PROBABILITY

AND MATHEMATICAL STATISTICS Vol. 25, Fasc. 2 (2005), pp. 211–221

CRITERIONS OF THE SIMILARITY FOR RANDOM WALKS AND BIRTH-AND-DEATH PROCESSES*

BY

ANNA POSKROBKO (BIAŁYSTOK)

Abstract. This paper is devoted to study the similarity of birthand-death processes with a discrete and continuous time. We discuss some relations between the measures of orthogonality of the associated polynomials and the first return probabilities of two α -similar random walks and two ν -similar birth-and-death processes. We give the necessary and sufficient conditions for α -similarity of two random walks both in terms of the corresponding spectral measures. We consider analogous conditions for ν -similarity of two birth-and-death processes.

2000 Mathematics Subject Classification: Primary 60J80; Secondary 42C05.

Key words and phrases: Associated polynomials, measures of orthogonality, similar random walks, similar birth-and-death processes, first return probabilities.

1. INTRODUCTION

This work was intended as an attempt to study the similarity of birth-anddeath processes with a discrete and continuous time. In Section 1 we are interested in a random walk with similar transition probabilities. We introduce a brief summary of such a process and its well-known properties. We recall the definition of α -similarity. Moreover, we give necessary and sufficient conditions for measures of orthogonality of the associated polynomials of the corresponding random walks \mathscr{X} and \mathscr{X} such that \mathscr{X} is α -similar to \mathscr{X} . For such random walks we establish the relations between their first return probabilities. Section 2 contains a discussion of a birth-and-death process with a continuous time. We introduce the notion of ν -similarity and we obtain the analogous theorems but for the birth-and-death processes \mathscr{Y} and $\widetilde{\mathscr{Y}}$, where $\widetilde{\mathscr{Y}}$ is ν -similar to \mathscr{Y} .

This work was inspired by the results of the papers by Schiefermayr (2003), Dette (2000) and Lenin et al. (2000).

^{*} The research was supported by Białystok Technical University under Grant no W/IMF/1/04.

2. RANDOM WALKS WITH SIMILAR TRANSITION PROBABILITIES

Let $\mathscr{X} = \{X(n), n = 0, 1, ...\}$ denote a random walk on the nonnegative integers $\{0, 1, 2, ...\}$ and let

$$P_{ij}(n) = \Pr(\{X(m+n) = j\} | \{X(m) = i\}), \quad i, j \ge 0,$$

be the *n*-step transition probabilities. We will use the notation $p_j = P_{j,j+1}(1)$, $q_{j+1} = P_{j+1,j}(1)$, $r_j = P_{jj}(1)$, $j \ge 0$, and $P_{ij}(1) = 0$ for |i-j| > 1, $i, j \ge 0$. We assume that $p_j > 0$, $q_{j+1} > 0$, $r_j \ge 0$, $j \ge 0$, and $p_j + q_j + r_j \le 1$, $j \ge 1$. The inequality $p_j + q_j + r_j < 1$, $j \ge 0$, corresponds to a permanent absorbing state j^* which can only be reached from state j with probability $1 - (p_i + q_j + r_j)$.

Karlin and McGregor (1959) have shown that the n-step transition probability can be represented in the form

$$P_{ij}(n) = \pi_j \int_{-1}^{1} x^n Q_i(x) Q_j(x) d\psi(x), \quad i, j \ge 0, \ n \ge 0,$$

where

$$\pi_0 = 1, \quad \pi_j = \frac{p_0 p_1 \dots p_{j-1}}{q_1 q_2 \dots q_j}, \ j \ge 1.$$

 ψ is a unique Borel measure with total mass 1 and infinite support in [-1, 1], called the *random walk measure* of \mathscr{X} , and $Q_j(x)$ is a *random walk polynomial* of degree *j* defined recursively as follows:

(1) $Q_{-1}(x) = 0, \quad Q_0(x) = 1,$ $xQ_i(x) = q_i Q_{i-1}(x) + r_i Q_i(x) + p_i Q_{i+1}(x), \quad i \ge 0.$

The polynomials Q_j are orthogonal with respect to the random walk measure, i.e.

$$\pi_j \int_{-1}^{1} Q_i(x) Q_j(x) d\psi(x) = \delta_{ij},$$

where δ_{ii} denotes Kronecker's symbol.

Given the random walk, polynomials Q_j define the corresponding sequence of first associated polynomials $Q_j^{(1)}$ by replacing p_j , q_j and r_j by p_{j+1} , q_{j+1} and r_{j+1} , respectively, in the recurrence relation (1). Therefore the first associated polynomials satisfy the recurrence relation

$$Q_{-1}^{(1)}(x) = 0, \qquad Q_0^{(1)}(x) = 1/p_0,$$
$$xQ_j^{(1)}(x) = q_{j+1}Q_{j-1}^{(1)}(x) + r_{j+1}Q_j^{(1)}(x) + p_{j+1}Q_{j+1}^{(1)}(x), \qquad j \ge 0.$$

It follows from the arguments of Karlin and McGregor (1959) that there exists a random walk measure $\psi^{(1)}$ on the interval [-1, 1] such that the first

associated polynomials are orthogonal with respect to this one, i.e.

$$\pi_{j+1} p_0 q_1 \int_{-1}^{1} Q_i^{(1)}(x) Q_j^{(1)}(x) d\psi^{(1)}(x) = \delta_{ij}.$$

In the proofs we will use the monic associated polynomials

$$R_{j}^{(1)} = p_0 p_1 p_2 \dots p_j Q_{j}^{(1)}(x), \quad j \ge 0,$$

which satisfy the recurrence relation

(2) $R_{j+1}^{(1)}(x) = 0, \quad R_0^{(1)}(x) = 1,$ $R_{j+1}^{(1)}(x) = (x - r_{j+1})R_j^{(1)}(x) - p_j q_{j+1}R_{j-1}^{(1)}(x), \quad j \ge 0.$

DEFINITION 1. For $\alpha > 0$, we call a random walk $\tilde{\mathscr{X}} \alpha$ -similar to \mathscr{X} if there exist constants $C_{ij} > 0$, $i, j \ge 0$, such that

$$\vec{P}_{ij}(n) = \alpha^{-n} C_{ij} P_{ij}(n), \quad i, j \ge 0, \ n \ge 1.$$

In the following we will consider the random walk $\tilde{\mathscr{X}}$, α -similar to \mathscr{X} ($\alpha > 0$), with parameters \tilde{p}_j , \tilde{q}_j , \tilde{r}_j , $j \ge 0$, its first associated polynomials $\tilde{Q}_j^{(1)}$ orthogonal with respect to the measure $\tilde{\psi}^{(1)}$ and the *n*-step transition probability $\tilde{P}_{ij}(n)$. We will use the same letter to denote the measure and its distribution function.

THEOREM 1. The random walk $\tilde{\mathcal{X}}$ is α -similar to \mathcal{X} if and only if the distribution functions of the random walk measures satisfy

$$\tilde{\psi}^{(1)}(x) = \psi^{(1)}(\alpha x), \quad x \in \mathbf{R},$$

and $\alpha \ge \sup(\sup(\psi^{(1)}))$. In the case where $\tilde{\mathcal{X}}$ is α -similar to \mathcal{X} , we have the equalities for the first return probabilities to the origin:

$$\tilde{P}_{i0}(n) = \alpha^{-n-1} \sqrt{\pi_{i-1}/\tilde{\pi}_{i-1}} P_{i0}(n), \quad i \ge 1, \ n \ge 1,$$

$$\tilde{P}_{00}(n) = \alpha^{-n} P_{00}(n), \quad n \ge 2.$$

Proof. Schiefermayr (2003) showed that the necessary and sufficient condition of α -similarity of $\tilde{\mathscr{X}}$ is the connection between parameters

$$\tilde{r}_j = \alpha^{-1} r_j, \quad \tilde{p}_j \tilde{q}_{j+1} = \alpha^{-2} p_j q_{j+1}, \quad j \ge 0.$$

Necessity. From the above remark and (2) we conclude that $\tilde{R}_{j}^{(1)}(x) = \alpha^{-j} R_{j}^{(1)}(\alpha x)$, which gives the equality

$$\tilde{Q}_j^{(1)}(\mathbf{x}) = \sqrt{\pi_j/\tilde{\pi}_j} \, Q_j^{(1)}(\alpha \mathbf{x}).$$

We proceed to show that $\tilde{\psi}^{(1)}(x) = \psi^{(1)}(\alpha x)$. We have

$$\delta_{ij} = \pi_{j+1} p_0 q_1 \int_{-1}^{1} Q_i^{(1)}(x) Q_j^{(1)}(x) d\psi^{(1)}(x) =$$

2 – PAMS 25.2

A. Poskrobko

$$= \pi_{j+1} p_0 q_1 \int_{-1}^{1} Q_i^{(1)}(\alpha x) Q_j^{(1)}(\alpha x) d\psi^{(1)}(\alpha x)$$

$$= \pi_{j+1} \tilde{p}_0 \tilde{q}_1 \sqrt{\frac{\tilde{\pi}_{i+1}}{\pi_{i+1}}} \sqrt{\frac{\tilde{\pi}_{j+1}}{\pi_{j+1}}} \int_{-1}^{1} \tilde{Q}_i^{(1)}(x) \tilde{Q}_j^{(1)}(x) d\tilde{\psi}^{(1)}(x)$$

$$= \tilde{\pi}_{j+1} \tilde{p}_0 \tilde{q}_1 \int_{-1}^{1} \tilde{Q}_i^{(1)}(x) \tilde{Q}_j^{(1)}(x) d\tilde{\psi}^{(1)}(x).$$

Since supp $(\tilde{\psi}^{(1)}) \subset [-1, 1]$, the parameter α has to satisfy $\alpha \ge \sup(\sup(\psi^{(1)}))$.

Sufficiency. Let $\tilde{\psi}_{j}^{(1)}(x) = \psi_{j}^{(1)}(\alpha x)$, $\alpha \ge \sup(\operatorname{supp}(\psi^{(1)}))$ and $R_{j}^{(1)}$ be the corresponding system of monic orthogonal polynomials of \mathscr{X} satisfying the recurrence relation (2). Define

(3)
$$\widetilde{R}_j^{(1)}(x) = \alpha^{-j} R_j^{(1)}(\alpha x).$$

Hence, for $i \neq j$,

$$0 = \int_{-1}^{1} R_i^{(1)}(x) R_j^{(1)}(x) d\psi^{(1)}(x) = \int_{-1}^{1} R_i^{(1)}(\alpha x) R_j^{(1)}(\alpha x) d\psi^{(1)}(\alpha x)$$
$$= \alpha^{i+j} \int_{-1}^{1} \tilde{R}_i^{(1)}(x) \tilde{R}_j^{(1)}(x) d\tilde{\psi}^{(1)}(x).$$

Thus $\tilde{R}_{j}^{(1)}$ is the corresponding system of monic orthogonal polynomials of $\tilde{\mathscr{X}}$. Using (3) we obtain the equivalent recurrence relation of $\tilde{R}_{j}^{(1)}(x)$, i.e.

$$R_{j+1}^{(1)}(x) = (\alpha x - \alpha \tilde{r}_{j+1}) R_j^{(1)}(x) - \alpha^2 \tilde{p}_j \tilde{q}_{j+1} R_{j-1}^{(1)}(x).$$

Consequently, it is obvious that the parameters of \mathscr{X} and $\widetilde{\mathscr{X}}$ satisfy the conditions $\tilde{r}_j = \alpha^{-1} r_j$ and $\tilde{p}_j \tilde{q}_{j+1} = \alpha^{-2} p_j q_{j+1}$. This completes the proof of α -similarity.

Using the results of Dette's (2000) work we can show the connections of the first return probabilities to the origin of \mathscr{X} and $\widetilde{\mathscr{X}}$. We have

$$\begin{split} \tilde{P}_{i0}(n) &= \tilde{p}_0 \, \tilde{q}_1 \, \int_{-1}^{1} x^{n-1} \, \tilde{Q}_{i-1}^{(1)}(x) \, d\tilde{\psi}^{(1)}(x) \\ &= \alpha^{-2} \, p_0 \, q_1 \, \sqrt{\frac{\pi_{i-1}}{\tilde{\pi}_{i-1}}} \, \int_{-1}^{1} x^{n-1} \, Q_{i-1}^{(1)}(\alpha x) \, d\psi^{(1)}(\alpha x) \\ &= \alpha^{-n-1} \, p_0 \, q_1 \, \sqrt{\frac{\pi_{i-1}}{\tilde{\pi}_{i-1}}} \, \int_{-1}^{1} (\alpha x)^{n-1} \, Q_{i-1}^{(1)}(\alpha x) \, d\psi^{(1)}(\alpha x) \\ &= \alpha^{-n-1} \, \sqrt{\frac{\pi_{i-1}}{\tilde{\pi}_{i-1}}} \, P_{i0}(n) \end{split}$$

214

and

$$\tilde{P}_{00}(n) = \tilde{p}_0 \tilde{q}_1 \int_{-1}^{1} x^{n-2} d\tilde{\psi}^{(1)}(x) = \alpha^{-2} p_0 q_1 \int_{-1}^{1} x^{n-2} d\psi^{(1)}(\alpha x)$$
$$= \alpha^{-n} p_0 q_1 \int_{-1}^{1} (\alpha x)^{n-2} d\psi^{(1)}(\alpha x) = \alpha^{-n} P_{00}(n).$$

This is our claim.

The criterion of α -similarity does not depend on the initial transition probability for a sufficiently small population.

The kth associated orthogonal polynomials fulfil the recurrence relation

$$\begin{aligned} Q_{-1}^{(k)}(x) &= 0, \qquad Q_{0}^{(k)}(x) = 1/p_{k-1}, \\ xQ_{j}^{(k)}(x) &= q_{j+k}Q_{j-1}^{(k)}(x) + r_{j+k}Q_{j}^{(k)}(x) + p_{j+k}Q_{j+1}^{(k)}(x), \qquad j \ge 0, \ k \ge 0, \end{aligned}$$

and the corresponding measure of orthogonality $\psi^{(k)}$ plays a similar role in the consideration of connection between the first return probabilities $P_{ij}(n)$ and $\tilde{P}_{ij}(n)$, i > j, of \mathscr{X} and $\tilde{\mathscr{X}}$, respectively.

COROLLARY 1. The random walk $\tilde{\mathcal{X}}$ is α -similar to \mathcal{X} if and only if the measures satisfy

$$\tilde{\psi}^{(k)}(x) = \psi^{(k)}(\alpha x), \quad x \in \mathbf{R}, \ k \ge 0,$$

and $\alpha \ge \sup(\sup(\psi^{(k)}))$. In this case the relation between the first return probabilities to the state k of the systems \mathcal{X} and $\tilde{\mathcal{X}}$ is the following:

$$\widetilde{P}_{ik}(n) = \alpha^{-n-1} \sqrt{\frac{\pi_{i-k-1}}{\pi_{i-k-1}}} P_{ik}(n), \quad i > k, \ i \ge 0.$$

Proof. Consider the random walk \mathscr{X}^k with one-step probabilities

$$u_j^k = u_{j+k}, \quad r_j^k = r_{j+k}, \quad q_j^k = q_{j+k}$$

and the first associated orthogonal polynomials

$$\varphi_{0}^{(1)}(x) = 0, \qquad \varphi_{0}^{(1)}(x) = 1/p_{0}^{k},$$
$$x\varphi_{j}^{(1)}(x) = q_{j+1}^{k}\varphi_{j-1}^{(1)}(x) + r_{j+1}^{k}\varphi_{j}^{(1)}(x) + p_{j+1}^{k}\varphi_{j+1}^{(1)}(x), \qquad j \ge 0, \ k \ge 0.$$

We can build the monic associated polynomials for the above ones, and proceed analogously to the proof of Theorem 1 to give the conclusion for the systems \mathscr{X}^k and α -similar \mathscr{X}^k and the measures $\psi_k^{(1)}$ and $\widetilde{\psi}_k^{(1)}$. The assertion of Corollary 1 follows from the recursive relation for the (k+1)st associated orthogonal polynomials. Using again results of Dette's (2000) work we can obtain the relation between the first return probabilities to the state k of \mathscr{X} and $\widetilde{\mathscr{X}}$:

$$\begin{split} \widetilde{P}_{ik}(n) &= \widetilde{p}_k \, \widetilde{q}_{k+1} \, \int_{-1}^{1} x^{n-1} \, \widetilde{Q}_{i-k-1}^{(k+1)}(x) \, d\widetilde{\psi}^{(k+1)}(x) \\ &= \alpha^{-2} \, p_k \, q_{k+1} \, \sqrt{\frac{\pi_{i-k-1}}{\widetilde{\pi}_{i-k-1}}} \, \int_{-1}^{1} x^{n-1} \, Q_{i-k-1}^{(k+1)}(\alpha x) \, d\psi^{(k+1)}(\alpha x) \\ &= \alpha^{-n-1} \, p_k \, q_{k+1} \, \sqrt{\frac{\pi_{i-k-1}}{\widetilde{\pi}_{i-k-1}}} \, \int_{-1}^{1} (\alpha x)^{n-1} \, Q_{i-k-1}^{(k+1)}(\alpha x) \, d\psi^{(k+1)}(\alpha x) \\ &= \alpha^{-n-1} \, \sqrt{\frac{\pi_{i-k-1}}{\widetilde{\pi}_{i-k-1}}} \, P_{ik}(n). \end{split}$$

This completes our proof.

By proving Theorem 1 and Corollary 1 we have also shown that $\psi^{(k)}(\alpha x)$ is a measure of orthogonality if and only if $\alpha \ge \sup(\operatorname{supp}(\psi^{(k)})), k \ge 1$.

EXAMPLE 1. Let us consider a random walk \mathscr{X} with constant parameters $p_j = p$, $q_j = q$, $r_j = 0$, $j \ge 0$, and p+q = 1. In this case the first associated polynomials are of the form

$$Q_j^{(1)}(x) = \left(\sqrt{\frac{q}{p}}\right)^j U_j\left(\frac{x}{2\sqrt{pq}}\right), \quad j \ge 0,$$

where $U_j(x)$ denotes the Chebyshev polynomials of the second kind. In such a situation $\sup(\sup(\psi^{(1)})) = 2\sqrt{pq}$. Since $\alpha \ge 2\sqrt{pq}$, let $b \ge 1$ such that $\alpha = 2b\sqrt{pq}$.

Schiefermayr (2003) showed that for \mathscr{X} as in this example there exists a unique α -similar random walk $\widetilde{\mathscr{X}}$ with parameters \tilde{p}_j , \tilde{q}_j , \tilde{r}_j given by

$$\tilde{p}_j = \alpha^{-1} \frac{Q_{j+1}(\alpha)}{Q_j(\alpha)} p_j, \quad \tilde{q}_{j+1} = \alpha^{-1} \frac{Q_j(\alpha)}{Q_{j+1}(\alpha)} q_{j+1}, \quad \tilde{r}_j = \alpha^{-1} r_j, \quad j \ge 0.$$

where $\tilde{q}_0 = 0$. In our example $\tilde{\pi}_j = (Q_j(\alpha))^2 \cdot \pi_j$ and

$$P_{i0}(n) = p_0 q_1 \int_{-1}^{1} x^{n-1} Q_{i-1}^{(1)}(x) d\psi^{(1)}(x)$$
$$= \frac{2}{\pi} p q \int_{-1}^{1} x^{n-1} \left(\sqrt{\frac{p}{q}} \right)^{i-1} U_{i-1} \left(\frac{x}{2\sqrt{pq}} \right) \sqrt{1 - \frac{x^2}{4pq}} dx$$

216

Random walks and birth-and-death processes

$$= \frac{2}{\pi} pq \left(\sqrt{\frac{p}{q}}\right)^{i-1} \left(\frac{1}{2\sqrt{pq}}\right)^{1-n} \int_{-1}^{1} \left(\frac{x}{2\sqrt{pq}}\right)^{n-1} U_{i-1}\left(\frac{x}{2\sqrt{pq}}\right) \sqrt{1-\frac{x^2}{4pq}} dx$$
$$= \frac{2}{\pi} pq \left(\sqrt{\frac{p}{q}}\right)^{i-1} \left(\frac{1}{2\sqrt{pq}}\right)^{1-n} \int_{-1}^{1} x^{n-1} U_{i-1}(x) \sqrt{1-x^2} dx$$
$$= 2pq \left(\sqrt{\frac{p}{q}}\right)^{i-1} \left(\frac{1}{2\sqrt{pq}}\right)^{1-n} \frac{i}{n \cdot 2^n} \binom{n}{(n-i)/2}$$

if i+n is even. For odd i+n, $P_{i0} = 0$. See Dette (2000) for more details.

Using the results of Theorem 1 we can calculate the first return probability to the origin for $\tilde{\mathscr{X}}$:

$$\widetilde{P}_{i0}(n) = \frac{1}{U_{i-1}(b)} \cdot \frac{i}{n(2b)^{n+1}} \binom{n}{(n-i)/2}$$
$$= \frac{\sin(\arccos b)}{\sin(i \arccos b)} \cdot \frac{i}{n(2b)^{n+1}} \binom{n}{(n-i)/2}.$$

3. BIRTH-AND-DEATH PROCESSES WITH SIMILAR TRANSITION PROBABILITIES

We will deduce analogous criterions of the similarity for the birth-anddeath processes, relations between their measures and first return probabilities.

Let $\mathscr{Y} = \{Y(t), t \ge 0\}$ denote a birth-and-death process, i.e. a stationary Markov process whose transition probability function

$$P_{ij}(t) = \Pr(\{Y(t) = j\} | \{Y(0) = i\})$$

satisfies the conditions

$$P_{j,j+1}(t) = \lambda_j t + o(t),$$

$$P_{j,j}(t) = 1 - (\lambda_j + \mu_j) t + o(t),$$

$$P_{j,j-1}(t) = \mu_j t + o(t)$$

as $t \to 0$. Constants λ_j (birth rates) and μ_j (death rates) may be thought of as the rates of absorption from state j into states j + 1 and j - 1, respectively ($\lambda_j > 0$, $\mu_j > 0, j = 0, 1, ..., \mu_0 \ge 0$). Karlin and McGregor (1957) have shown that the transition probabilities P_{ij} can be represented as

$$P_{ij}(t) = \kappa_j \int_0^\infty e^{-xt} G_i(x) G_j(x) d\varrho(x),$$

$$\kappa_0 = 1, \quad \kappa_j = \frac{\lambda_0 \lambda_1 \dots \lambda_{j-1}}{\mu_1 \mu_2 \dots \mu_j}, \quad j > 0.$$

 $\{G_j(x)\}\$ is a sequence of birth-and-death polynomials defined recursively:

(4)
$$G_{-1}(x) = 0, \quad G_0(x) = 1,$$
$$-xG_j(x) = \mu_j G_{j-1}(x) - (\lambda_j + \mu_j) G_j(x) + \lambda_j G_{j+1}(x),$$

and orthogonal with respect to the spectral measure ϱ , i.e.

$$\kappa_j \int_0^\infty G_i(x) G_j(x) d\varrho(x) = \delta_{ij}.$$

 $j \ge 1$,

It is shown in the paper of Karlin and McGregor (1957) that there is at least one such measure with total mass 1 on $[0, \infty)$.

In the proofs we will use the monic polynomials

$$W_j(x) = (-1)^j \lambda_0 \lambda_1 \dots \lambda_{j-1} G_j(x), \quad j \ge 1,$$

which satisfy the recurrence relation

(5)
$$W_{-1}(x) = 0, \quad W_0(x) = 1, W_{j+1}(x) = (x - \lambda_j - \mu_j) W_j(x) - \lambda_{j-1} \mu_j W_{j-1}(x), \quad j \ge 0.$$

DEFINITION 2. The birth-and-death process $\tilde{\mathscr{Y}}$ is said to be *v*-similar to the birth-and-death process \mathscr{Y} for some real number *v* if there are constants c_{ij} , $i, j \ge 0$, such that

$$\widetilde{P}_{ii}(t) = c_{ii} e^{\nu t} P_{ii}(t), \quad i, j \ge 0, \ t \ge 0.$$

See Lenin et al. (2000) for more details.

 $\widetilde{\mathscr{Y}}$ is the process with parameters $\widetilde{\lambda}_j$, $\widetilde{\mu}_j$, $j \ge 0$, and polynomials \widetilde{G}_j orthogonal with respect to the measure $\widetilde{\varrho}$.

THEOREM 2. The birth-and-death process $\tilde{\mathscr{Y}}$ is v-similar to \mathscr{Y} if and only if the distribution functions of the spectral measures satisfy

$$\tilde{\varrho}(x) = \varrho(x-v), \quad x \in \mathbf{R},$$

and $v \leq \inf(\operatorname{supp}(\varrho))$.

Proof. Necessity. We claim that

(6)
$$\widetilde{W}_j(x) = W_j(x-\nu).$$

This is implied by the fact that for the birth-and-death processes \mathscr{Y} and $\widetilde{\mathscr{Y}}$, where $\widetilde{\mathscr{Y}}$ is v-similar to \mathscr{Y} , their rates are related as follows:

(7)
$$\widetilde{\lambda}_j + \widetilde{\mu}_j = \lambda_j + \mu_j - \nu, \quad \widetilde{\lambda}_j \widetilde{\mu}_{j+1} = \lambda_j \mu_{j+1}, \quad j \ge 0.$$

We conclude from (6) that $\tilde{G}_j(x) = \sqrt{\kappa_j/\tilde{\kappa}_j} G_j(x-\nu)$.

Next we claim that $\tilde{\varrho}(x) = \varrho(x-v)$ since

$$\delta_{ij} = \kappa_j \int_0^\infty G_i(x) G_j(x) d\varrho(x) = \kappa_j \int_0^\infty G_i(x-\nu) G_j(x-\nu) d\varrho(x-\nu)$$
$$= \kappa_j \sqrt{\frac{\tilde{\kappa}_j \tilde{\kappa}_i}{\kappa_j \kappa_i}} \int_0^\infty \tilde{G}_i(x) \tilde{G}_j(x) d\tilde{\varrho}(x) = \tilde{\kappa}_j \int_0^\infty \tilde{G}_i(x) \tilde{G}_j(x) d\tilde{\varrho}(x).$$

Since supp $(\tilde{\varrho}) \subset [0, \infty]$, the parameter v has to satisfy $v \leq \inf(\operatorname{supp}(\varrho))$.

Sufficiency. Let ϱ and $\tilde{\varrho}$ be the spectral measures of \mathscr{Y} and $\widetilde{\mathscr{Y}}$, respectively. Let $\tilde{\varrho}(x) = \varrho(x-\tilde{v}), v \leq \inf(\operatorname{supp}(\varrho))$, and W_j be the corresponding system of monic orthogonal polynomials of \mathscr{Y} satisfying the recurrence relation (5).

Let \widetilde{W}_i be defined by (6). Hence, for $i \neq j$,

$$0 = \int_{0}^{\infty} W_i(x) W_j(x) d\varrho(x) = \int_{0}^{\infty} W_i(x-v) W_j(x-v) d\varrho(x-v)$$
$$= \int_{0}^{\infty} \tilde{W}_i(x) \tilde{W}_j(x) d\tilde{\varrho}(x).$$

It follows that \tilde{W}_j is the system of orthogonal polynomials of $\tilde{\mathscr{Y}}$. From the equation (6) we obtain the recurrence relation of \tilde{W}_i , i.e.

(8)
$$W_{j+1}(x) = (x - (\tilde{\lambda}_j + \tilde{\mu}_j - \nu)) W_j(x) - \tilde{\lambda}_{j-1} \tilde{\mu}_j W_{j-1}(x).$$

Comparing (5) and (8) we obtain the equalities for rates of \mathscr{Y} and $\widetilde{\mathscr{Y}}$ as in (7). Such connections of rates prove the ν -similarity of $\widetilde{\mathscr{Y}}$, as shown by Lenin et al. (2000).

We can formulate the analogous theorem for measures of the orthogonality $\varrho^{(1)}$ and $\tilde{\varrho}^{(1)}$ of the first associated polynomials $G_i^{(1)}$ and $\tilde{G}_i^{(1)}$, where

 $G_{-1}^{(1)}(x) = 0, \quad G_0^{(1)}(x) = -1/\lambda_0,$

$$-xG_{j}^{(1)}(x) = \mu_{j+1}G_{j-1}^{(1)}(x) - (\lambda_{j+1} + \mu_{j+1})G_{j}^{(1)}(x) + \lambda_{j+1}G_{j+1}^{(1)}(x), \quad j \ge 0.$$

The monic form of these polynomials is

$$W_{j}^{(1)}(x) = (-1)^{j+1} \lambda_0 \lambda_1 \dots \lambda_j G_{j}^{(1)}(x), \quad j \ge 0,$$

and satisfies the recurrence relation

$$W_{-1}^{(1)}(x) = 0, \quad W_0^{(1)}(x) = 1,$$

 $W_{i+1}^{(1)}(x) = (x - \lambda_{i+1} - \mu_{i+1}) W_i^{(1)}(x) - \lambda_i \mu_{i+1} W_{i-1}^{(1)}(x),$

(9)

 $i \ge 0$.

 $\tilde{\mathscr{Y}}$ when considering \mathscr{Y} is the equality of measures

$$\tilde{\varrho}^{(1)}(x) = \varrho^{(1)}(x-\nu), \quad x \in \mathbf{R},$$

A. Poskrobko

and $v \leq \inf(\operatorname{supp}(\varrho^{(1)}))$. If $\tilde{\mathscr{Y}}$ is v-similar to \mathscr{Y} , we have the following relation for the first return probabilities to the origin:

$$\widetilde{P}_{i0}(t) = e^{-\nu t} \sqrt{\frac{\kappa_{i-1}}{\tilde{\kappa}_{i-1}}} P_{i0}, \quad i \ge 1, \ t \ge 0.$$

Proof. The proof of the equivalence is analogous to the one of Theorem 2, but with using the polynomials $G_j^{(1)}(x)$ and $\tilde{G}_j^{(1)}(x)$ and their monic forms $W_j^{(1)}(x)$ and $\tilde{W}_j^{(1)}(x)$. Next we use the well-known formula for the probability of the first return to the origin (see van Doorn (2003)):

$$\begin{split} \tilde{P}_{i0}(t) &= \tilde{\lambda_0} \, \tilde{v_1} \int_0^\infty e^{-xt} \, \tilde{Q}_{i-1}^{(1)}(x) \, d\tilde{\varrho}^{(1)}(x) \\ &= \lambda_0 \, v_1 \sqrt{\frac{\kappa_{i-1}}{\tilde{\kappa_{i-1}}}} \int_0^\infty e^{-xt} \, Q_{i-1}^{(1)}(x-v) \, d\varrho^{(1)}(x-v) \\ &= e^{-vt} \sqrt{\frac{\kappa_{i-1}}{\tilde{\kappa_{i-1}}}} \, \lambda_0 \, v_1 \int_0^\infty e^{-(x-v)t} \, Q_{i-1}^{(1)}(x-v) \, d\varrho^{(1)}(x-v) = e^{-vt} \sqrt{\frac{\kappa_{i-1}}{\tilde{\kappa_{i-1}}}} \, P_{i0}(t). \end{split}$$

This is the desired conclusion.

This result can be generalized. Let us consider the kth associated polynomials

$$G_{-1}^{(k)}(x) = 0, \qquad G_{0}^{(k)}(x) = -1/\lambda_{k-1},$$

$$-xG_{j}^{(k)}(x) = \mu_{j+k} G_{j-1}^{(k)}(x) - (\lambda_{j+k} + \mu_{j+k}) G_{j}^{(k)}(x) + \lambda_{j+k} G_{j+1}^{(k)}(x), \qquad j \ge 0, \ k \ge 0,$$

orthogonal to the measure $\varrho^{(k)}(x)$. Our extension deals with the v-similarity and relation between such measures.

COROLLARY 2. The birth-and-death process $\tilde{\mathscr{Y}}$ is v-similar to \mathscr{Y} if and only if the measures satisfy

$$\tilde{\varrho}^{(k)} = \varrho^{(k)} (x - v), \quad x \in \mathbf{R}, \ k \ge 0,$$

and $v \leq \inf(\operatorname{supp}(\varrho^{(k)}))$.

Proof. We can proceed analogously to the proof of Corollary 1 from the previous section. We can build the birth-and-death process \mathscr{Y}^k with parameters

$$\mu_j^k = \mu_{j+k}, \quad \lambda_j^k = \lambda_{j+k}$$

and with the corresponding monic associated polynomials orthogonal to the measure $\varrho_k^{(1)}(x)$. The assertion is obtained by Theorem 3.

Remark. The proofs of Corollary 2 and Theorem 3 yield an additional information. It follows that $\varrho^{(k)}(x-\nu)$ is also a measure of the orthogonality of the kth associated polynomials if and only if $\nu \leq \inf(\operatorname{supp}(\varrho^{(k)}))$.

REFERENCES

- [1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon & Breach, New York 1978.
- [2] H. Dette, First return probabilities of birth and death chains and associated orthogonal polynomials, Proc. Amer. Math. Soc. 129 (2000), pp. 1805–1815.
- [3] E. A. van Doorn, Birth-death processes and associated polynomials, J. Comput. Appl. Math. 153 (2003), pp. 497-506.
- [4] S. Karlin and J. L. McGregor, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), pp. 589-646.
- [5] S. Karlin and J. L. McGregor, Random walks, Illinois J. Math. 3 (1959), pp. 66-81.
- [6] R. B. Lenin, P. R. Parthasarathy, W. R. Scheinhardt and E. A. van Doorn, Families of birth-death processes with similar time-dependent behaviour, J. Appl. Probab. 37 (2000), pp. 835-849.
- [7] K. Schiefermayr, Random walks with similar transition probabilities, J. Comput. Appl. Math. 153 (2003), pp. 423-432.

Instytut Matematyki i Fizyki Politechnika Białostocka Wiejska 45A 15-351 Białystok, Poland *E-mail:* aposkrobko@wp.pl

> Received on 25.4.2005; revised version on 15.7.2005

