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Abstmct. This paper is devoted to study the similarity of birth- 
and-death processes with a discrete and continuous time. We discuss 
some relations between the measures of orthogonality of the associa- 
ted polynomials and the first return probabilities of two a-similar 
random walks and two v-similar birth-and-death processes. We give 
the necessary and sufficient conditions for a-similarity of two random 
walks both in terms of the corresponding spectral measures. We con- 
sider analogous conditions for v-similarity of two birth-and-death pro- 
cesses. 
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1. INTRODUCTION 

This work was intended as an attempt to study the similarity of birth-and- 
death processes with a discrete and continuous time. In Section 1 we are 
interested in a random walk with similar transition probabilities. We introduce 
a brief summary of such a process and its well-known properties. We recall the 
definition of a-similarity. Moreover, we give necessary and sufficient conditions 
for measures of orthogonality of the associated polynomials of the correspon- 
ding random walks X and 9 such that 9 is a-similar to X For such random 
walks we establish the relations between their first return probabilities. Sec- 
tion 2 contains a discussion of a birth-and-death process with a continuous time. 
We introduce the notion of v-similarity and we obtain the analogous theorems 
but for the birth-and-death processes 2f and @, where @ is v-similar to g. 

This work was inspired by the results of the papers by Schiefermayr (2003), 
Dette (2000) and Lenin et al. (2000). 

* The research was supported by Bialystok Technical University under Grant no W/IMF/1/04. 
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2. RAPdlIOM WALKS WITH SIMKLAR TRANSITION PROBABILITIES 

Let X = {X (n), n = 0 ,  1, . . .) denote a random walk on the nonnegative 
integers (0, 1, 2, . . .} and let 

be the n-step transition probabilities. We will use the notation pj  = Pj , j+ l  (11, 
q j+ l  = Pj+. l , j ( l ) ,  r, = Pj,(l),  j 2 0, and P i j ( l )  = 0 for li-jl > 1, i ,  j 2 0. We 
assume that pj > 0, q j + ~  > 0 ,  r j  g 0, j g 0, and p j + q j + r j  < 1 ,  j > 1. The 
inequality pj+ qj + r j - c  1 ,  j 2 0, corresponds to a permanent absorbing state j* 
wh&h cztn only be reached from state j with probabiIity 1 -(pj+ qj+ rj) .  

Karlin and McGregor (1959) have shown that the n-step transition proba- 
bility can be represented in the form 

where 

$ is a unique Bore1 measure with total mass 1 and infinite support in [- 1, 11, 
called the random walk measure of X, and Qj(x )  is a random walk polynomial of 
degree j defined recursively as follows: 

The polynomials Qj are orthogonal with respect to the random walk measure, 
i.e. 

1 

nj J Q i ( x ) Q j ( ~ ) d $ ( ~ )  = aij, 
- 1 

where dij denotes Kronecker's symbol. - 

Given the random walk, polynomials Qj define the corresponding sequence 
o f j r s t  associated polynomials Q y )  by replacing pi, qj  and rj  by pj+ , q j +  and 
r j + l ,  respectively, in the recurrence relation ( 1 ) .  Therefore the first associated 
polynomials satisfy the recurrence relation 

It follows from the arguments of Karlin and McGregor (1959) that there exists 
a random walk measure $(') on the interval [ -1,  I] such that the first 
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associated polynomials are orthogonal with respect to this one, i.e. 

In the proofs we will use the monic associated polynomials 

which satisfy the recurrence relation 

DEFINITION 1. For a > 0, we call a random walk d! a-similar to 55 if there 
exist constants Cij > 4 i, j 2 0, such that 

In the following we will consider the random walk g, a-similar to X 
(a > O), with parameters F j ,  i j ,  5, j 2 0, its first associated polynomials @) 

orthogonal with respect to the measure and the n-step transition probabili- 
ty P"..(n). We will use the same letter to denote the measure and its distribution 4! 
function. 

THWREM 1. The random walk $ is a-similar to X $ and only if the dis- 
tribution functions of the random walk measures satisfy 

(x) = (EX)  x E R , 

and a 2 sup(supp($(ll)). In the case where $ is a-similar to X, we have the 
equalities for the fist  return probabilities to the origin: 

P r o  o f, Schiefermayr (2003) showed that the necessary and sufficient con- 
dition of a-similarity of 9 is the connection between parameters - 

- 1 - 2 P".= J a rj, j7jijj+l = M pjqj+l, j 2 0. 

N e c e s s i t  y. From the above remark and (2) we conclude that R$l) (x) = 

a-jRjl) (ax), which gives the equality 

&'(x) = a QY) (ax). 
We proceed to show that $(l)(x) = $(')(ax). We have 

2 - PAMS 252 
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= nj+ po q1 1 Qjl) (ax) Qy) (ax) d$(l) (ax) 
- 1 

1 

= fj + Po j 0;') (x )  gy) (x) d@(') (x) . 
- 1 

Since s y p  (I,&(')) c [- 1, 11, the parameter ol has to satisfy a 3 sup (supp (+['))). 

'Sufficiency. Let $il)(x) = $jl) (ax), a! 2 sup (supp (11/(11)) and R y )  be the 
corresponding system of rnonic orthogonal polynomials of 3 satisfying the 
recurrence relation (2). Define 

(3) El1) (xj = a- j R y )  (ax). 

Hence, for i # j, 

Thus R"y) is the corresponding system of rnonic orthogonal polynomials of $. 
Using (3) we obtain the equivalent recurrence relation of Ey)(x), i.e. 

R 9 ,  (x) = ( a ~ - a ~ + ~ ) R ~ ) ( x ) - a ~ ~ ~ ~ ~ + l  R$!!1 (x). 

Consequently, it is obvious that the parameters of X and 9 satisfy the con- 
- 2 ditions Fj = a-I r j  and Pjg j+  = cx pjqj+ ,. This completes the proof of 

a-similarity. 
. Using the results of Dette's (2000) work we can show the connections of 
the first return probabilities to the origin of 3 and A?. We have 

1 
- 2 ,- xi- 1 j xu-' Qf21 (ax) dII/(l)(a~) 

xi-1 - 1  
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and 

1 

= po q1 1 (ax)'-' d$[')(ux) = apn POO (n). 
- 1 

This is our claim. H 

The criterion of a-slrnilarity does not depend on the initial transition 
probability-lpr a sufficiently small population. 

The kth associated orthogonal polynomials fulfil the recurrence rela- 
tion 

and the corresponding measure of orthogonality II/tk) plays a similar role in the 
consideration of connection between the first return probabilities Pij(n) and 
pij(n), i > j, of 9" and @, respectively. 

COROLLARY 1. The random walk 9 is a-similar to X if and only if the 
measures satisfy 

and u 2 sup (supp (I,/?~))). In this case the relation between the first return proba- 
bilities to the state k of the systems 3 a d  d is the following: 

P r  o of. Consider the random walk 5Yk with one-step probabilities 

and the first associated orthogonal polynomials 

ql'-l\ (x) = 0, (DL1' (x) = l/pko, 

X ~ ~ ) ( X ) = ~ ~ + ~ ( D ~ ~ ~ ( X ) + I ~ + ~ ~ ~ ~ ) ( X ) + P ~ + ~ ~ ~ ~ ! ~ ( ~ ) ,  j 2 0 , k B O .  

We can build the monic associated polynomials for the above ones, and proceed 
analogously to the proof of Theorem 1 to give the conclusion for the systems 
sk and a-similar dk and the measures $f) and $1'). The assertion of Corolla- 
ry 1 follows from the recursive relation for the (k + 1)st associated orthogonal 
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polynomials. Using again results of Dette's (2000) work we can obtain the 
relation between the first return probabilities to the state k of % and $: 

This completes our proof. H 

By proving Theorem 1 and Corollary 1 we have also shown that ${k)(ax) is 
a measure of orthogonality if and only if ol 2 s~p(supp($(~))), k 2 1. 

EXMLE 1. Let us consider a random walk 5? with constant parameters 
p j  = p, qj = q, r j  = 0, j 2 0, and p+q = 1. In this case the first associated 
polynomials are of the form 

Qy) (x) = (&y Uj (z) 
2 f i 7  j 2 0 '  

where U;-(x) denotes the Chebyshev polynomials of the second kind. In such 
a situation sup (supp ($(I1)) = 2 f i .  Since n 2 2 &, let b 2 1 such that 
a = 2 b G .  

Schiefermayr (2003) showed that for I as in this example there exists 
a unique a-similar random walk with parameters pj7 djy .fj given by 

2 where do = 0. In our example Ej = (Qj(a)) a n j  and 

1 

Pio (n) = p ,  q1 xn-I Q!?, (x) d$(')(x) 
- 1 
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if i+n is even. For odd i+n, Pio = 0. See Dette (2000) for more details. 
Using the results of Theorem 1 we can calculate the first return probability 

to the origin for g: 

- - sin (arc cos b) i 
sin (i arc cos b) ' n (2bY" 

3. BIRTH-AND-DEATH PROCESSES WITH SIMTLAR TRANSITION PROBABILITIES 

We will deduce analogous criterions of the similarity for the birth-and- 
death processes, relations between their measures and first return probabilities. 

Let Y = {Y(t), t 2 0)  denote a birth-and-death process, i.e. a stationary 
Markov process whose transition probability function 

Pij (t) = Pr ((Y (t) = j) [ (Y (0) = i ) )  

satisfies the conditions 

Pj,j(t) = 1 - ( A j  + / A j )  t+o  (t), 

P j , j - ,  ( t )  = pj t + 0 (t) 
as t -, 0. Constants Rj (birth rates) and pj (death rates) may be thought of as the 
rates of absorption from state j into states j + 1 and j -  1, respectively (Aj > 0, 
pj  > 0, j = 0, 1 , . . ., po 2 0). Karlin and McGregor (1957) have shown that the 
transition probabilities Pij can be represented as 
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(G j  (x)] is a sequence d birth-and-death polynomials defined recursively: 

and orthogonal with respect to the spectral measure Q, i.e. 
m 

xj 1 G,(x) Gj (x )  de (x) = 6,. 
0 

It i s  shown I'n'the paper of Karlin and McGregor (1957) that there is at least 
one such' measure with total mass 1 on [0, a). 

In the proofs we will use the monic polynomials - 

which satisfy the recurrence relation 

DEPINITION 2. The birth-and-death process @ is said to be v-similar to the 
birth-and-death process % for some real number v if there are constants ci j ,  
i, j 2 0, such that 

See Lenin et al. (2000) for more details. 

@ is the process with parameters xj, jij, j 2 0, and polynomials cj or- 
thogonal with respect to the measure @. 

THEOREM 2. The birth-and-death process @ is v-similar to CiY if and only if 
-the distribution functions of the spectral measures satisfy 

@(x) = ~(x -v ) ,  XER, 

and v < inf (supp (Q)). 

Proof.  Necessity. We claim that 

This is implied by the fact that for the birth-and-death processes %Y and @, 
where @ is v-similar to CiY, their rates are related as follows: 

We conclude from (6) that Gj (x) = a Gj  (x - v). 
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Next we claim that Q(x) = Q (x - v )  since 

Since supp (e") c LO, mj, the parameter v has to satisfy v < inf (supp 

sufficiency. Let Q and 6 be the spectra1 measures of and @, respec- 
tively. Let @{x) = Q (x - v)? v < inf (supp (Q)), and 6 be the corresponding sys- 
tem of honic orthogonal polynomials of % satisfying the recurrence rela- 
tion (5). 

Let be defined by (6). Hence, for i # j, 
m m 

0 = K (x) y ( ~ ) d ~ ( x )  = j F ( x - v )  F . ( x - v ) d ~ ( x - V )  
0 0 

It follows that q- is the system of orthogonal polynomials of @. From the 
equation (6) we obtain the recurrence relation of @, i.e. 

Comparing (5) and (8) we obtain the equalities for rates of g and @ as in (7). 
Such connections of rates prove the v-similarity of @, as shown by Lenin et al. 
(2000). 

We can formulate the analogous theorem for measures of the orthogonali- 
ty Q") and 8') of the first associated polynomials GI1) and @), where 

G e l  ( x )  = 0 ,  GL1' ( x )  = - I/&, 

-~Gf~'(~)=pj+l~fl]~(~)-(A~+~+~~+l)G~~'(~)+;l~+l~~!~(x),. j > Q .  

The monic form of these polynomials is - 

and satisfies the recurrence relation 

wil; ( x )  = 0, wA1) (x) = 1 , 
('1 l = ( - j l - j l ) l ( ~ ) - j j +  D o .  

THEOREM 3. The necessary and suficient condition of the v-similarity of 
@ when considering Y is the equality of measures 

( x ) = ' ( x - v ) ,  X E R ,  
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and v < inf (supp (e(ll)). If @ is v-similar to Y, we have the following relation for 
the first return probabilities to the origin: 

P r o  of. The proof of the equivalence is analogous to the one of Theorem 2, 
but with using the polynomials Gjl)(x) and Cj1)(x) and their monic forms 
Vf$[l)(x) and %(l)(x). Next we use the well-known formula for the probability of 
the first -- return to the origin (see van Doorn (2003)): 

Fi0 ( t )  = & f1 1 e-xf (x) dgl) (x) 

This is the desired conclusion. s 

This result can be generalized. Let us consider the kth associated polyno- 
mials 

G'kl (x) = 0, Gr) (x) = - - 1, 

- X G $ ~ ) ( X ) = ~ ~ + ~ G ~ ~ ~ ( X ) - ( ~ ~ + ~ + ~ ~ ~ + ~ ) G ~ ~ ) ( X ) + ~ ~ + ~ G ~ ~ ~ ( X ) ,  j 2 0 ,  k 2 0 ,  

orthogonal to the measure Q(k)(~) .  Our extension deals with the v-similarity and 
relation between such measures. 

COROLLARY 2. The birth-and-death process @ is v-similar to Y if and only 
if the measures satisfy 

and v < inf (supp (e(k))). 
Proof .  We can proceed analogously to the proof of Corollary 1 from the 

previous section. We can build the birth-and-death process Yk with parameters 

and with the corresponding monic associated polynomials orthogonal to the 
measure gil)(x). The assertion is obtained by Theorem 3. 

Remark. The proofs of Corollary 2  and Theorem 3 yield an additional 
information, It follows that ~ ( ~ ' ( x - v )  is also a measure of the orthogonality of 
the kth associated polynomials i f  and only if v < inf(supp(~(~))). 
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