ and $\psi_{k, l}(s, t)$ the characteristic function of $\left(T_{k}, T_{i}\right)$. Then for any $(s, t) \in \boldsymbol{R}^{2}$

$$
\begin{equation*}
\left|\varphi_{k, l}(s, t)-\psi_{k, l}(s, t)\right| \rightarrow 0 \quad \text { if } \min \{k, l\} \rightarrow \infty . \tag{2.12}
\end{equation*}
$$

Proof. In the following we assume that $k \leqslant l$. Let $\sigma_{k l}:=\operatorname{Cov}\left(S_{k}, S_{l}\right)$. Then clearly

$$
\begin{equation*}
\psi_{k, l}(s, t)=\exp \left(-\frac{1}{2}\left(\sigma_{k k} s^{2}+\sigma_{l l} t^{2}+2 \sigma_{k l} s t\right)\right) \tag{2.12}
\end{equation*}
$$

and observe also that

$$
\begin{equation*}
\sigma_{k l}=k E \xi_{k, 1} \xi_{l, 1} . \tag{2.13}
\end{equation*}
$$

Since $\xi_{l, 1}, \ldots, \xi_{l, l}$ is an i.i.d. sequence, we have

$$
\begin{equation*}
\varphi_{k, l}(s, t)=\left(E \exp \left(i s \xi_{k, 1}+i t \xi_{l, 1}\right)\right)^{k}\left(E \exp \left(i t \xi_{l, 1}\right)\right)^{l-k} . \tag{2.1}
\end{equation*}
$$

Using

$$
\left|e^{i x}-\sum_{k=0}^{n} \frac{(i x)^{k}}{k!}\right| \leqslant \frac{|x|^{n+1}}{(n+1)!},
$$

we derive easily

$$
\begin{aligned}
&\left|E \exp \left(i s \xi_{k, 1}+i t \xi_{l, 1}\right)-\left(1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}\right)\right| \\
& \leqslant C \cdot \max \{|s|,|t|\}^{3}\left[E\left|\xi_{k, 1}\right|^{3}+E\left|\xi_{l, 1}\right|^{3}\right] .
\end{aligned}
$$

Relations (1.2) and (1.10) imply $a_{n}=o(n)$; further from the definition of $\xi_{k, 1}$ and $E \xi_{k, 1}^{2} \sim k^{-1}$ it follows that

$$
E\left|\xi_{k, 1}\right|^{3} \leqslant \frac{2 a_{k}}{k} E \xi_{k, 1}^{2}=o\left(k^{-1}\right) .
$$

Thus,

$$
\begin{equation*}
E \exp \left(i s \xi_{k, 1}+i t \xi_{l, 1}\right)=1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}+\varrho(s, t, k, l) \tag{2.15}
\end{equation*}
$$

with $|k \varrho(s, t, k, l)|=o(1)$ for $k \rightarrow \infty$. Next we observe that by (2.13)

$$
E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}=s^{2} \frac{\sigma_{k k}}{k}+t^{2} \frac{\sigma_{l l}}{l}+2 s t \frac{\sigma_{k l}}{k} .
$$

Some simple analysis shows that for any $r>0$ and $0 \leqslant t \leqslant 1$

$$
\left|(1-t)^{r}-e^{-r t}\right| \leqslant r e^{-r t+t}\left(e^{-t}-(1-t)\right) \leqslant \frac{r t^{2}}{2} e^{-r t+t} \leqslant \frac{t}{2}
$$

Hence from $E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2} \rightarrow 0$ for $k \rightarrow \infty$ it follows that

$$
\left|\left(1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}\right)^{k}-\exp \left(-\frac{1}{2}\left(s^{2} \sigma_{k k}+\frac{k}{l} \sigma_{l l} t^{2}+2 s t \sigma_{k l}\right)\right)\right| \rightarrow 0 \quad(k \rightarrow \infty)
$$

Further we have by (2.15)

$$
\begin{align*}
& \left|\left(E \exp \left(i s \xi_{k, 1}+i t \xi_{l, 1}\right)\right)^{k}-\exp \left(-\frac{1}{2}\left(s^{2} \sigma_{k k}+\frac{k}{l} \sigma_{l l} t^{2}+2 s t \sigma_{k l}\right)\right)\right| \tag{2.16}\\
& \leqslant\left|\left(1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}+\varrho(s, t, k, l)\right)^{k}-\left(1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}\right)^{k}\right| \\
& \quad+\left|\left(1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}\right)^{k}-\exp \left(-\frac{1}{2}\left(s^{2} \sigma_{k k}+\frac{k}{l} \sigma_{l l} t^{2}+2 s t \sigma_{k l}\right)\right)\right|
\end{align*}
$$

From the fact that $\left|1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}+\varrho(s, t, k, l)\right| \leqslant 1$ (since by (2.15) it is a characteristic function) and $\left|1-\frac{1}{2} E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2}\right| \leqslant 1$ for k large enough (since $E\left(s \xi_{k, 1}+t \xi_{l, 1}\right)^{2} \rightarrow 0$) we infer by the mean value theorem that (2.16) is less than or equal to $|k \varrho(s, t, k, l)|$ which tends to zero for $k \rightarrow \infty$. This proves that

$$
\begin{equation*}
\left|\left(E \exp \left(i s \xi_{k, 1}+i t \xi_{l, 1}\right)\right)^{k}-\exp \left(-\frac{1}{2}\left(s^{2} \sigma_{k k}+\frac{k}{l} \sigma_{l l} t^{2}+2 s t \sigma_{k l}\right)\right)\right| \rightarrow 0 \tag{2.17}
\end{equation*}
$$

$$
(k \rightarrow \infty)
$$

Similarly one can show that

$$
\begin{equation*}
\left|\left(E \exp \left(i t \xi_{l, 1}\right)\right)^{l-k}-\exp \left(-\frac{1}{2}(1-k / l) \sigma_{l l} t^{2}\right)\right| \rightarrow 0 \quad(k \rightarrow \infty) \tag{2.18}
\end{equation*}
$$

Combining (2.12), (2.14), (2.17) and (2.18), we obtain (2.11).
Lemma 5. Define κ_{1} and γ as in Lemma 3, let $f=1_{(-\infty, x]}$ for some $x \in \boldsymbol{R}$, and let $\varepsilon>0$. Then there exist an $A=A(\varepsilon)>0$ and positive constants κ_{2}, μ such that

$$
\operatorname{Cov}\left(f\left(S_{k}\right), f\left(S_{l}\right)\right) \geqslant \kappa_{2}(k / l)^{\mu} \quad(k \leqslant l)
$$

if $k \geqslant A$ and $\kappa_{1}(k / f)^{\gamma} \geqslant \varepsilon$.
It is needless to say that Lemma 5 does not hold in the trivial cases $x= \pm \infty$. In the sequel c_{1}, c_{2}, \ldots denote positive constants.

Proof. Again we assume that $k \leqslant l$ and denote by $P_{k, l}$ and $Q_{k, l}$ the probability measures belonging to (S_{k}, S_{l}) and (T_{k}, T_{l}), respectively, defined in Lemma 4. Since the difference of the corresponding characteristic functions $\left|\varphi_{k, l}(s, t)-\psi_{k, l}(s, t)\right|$ tends to zero for $k \rightarrow \infty$, we see that the Prokhorov distance $\varepsilon_{k, l}:=\pi\left(P_{k, l}, Q_{k, l}\right) \rightarrow 0$ for $k \rightarrow \infty$ (see, e.g., Lemma 2.2 in Berkes and Philipp [5]). By a special case of the Strassen-Dudley theorem (cf. Dudley [9], Theorem 11.6.2), there exist for every (k, l) a probability space $\left(\Omega_{k l}, \mathscr{F}_{k l}, \mathscr{P}_{k l}\right)$ and random vectors $\left(S_{k}^{*}, S_{l}^{*}\right)$ and ($T_{k}^{\prime}, T_{l}^{\prime}$) defined on it, with respective distributions $P_{k l}$ and $Q_{k l}$ such that

$$
\begin{equation*}
\mathscr{P}_{k l}\left(\left\|\left(S_{k}^{*}, S_{l}^{*}\right)-\left(T_{k}^{\prime}, T_{l}^{\prime}\right)\right\|>\varepsilon_{k, l}\right) \leqslant \varepsilon_{k, l} \tag{2.19}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Euclidean distance. Setting

$$
\left(T_{k}^{*}, T_{l}^{*}\right)=\left(\frac{T_{k}^{\prime}}{\sqrt{\sigma_{k k}}}, \frac{T_{l}^{\prime}}{\sqrt{\sigma_{l l}}}\right)
$$

we get from (2.19) and $\sigma_{k k} \rightarrow 1$ that for every $\delta>0$ there is a $k(\delta)$ such that for $k>k(\delta)$

$$
\begin{equation*}
\mathscr{P}_{k l}\left(\left\|\left(S_{k}^{*}, S_{l}^{*}\right)-\left(T_{k}^{*}, T_{l}^{*}\right)\right\|>\delta\right)<\delta \tag{2.20}
\end{equation*}
$$

Define

$$
\begin{array}{ll}
c_{k, l}:=\operatorname{Cov}\left(S_{k}^{*}, S_{l}^{*}\right), & d_{k, l}:=\operatorname{Cov}\left(f\left(S_{k}^{*}\right), f\left(S_{l}^{*}\right)\right) \\
c_{k, l}^{*}:=\operatorname{Cov}\left(T_{k}^{*}, T_{l}^{*}\right), & d_{k, l}^{*}:=\operatorname{Cov}\left(f\left(T_{k}^{*}\right), f\left(T_{l}^{*}\right)\right)
\end{array}
$$

We note here that the sequences $\left(S_{k}^{*}\right)$ and $\left(T_{k}^{*}\right)$ are uniformly integrable. This is clear for T_{k}^{*} and can be easily verified for S_{k}^{*}, e.g. by showing that $E\left(S_{k}^{*}\right)^{4} \leqslant M$, where M is some constant which does not depend on k. Thus (2.20) implies that

$$
\left|c_{k, l}-c_{k, l}^{*}\right| \rightarrow 0 \quad(k \rightarrow \infty)
$$

and hence if $k \geqslant A_{1}(\varepsilon)$, we have $\left|c_{k, l}-c_{k, l}^{*}\right| \leqslant \varepsilon^{2}$. Without loss of generality we may assume $\varepsilon \leqslant 1 / 2$ and $A_{1} \geqslant K$, where K stems from Lemma 3. By Lem-
ma 3 and $\kappa_{1}(k / l)^{\gamma} \geqslant \varepsilon$ we get $\left|1-c_{k, l}^{*} / c_{k, l}\right| \leqslant \varepsilon$, whence

$$
\begin{equation*}
c_{k, l}^{*} \geqslant(1-\varepsilon) c_{k, l} \geqslant \frac{1}{2} c_{k, l} . \tag{2.21}
\end{equation*}
$$

Since the vector $\left(T_{k}^{*}, T_{l}^{*}\right)$ is Gaussian with standard normally distributed components, we get

$$
d_{k, l}^{*}=\sum_{v=0}^{\infty} \frac{\left(c_{k, l}^{*}\right)^{v}}{v!} \alpha_{v}^{2},
$$

where α_{v} are the coefficients in the Hermite expansion of $f-E f\left(\mathcal{N}_{0,1}\right)$. (See e.g. the proof of Lemma 10.2 in Rozanov [20].) Since f is non-constant, there is some $v_{0} \geqslant 0$ such that $\left|\alpha_{v_{0}}\right|>0$. This shows that

$$
\begin{equation*}
d_{k, l}^{*} \geqslant c_{1}\left(c_{k, l}^{*}\right)^{v_{0}} . \tag{2.22}
\end{equation*}
$$

Clearly, Lemma 3 and (2.21)-(2.22) imply that if $k \geqslant A_{1}$ and $\kappa_{1}(k / l)^{\gamma} \geqslant \varepsilon$, then

$$
\begin{equation*}
d_{k, l}^{*} \geqslant c_{2}(k / l)^{\gamma v_{0}}, \tag{2.23}
\end{equation*}
$$

and thus $d_{k, l}^{*} \geqslant c_{3} \varepsilon^{\nu_{0}}$. Remember that $f=1_{(-\infty, x]}$, and thus for any $\delta>0$ we have

$$
\begin{aligned}
& \mathscr{P}_{k l}\left(\left\|\left(f\left(S_{k}^{*}\right), f\left(S_{l}^{*}\right)\right)-\left(f\left(T_{k}^{*}\right), f\left(T_{l}^{*}\right)\right)\right\|>0\right) \\
& \quad \leqslant \mathscr{P}_{k l}\left(T_{k}^{*} \in U_{x}(\delta)\right)+\mathscr{\mathscr { F }}_{k l}\left(T_{l}^{*} \in U_{x}(\delta)\right)+\mathscr{P}_{k l}\left(\left\|\left(S_{k}^{*}, S_{l}^{*}\right)-\left(T_{k}^{*}, T_{l}^{*}\right)\right\|>\delta\right),
\end{aligned}
$$

where $U_{\delta}(x)=(x-\delta, x+\delta)$. Since $\delta>0$ is arbitrary and T_{k}^{*}, T_{l}^{*} are standard normal r.v.'s, (2.20) implies that

$$
\left(f\left(S_{k}^{*}\right), f\left(S_{l}^{*}\right)\right)-\left(f\left(T_{k}^{*}\right), f\left(T_{l}^{*}\right)\right) \xrightarrow{P} 0,
$$

and thus $\left|d_{k, l}-d_{k, l}^{*}\right| \rightarrow 0$ as $k \rightarrow \infty$. Now we choose $A_{2}(\varepsilon)$ such that $\left|d_{k, l}^{*}-d_{k, l}\right| \leqslant$ $c_{3} \varepsilon^{v_{0}+1}$ for $k \geqslant A_{2}$. Since $d_{k, l}^{*} \geqslant c_{3} \varepsilon^{\nu_{0}}$, this yields, by the same argument as above,

$$
d_{k, l} \geqslant(1-\varepsilon) d_{k, l}^{*} \geqslant \frac{1}{2} d_{k, l}^{*} .
$$

We set $A=\max \left\{A_{1}, A_{2}\right\}$ and the lemma is proved by (2.23).
Lemma 6. Let $f=1_{(-\infty, x]}, x \in \boldsymbol{R}$. Then there is some $L>0$ such that for all $N \geqslant N_{0}$

$$
\operatorname{Var}\left(\sum_{k=1}^{N} f\left(S_{k}\right)\right) \geqslant L N^{2}
$$

Proof. Define A, κ_{1} and κ_{2} as before. Then from $|f| \leqslant 1$ we get

$$
\operatorname{Var}\left(\sum_{k=1}^{N} f\left(S_{k}\right)\right)=\sum_{k=1}^{N} \operatorname{Var} f\left(S_{k}\right)+2 \sum_{1 \leqslant k<l \leqslant N} \operatorname{Cov}\left(f\left(S_{k}\right), f\left(S_{l}\right)\right)
$$

$$
\begin{aligned}
& =O(N)+2 \sum_{\substack{1 \leqslant k<l \leqslant N \\
k_{1}(k /)^{\prime}<\varepsilon}} \operatorname{Cov}\left(f\left(S_{k}\right), f\left(S_{l}\right)\right)+2 \sum_{\substack{A \leqslant k<l \leqslant N \\
k_{1}(k /)^{\geqslant} \geqslant \varepsilon}} \operatorname{Cov}\left(f\left(S_{k}\right), f\left(S_{l}\right)\right) \\
& =: O(N)+2 S^{(1)}+2 S^{(2)} .
\end{aligned}
$$

Trivially,

$$
\begin{equation*}
\left|S^{(1)}\right| \leqslant \sum_{l=1}^{N} \sum_{1 \leqslant k \leqslant l\left(z / /_{1}\right)^{1 / \gamma}} 2 \leqslant c_{4} \varepsilon^{1 / \gamma} N^{2} . \tag{2.24}
\end{equation*}
$$

By Lemma 5 we get

$$
\begin{equation*}
S^{(2)} \geqslant \sum_{A \leqslant k<l \leqslant N} \kappa_{2}\left(\frac{k}{l}\right)^{\mu}-\sum_{\substack{A \leqslant k<l \leqslant N \\ \kappa_{1}(k /)^{p}<\varepsilon}} \operatorname{Cov}\left(f\left(S_{k}\right), f\left(S_{l}\right)\right) . \tag{2.25}
\end{equation*}
$$

It is easily seen that

$$
\sum_{A \leqslant k<l \leqslant N} \kappa_{2}\left(\frac{k}{l}\right)^{\mu} \sim \frac{\kappa_{2}}{2(\mu+1)} N^{2} \quad(N \rightarrow \infty)
$$

and thus using the same argument as in (2.24) to estimate the second sum in (2.25) we can always achieve that for sufficiently large N

$$
S^{(2)} \geqslant\left(\frac{\kappa_{2}}{3(\mu+1)}-c_{4} \varepsilon^{1 / \gamma}\right) N^{2} .
$$

Summing up we get for N large enough

$$
\operatorname{Var}\left(\sum_{k=1}^{N} f\left(S_{k}\right)\right) \geqslant\left(\frac{\kappa_{2}}{3(\mu+1)}-2 c_{4} \varepsilon^{1 / \gamma}+o(1)\right) N^{2}
$$

and the term in brackets is greater than or equal to $\kappa_{2} /(4(\mu+1))$ if ε is small and N is large enough. This proves Lemma 6.

Using again the duality (2.7) we get immediately (2.10).
Acknowledgement. I am grateful to Professor István Berkes for careful reading the manuscript. Especially I appreciate his valuable comments to Lemma 5 closing a gap in the first version.

REFERENCES

[1] M. Atlagh, Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes, C. R. Acad. Sci. Paris Sér. I. 316 (1993), pp. 929-933.
[2] M. Atlagh and M. Weber, Le théorème central limite presque sûr, Expo. Math. 18 (2000), pp. 97-126.
[3] I. Berkes, Results and problems related to the pointwise central limit theorem, in: Asymptotic Methods in Probability and Statistics (Ottawa, ON, 1997), North-Holland, Amsterdam 1998, pp. 59-96.
[4] I. Berkes and E. Csáki, A universal result in almost sure central limit theory, Stochastic Process. Appl. 94 (2001), pp. 105-134.
[5] I. Berkes and W. Philipp, Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 (1979), pp. 29-54.
[6] G. A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), pp. 561-574.
[7] K. Chandrasekharan and S. Minakshisundaram, Typical Means, Oxford University Press, 1952.
[8] S. Cheng, L. Peng and Y. Qi, Almost sure convergence in extreme value theory, Math. Nachr. 190 (1998), pp. 43-50.
[9] R. M. Dudley, Real Analysis and Probability, Cambridge Stud. Adv. Math., Vol. 74, Cambridge University Press, Cambridge 2002.
[10] I. Fährner and U. Stadtmüller, On almost sure max-limit theorems, Statist. Probab. Lett. 37 (1998), pp. 229-236.
[11] A. Fisher, A pathwise central limit theorem for random walks, preprint, 1989.
[12] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley Ser. Probab. Math. Statist., New York-Chichester-Brisbane 1978.
[13] S. Hörmann, An extension of the almost sure central limit theorem, Statist. Probab. Lett. 76 (2006), pp. 191-202.
[14] S. Hörmann, Critical behavior in almost sure central limit theory, preprint.
[15] I. A. Ibragimov and M. A. Lifshits, On limit theorems of "almost sure" type, Theory Probab. Appl. 44 (2000), pp. 254-272.
[16] M. T. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), pp. 201-205.
[17] E. Lesigne, Almost sure central limit theorem for strictly stationary processes, Proc. Amer. Math. Soc. 128 (2000), pp. 1751-1759.
[18] L. Peng and Y. Qi, Almost sure convergence of the distributional limit theorem for order statistics, Probab. Math. Statist. 23 (2003), pp. 217-228.
[19] R.-D. Reiss, Approximate Distributions of Order Statistics, Springer, New York 1989.
[20] Y. A. Rozanov, Stationary Random Processes, Holden-Day, 1967.
[21] P. Schatte, On strong versions of the central limit theorem, Math. Nachr. 137 (1988), pp. 249-256.
[22] U. Stadtmü11er, Almost sure versions of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), pp. 413-426.

Institute of Statistics
Graz University of Technology
Steyrergasse 17/IV
8010 Graz, Austria
E-mail: shoermann@tugraz.at

