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1. INTRODUCTION AND MAIN RESULTS 

Let XI, X,, . .. be i.i.d. r.v.'s and denote their order statistics by 

If r 2 0 is some fixed integer, then Xn_,: ,  is called an extreme order statistic. It 
is well known that if 

(1.1) an (Xn-r:n -bn) 3 G 

for. some non-degenerate distribution function G, then G belongs to _one of 
three classes of distribution functions, the so-called extremal distributions (cf. 
Galambos [12]). If r, E (0, . . . , n- 1) satisfies 

1,-,:, is called a central order statistic. I t  is also well known that under weak 
conditions on the underlying distribution function, central order statistics are 
asymptotically normally distributed (cf. Reiss [19]), i.e. for some numerical 
sequences (an) and (b,) 
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Recently several authors dealt with almost sure versions of the extremal limit 
theorems (1.1) and (1.3). In the case r = 0, Cheng et al. [8] and Fahrner and 
Stadtmuller [10] proved that the weak convergence relation (1.1) implies 

where CG denotes the set of all continuity points of G. Relation (1.4) is called 
"as. max-limit theorem7', and it is one of the natural extensions of the almost 
sure central limit theorem (ASCLT), a remarkable pathwise form of the clas- 
sical- (weak) CLT investigated intensively in the past two decades. In its sim- 
plest form the ASCLT states that if Xi,  X,, ... are i.i.d. r.v.'s with EXL = 0, 
EX: = 1, then 

where @ denotes the standard normal distribution function. Relation (1.5) was 
proved by BrosamIer [6] and Schatte 1211 under more restrictive moment 
conditions and by Lacey and Philipp [16] and Fisher [ll] under finite second 
moments. Later the ASCLT has been generalized in many directions. The main 
focus was to extend (1.5) for dependent or not identically distributed r.v.'s 
XI, X , ,  . . . and studying refinements such as the corresponding CLT and LIL 
and a.s. invariance principles. We do not go into detail here, but refer to AtIagh 
and Weber [2] and Berkes [3] for surveys. 

The papers of Fahrner and Stadtmiiller and Cheng et al. cited above were 
the first examples for the a.s. version of a "nonlinear" limit theorem, i.e. a weak 
limit theorem for nonlinear functionals of independent random variables. Lat- 
er, a.s. versions of other nonlinear limit theorems have been found, and Berkes 
and Csaki [4] showed that every weak limit theorem of a certain generic form 
and subject to minor technical conditions has an almost sure version. Such 
a result is known as "universal ASCLT". For a precise formulation and several 
examples we refer to [4]. 

In this paper we concentrate on almost sure limit theorems for central 
order statistics. Let us first review the existing results in the field. StadtmiilIer 
[22] proved that if for some numerical sequences (a,) and (b,J we have 

with some non-degenerate distribution function G, and 

(1.7) m/n = q + 0 ((n logE n)- 'I2) (E > 0), 
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then the a.s. analogue 

holds for any x E R with G(x) = @ (x). He showed that (1.6) implies (1.8) also if 

Note that the last condition covers extreme order statistics. There is a gap 
between (1.7) and (1.9) which was filled by Peng and Qi [l8], who proved the 

-- - 
following result.' 

THEOREM A. Let XI, X,, .. . be i.i.d. r.v.'s and assume that for some non- 
degenerate distribution function G there exist constants a, > 0 arid b, such that 
(1.6) holds. Then under the condition (1.2) 

Ln particular, if X,, X, ,  . . . are i.i.d. r.v.'s which are uniformly distributed 
over the interval (0, I), the limit distribution G is normal and we can choose 

rn and b n =  I--.  
n 

The proof of Theorem A uses the classical method of covariance estimates 
(see [16], [21]), but such estimates are not easy to get and the argument of I I 
Peng and Qi [I81 is very technical. In this paper we develop a new approach to 1 
the problem which not only yields a quick proof of Theorem A, but enables us 
to extend the theorem for a large class of summation procedures, leading to 

I 
considerably sharper results. Before formulating our results, we make some 
preliminary remarks on summation methods. 

i I 
- Given a positive sequence D = (dk) with D, = z;=, dk + a, we say that 

a sequence (x,) is D-szrmmable to x if 
N 

lim Dil z d,x, = x. 
N+m 

By a result of Hardy (see [7], p. 39,  if D and D* are summation procedures 
with D$ = 0 (DN), then under minor technical assumptions, the summation D* 

I 

is stronger than D, i.e. if a sequence (x,) is D-summable to x, then it is also 
D*-summable to x. Moreover, by a result of Zygmund (see [7], p. 35), if 
D$ < Dg < Df, (N 2 No) for some a > 0, #? > 0, then D and D* are equivalent, 

I 
and if D8 = O(D5) for any E > 0, then D* is strictly stronger than D. For 
example, logarithmic summation defined by d, = l / n  is stronger than ordinary 



(Cesdro) summation defined by dn = 1 and weaker than loglog summation 
defined by dn = l / (nlogn) .  On the other hand, all summation methods de- 
fined by 

d, = (log n)"/n, a > - 1 ,  

are equivalent to logarithmic summation, and all summation methods de- 
fined by 

dn=nu,  c r >  -1, 

are equivalent to Cesaro summation. The characteristic feature of a.s. central 
limit thk,ory is Iogarithmic summation, but even in the simplest case when 
X, are i.i.d. r.v.'s with mean 0 and variance 1, there exists a large class of weight 
sequences Id,), other than d ,  = l / n ,  such that 

1 - -  
(1.11) - ~ d , I ( n - 1 1 2 ( X , +  ... + X , ) < x } j @ ( x )  a.s. for all ~ E R ,  

D ~ n = l  

where D M  = x,=, dk. For example, (1.11) holds for all d ,  < I/n with Cd, = m 
and also for many sequences d ,  >, i/n. Moreover, in the case of independent, 
not identically distributed r.v.'s, the weights d, = l/n are generally not suitable, 
and one should use different summation methods, see Atlagh [I] and Ibragirnov 
and Lifshits [15]. The same holds for nonlinear Iimit theorems: for example, 
the a.s. versions of the Darling-ErdBs theorem require loglog summation, see 
Berkes and Cskki 141. By Hardy's theorem mentioned above, the larger weight 
sequence (d,) we choose in (1.11), the stronger the result becomes, and thus the 
strongest, optimal form of the ASCLT is obtained for the maximal weight 
sequence (d,). This optimal weight sequence was determined, up to an unknown 
constant, in our recent paper Hbrmann [14-1. In this paper we will investigate 
the analogous problem for central order statistics and we will prove the fol- 
lowing results. 

T H ~ R E M  1. Let XI,  X,, . . . be i.i.d. r.v.'s and assume that for some non- 
degenerate distribution function G there exist constants a,, > 0 and bn such that 

Assume that (1.2) holds, that 

(1.12) liminf nd, > 0 and d, na is non-increasing for some 0 < a < 1, 
n 

and that for some Q > 0 
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Then we have 

(1.14) 
1 
- d,I{a,(X ,-,n:, - b , ) < x ) + G ( x )  a.s. for any X E C ~ .  
Dh'n=1 

As noted above, the larger the sequence (d,) is, the stronger the statement 
of Theorem 1 becomes. The second relation of (1.12) implies that d ,  = O(n-d) 
for some 0 < a < 1, which puts no restriction on the growth speed of (d,) since, 
as our next theorem will show, the conclusion of Theorem 1 already fails for 
d, = nWa, which determines a summation equivalent to Cesiro summation. The 
first relationof (f.12) is also a natural one, since the theorem holds for d ,  = l /n ,  
and thus by'a similar argument to that given in [43 it follows for smaller 
sequences as well. The crucial restriction on (d,) is (1.13) which is an asymptotic 
negligibility condition resembling Kolmogorov's condition for the LIL, except 
the factor n in the denominator of (1.13), which is characteristic for a.s. limit 
theory. Of course, condition (1.13) fails in the Cesiro case D, = a, but it permits 

which borders on the Cesko case u = I, and thus we see the surprising fact 
that the optimal weight sequence in Theorem 1 is in some sense closer to 
Cesiro summation than to logarithmic summation. 

Our next theorem states the fact, already mentioned above, that the state- 
ment of Theorem 1 becomes false for CesAro summation. This is a usual feature 
in this circle of problems; note, however, that its proof presents substantial 
difficulties in the present case. 

THEOREM 2. Let U1, U2, . . . be i.i.d. r.v.'s, where Ul is unformly distributed 
over (0, I), and assume that (1.2) holds. Let (a,) and (b,) be the same as in (1.10). 
Assume further that we have positive constants al,  a2, C1, C2 such that 

Then for any X E R  

does not hold almost surely or in probability. 

It is likely that Theorem 2 holds without (1.15) but this remains open. 
However, (1.15) contains most cases of interest. For example, it is easily 
checked that if rk = qk + o (k), q E (0 ,  I ) ,  or if r, is non-decreasing and rk/k is 
non-increasing, then (1.15) is satisfied. 



2. PROOFS 

Our first lemma is the extension of the ASCLT for general summation 
methods, proved in Htirmann [13]. 

LEMMA 1. Let XI, X 2 ,  . . . be i.i.d. r.v.'s with EX1 = 0 and EX: = 1. As- 
sume that (DM) defines a summation method such that (1.12) and (1.13) hold. Then 
for any X E R  

This result will be crucial in the sequel. Note, however, that for technical 
reasons we need Lemma 1 for triangular arrays as well; this is given by the next 
lemma. 

LEMMA 2. Let (tnbi: 1 < i < n; n 2 1)  be a triangular array of r.v.'s satis- 
fying 

Etnmi=O for each ( n , i ) ,  

(2.2) the sequences (~,,1),2,, ({n,2)n, 2 ,  . . . are mutually independent, 

(2.3) there is some C such that EC$ < C/n for each (n,  i), 

lim E (tii) = 1, 
n-*m i=1  

n 

(2-5) lim E(5z,i; I<,,il > E )  = 0 for all E > 0. 
n+m i =  1 

Assume that (DN) deJines a summation method such that (1.12) and (1.13) hold. 
Then for any x E R  

l N  
- C dnl{t , , l+ ... +t , ,  < x) + @(x) U.S. 

n= 1 

Lemma 2 is a common generalization of Lemma 1 and a version of the 
ASCLT for triangular arrays due to Lesigne [17], which states Lemma 2 in the 
case dn = 1/n. As Lesigne observed, the standard proof of Lacey and Philipp 
applies also in the triangular array case, and in fact the proof of Lemma 2 is 
essentially the same as that of Lemma I. 

Proof of Theorem I. As noted by Peng and Qi (LIB], proof of Theorem 2), 
Theorem A can be reduced to the case of i.i.d. uniform r.v.'s by a simple 
quantile-transformation argument, and for the same reason it suffices to prove 
Theorem 1 for this special case. Our proof is based on the following useful 
and easily verified duality relation: For any sequence of random variables 
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XI, X,, . . . we have 

As our random variables X, are uniform, we will denote them by 
U, (n = 1 ,  2 ,  . . .), and U,,, (1 < i < n,  n 3 1 )  will denote the corresponding or- 
der statistics. Using the values of a, and b, in (1.10), we infer from (2.6) and 
some simple algebra that 

By (1.10) and (1.2) we have 

(2.8) an b, = 
n (n - -"I I+ r ,I 

rn and G ( l - b n ) = / z  n - r, +cn. 

Thus for any fixed x E R we have 0 < x/an + b, < 3. if n is large enough, which 
we assume from now on, Define 

(2.9) tjn,i = -S ( I  n {Ui $ x/a.+bn) -(x/an+bn)) (1 < i 4 n). 

Using (1.10), by easy calculations we obtain 

Clearly, 

rn 1 n-r,, 1 <- and - < -, 
n(n-r,) n-rn nrn rn 

and hence by (1.2) we have ESii - l /n.  Now it is easily checked that the 
triangular array {rn,i: 1 < i < n; n 2 1) satisfies the conditions of Lemma 2, 
and- the proof of Theorem 1 is completed by (2.7). 

Proof of Theorem 2. It suffices to show that 

1 
lirn inf Var C I {an (U, -rm:n - b,) < X }  > 0 .  

N - r m N  

For this purpose we define C,,i as in (2.9) and again set S, = + . . . + 5 ,,,. 
LEMMA 3.  Under the conditions of Theorem 2 there exists a K > 0 such 

that for ul = imin {C,, C; l )  and y = ++ max (orl, a2} we have 



P r o  of. Since the . . ., 5,. are i.i.d. and the condition (2.2) is satisfied, 
we have for k < E 

k 

a1 
= a, (min (xu; ' + b,, xu; ' + b,) -(xu; ' + bk) (xu; ' + b,)) 

where we assumed first that xu; -1- bk < XU;' + b,. Now we use (2.8) and con- 
clude by (1.15) that 

(;)"'J= > ;cl (;)""- Cov (S, ,  S,) = (1 + 0 (1)) - 

i f k  2 K. (Here o (1) is meant for min {k, 1)  + m.) Similarly one can show that if 
xai + bk > XLI; + bl, then 

LEMMA 4. Let (x, T )  be a 2-dimensional Gaussian vector with zero expec- 
tation and the s a m  covariance matrix as (Sky S,). Let further yk,,(s, t) = 
E(exp (id,+ its,)) be the characteristic function of (Sky Sl) and I,/I,,, (s, t) the 
characteristic function of (T,, T). Then for any (s, t) E R2 

. P r o  of. In the following we assume that k < 1. Let a,, : = Cov (S,, S,). 
Then clearly 

(2.12) $k,l (s, t) = exp (-+(a, s2 + cr,, t2 + 2akl st)) 

and observe also that 

Since l,,,, .. ., <,,, is an i.i.d. sequence, we have 

(2.14) q k - 1  (s, t) = (Eexp ( i s b , ~  + i f ~ l , ~ ) ) L  ( E ~ x P  (ittz,~))'-~. 

Using 
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we derive easily 

I E  exp ( i s g k , ,  + itti,,)- (1 -3 E (stk, + tt'1,1)2)l 

6 c -max  ( I ~ I ,  1t1l3 ~ ~ 1 5 ~ , ~ 1 ~  + E I ~ " ~ , ~ I ~ I .  

Relations (1.2) and (1.10) imply a, = o (n); further from the definition of c,,, and 
E<;,, - k - I  it follows that 

2ak 
EIFk.iIk C E t t l  = ~ ( k - I ) .  

Thus, -. -- 

(2.15) E'ex~Iis&,i+itt1,1) = l - $ E ( ~ < k , l + t < [ , l ) ~ + ~ ( ~ ,  t ,  k ,  1) 

with Ikg (s, t, k,  Z)I = o (1) for k -+ m. Next we observe that by (2.13) 

Some simple analysis shows that for any r > 0 and 0 B t & 1 

Hence from E { s [ ~ , ,  +tt1,J2 - 0 for k 4 it f o h w ~  that 

4 0  (k-m). ))I 
Further we have by (2.15) 

From the fact that 11 - $ E ( S ~ ~ , ~  +t t l ,1)2+~(s ,  t, k, 1)l $ 1 (since by (2.15) it is 
a characteristic function) and 11 -3 E (st,,, + tt'L,1)21 < 1 for k large enough 
(since E(s{, , ,  + tt1,1)2 + 0) we infer by the mean value theorem that (2.16) is 
less than or equal to J k ~ ( s ,  t, k, 41 which tends to zero for k + co. This proves 
that 

9 - PAMS 25.2 
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Similarly one can show that 

(2.18) 1(~ex~(it~1,~))'~~-ex~(-~(l-k/l)a.t')l -r 0 ( k  -r m). 

Combining 12-12), (2.14), (2.17) and (2.181, we obtain (2.11). 

LEMMA 5. Dejine and y as in Lemma 3, let f = 1!- ,,,, for some x G R, 
and let E > 0. Then there exist an A = A (8) > 0 and pwitive constants I C Z ,  p such 
that 

Cov ( f  (Sk), f (Sll)  2 x, (kll)" ( k  4 0 
if k a--A and rc ,  (k/lJY 2 E. 

It iS needless to say that Lemma 5 does not hold in the trivial cases 
x = &a. In the sequel cl, c 2 , .  . . denote positive constants. 

Proof.  Again we assume that k < 2 and denote by P,,, and Qk,l the proba- 
bility measures belonging to (Sk, St) and (G, K)), respectively, defined in Lem- - 

ma 4. Since the d8erence of the corresponding characteristic functions 
IqkrI (s, t ) -$k, l (s ,  t)l tends to zero for k + c ~ ,  we see that the Prokhorov distance 
c,! : = 7t(Pk,ly Qk,[) -f 0 for k + co (see, e.g., Lemma 2.2 in Berkes and Philipp 
[5]). By a special case of the Strassen-Dudley theorem (cf. Dudley [9], Theo- 
rem 11.6.2), there exist for every (k, I) a probability space ffi,,, Fkl, Pk,) and 
random vectors (St, S f )  and (T,', 7;') defined on it, with respective distributions 
P,, and Qkl such that 

where ] I - [ I  denotes the Euclidean distance. Setting 

we get from (2.19) and a,, -f 1 that for every S > 0 there is a k(6)  such that for 
k > k (6 )  

We note here that the sequences (S:) and IT,*) are uniformly integrable. This is 
clear for T,X and can be easily verified for S t ,  e.g. by showing that E (Sk*)4 < M, 
where M is some constant which does not depend on k. Thus (2.20) implies that 

and hence if k 2 A, ( E ) ,  we have I c ~ , ~ -  c ~ , I  < c2. Without loss of generality we 
may assume E G 1/2 and A, 2 K, where K stems from Lemma 3. By Lem- 
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ma 3 and K~ ( k / O Y  2 E we get I1 -c.$,/~,,~l < E, whence 

Since the vector (z*, ?;*I is Gaussian with standard normally distributed com- 
ponents, we get 

where a, are the coefficients in the Hermite expansion off- E f (NO,l). (See e.g. 
the proof 03 &emma 10.2 in Rozanov [2Oj.) Since f is non-constant, there is 
some vo 2 0 such that lctvol > 0. This shows that 

Clearly, Lemma 3 and (2.21H2.22) imply that if k 2 A,  and K, (k/QY 2 E ,  then 

and thus dg, >, c3 E'O. Remember that f = 1~-,,,,, and thus for any 6 > 0 we 
have 

where Ud ( x )  = ( X  -6, x + 6). Since 6 > 0 is arbitrary and T,*, ?;* are standard 
normal r.v.'s, (2.20) implies that 

and thus Idk,, - d?,,l+ 0 as k + oo. Now we choose A2 (E) such that Id& - dk,ll < 
c3 E"O+ for k 2 A2. Since d:,, B c, E"O, this yields, by the same argument as 
above, 

2 (1 -E) @,,I >id?,,. 

We'set A = max (A,, A,) and the lemma is proved by (2.23). 

LEMMA 6. Let f = 1~-,,,,, XER. Then there is some L > 0 such that for 
a11 N 2 No 

N 

Var ( C f (Sk)) 2 LN2.  
k =  1 

Proof.  Define A, rcl and rc, as before. Then from If 1 < 1 we get 



= ( N )  + 2  COv (f ( S d ,  f (sl)) -k 2 z COY (f (Sk), f (SI))  
1 < k < l < N  A < k < l S N  

~ , ( k / o ?  < .? ~ , ( k / [ ) ' 2  E 

= : 0 ( N )  + 2S('' + 2S!2). 

Trivially, 

By Lemma 5 we get -. 

~ , ( k / l ) ~  < E 

It is easily seen that 

and thus using the same argument as in (2.24) to estimate the second sum in 
(2.25) we can always achieve that for sufficiently large N 

Summing up we get for N large enough 

and the term in brackets is greater than or equal to u 2 / ( 4 ( p +  1)) if E is small 
and N is large enough. This proves Lemma 6. 

Using again the duality (2.7) we get immediately (2.10). 
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