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Abstract. A random vector X is B-substable, BE(O, 21, Z there 
exist a symmetric 8-stable random vector Y and a random variable 
8 3 0 independent of l' such that X Y @ ' I 8 .  In this paper we inves- 
tigate strictly p-substable random vectors which are generated fIom 
a strictly /I-stable random vector Y. We study some of their properties. 
We obtain the theorem that every strictly /I-stable random vector 
X with 8 - Sd8(rr, 1, 0) is also strictly a-stable, ar < (for the case of 
random variable X see, e.g., [l], [GI). The opposite theorem is also 
satisfied, but we obtain something more. We obtain some functional 
equation and we show that $a strictly j-substable random vector Xis  
a-stable, then it  has to be strictly a-stable and the mixing random 
variable 8 has to have a distribution S Z i B ( ~ ,  1,O). This is the main 
result of the paper. 
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1. INTRODUCTION 

A random variable 8 is said to have a stable distribution if there exist 
parameters 0 < a < 2, a 2 0, - 1 < B < 1, and p E R such that the characteris- 
tic function of O has the following form: 

~ ~ i i "  = exp {-aa Itl" (1 - ib (sgnt) tg(na/2)) + ipt )  if ol # 1,  
e~p{-aItl(1+i/3.27t-~(sgnt)lnItl)+i~t) if ol = 1.  

We will denote the stable distribution with the above characteristic fuction by 
S,(a, /3, p) and we write O - S,(CT, jl, p). 

A random variable O is called strictly a-stable if and only if 8 - S, ( r r ,  /I, 0 )  
for ol # 1 or 8 - S ,  (a, 0 ,  p). A random vector Y = ( Y l ,  . . ., Y,) is strictly 
a-stable if and only if all linear combinations (1,  Y) = CEl  ti are strictly 
a-stable random variables (see, e.g., [6] ,  Corollary 2.4.2). 
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Let 0 < ol < 2. It is well known (see, e.g., [€I], Theorem 2.4.1) that 
Y = (Y, , Y2, . . . , 5) is a strictly &-stable random vector if and only if there exist 
a finite measure r on the unit sphere S,- , c F and a vector ,uO E Rn such that 

Ee'<fJ'> = exP t - Ka 
where 

with the additional condition 

In this paper we will use two theorems: one concerning characteristic 
functions which are analytic in a strip with the real line as a boundary, and the 
other stating analytic properties of characteristic functions of one-sided dis- 
tributions. 

THEOREM 1 ( [ 5 ] ,  Theorem 2.2.1). Let a rect@abIe Jordan curue J ,  in the 
plane of the complex variable z = t + iv, be such that its interior D is contained in 
the half-plane Imz > 0 and there exists a non-degenerate real interval I = 

( - 0 ,  G) G J .  Let g be a function of z defined and continuous on D v i ,  which is 
analytic in D. If cp, the characteristic function of the ditribution function F, 
coincides with g on I, then 

(i) f l  = lim idx, , [ - ln F ( - x)/x] > 0; and 
(ii) g is analytic in 0 < Im z < fl and admits there the representation g (z) = 

leiZxdF(x), so that it has a unique extension, defined by the same integral 
representation, to the set 0 < Imz < 8, if we impose on the extension the require- 
ment of continuity in this set. I t  follows that cp is uniquely determined in this case 
by its restriction to I. 

In the case (ii), we shall say that rp is analytic in 0 < Im z < 8, which means 
that there exists a function analytic in 0 < Imz < fl, continuous in 0 < 
Im z < p and coinciding with 9 for Im z = 0. 

THEOREM 2 ( [ 5 ] ,  Theorem 2.2.2a). Let F be a distribution function and 
rp its characteristic function. F is bounded to the left if and only if cp is analytic 
in Im z > 0 and it is of exponential type there. The left extremity of F is given by 

sup{t:  F(t)=O) = -1im ~ c p ( i v ) / v ]  (which exists). 
v'm 

DEFINITION 1. A random vector X = (XI, . . . , X,) is strictly p-substable, 
P E ( O ,  21, if there exist a strictly B-stable random vector Y= (Y,, . .., Y,) and 
a random variable O 3 0 independent of Y such that X I'o'M. 
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Remark  1. If s> ,O, thensKg( t )  =K,(sllPt) f o r e v e r y B ~ ( 0 ,  21 a n d t € R n .  

Proof.  If P # 1, it is obvious; if #I = 2, then 

Since j (t, y) r (dy) = 0,  we obtain K ,  (st) = s K ,  jt). ra . 
Sn- 1 

Remark  2. k t  B E @ ,  21. Then the characteristic function of the strictly 
P-substable random uector X for Y being strictly fl-stable with the characteristic 
function exp {- K8 ( t ) )  is given by 

Eei<t~X> = Eexp {i ( b ,  = E exp {-Kg (t)  0). 

P r o  of. It is enough to notice that for every f l  E (0 ,  21 and every non- 
negative random variable 8 we have KB jt8'jfl) = OKp (t). Consequently, 

Eeic'lx> = Eexp{i<tOliS, Y ) )  =Ee~p( -K , ( t@ '~~) )  = Eexp(-KB(f)O). H 

The next theorem is satisfied for a random vector X. For the case of 
random variable X, see, e.g., [I], pp. 167 and 522; [6], pp. 21 and 53. 

THEOREM 3. k t  f i ~ ( 0 ,  21, 0 < a < P, a!d let X be a strictly b-substable 
random vector with the representation X = YO1/F. If a random variable 
O - S , ,  (a, 1, 0), then X is strictly M-stable. 

d 
P r o  of. Let X = YO1/@, where Y = (Y,, . . ., Y,) is a strictly 8-stable ran- 

do? vector, @ -- Sp (a, 1, O), p = a/& and Y and @ are independent. Then the 
characteristic function of the random variable O has the following form: 

= exp { - a'(t (sgn t))' 

= exp - a* ( - I '  



270 M. Borowiecka-Olszewska 

since exp ( - i (sgn t) - 4 2 )  = - i (sgn t). The support of the distribution of 
O - SP(u, 1, 0) for p E (0, 1) is equal to (0, M)) (see, e.g., [6], Remark 2, p. 15; 
[3], Theorem 5.8.3). 

Let g(z) = exp { - d'( - ~ Z ) ~ / C O S  (~p/2)), z E C, D = { z :  Im z > 0). Theorem 2 
implies that there exists g (2) which is a continuous function on D v R, analytic 
in D, and p coincides with g on i.e. q( t )  = g( t )  for every ~ E R .  Hence 
Theorem 1 implies that g admits the representation g (z) = f ei" dF ( x )  = 

Ee-{-'')e for Imz 3 0, and this representation is unique. Since g" is a con- 
tinuous function on D u R ,  analytic in D and coincides with y on R, we con- 
clude that for r = -iz 

L 

g @ ) =  5 e-"dF(x)=exp =g"(ri) for R e r 2 0 .  
R +  

Hence Ee-"" = exg {-  AzatB} for Rez 2 0, A = aalB/cos (za/28). Thus, 
using Remark 2 we have 

Eei<*yx> = exp ( -A [ K B  (t)la/@), 

Now, it is enough to show that such a random vector X is strictly a-stable. 
Without loss of generality we can assume that A = 1. Let a,  b > 0 and XI, 
%, be independent copies of X. Then Remark 1 implies that 

= exp ( - KB (t)"/@ (aa + ba)) 

= E exp {i (t , (aa + ba)l/aX)). 

Hence the random vector X Y@'iB is strictly a-stable in R" for every 
/3~(0, 21 and 0 < a  < /3. sl 

- From the proof of the previous theorem we obtain also the-following 

Remark  3. The Laplace transform Ee-"@, ZE C, Re z 2 0, of the random 
variable O - Sp (a, 1, 0), p ~(0, I), a > 0 is equal to exp (- aPzP/cos (np/2)). 

One can show that the opposite theorem to Theorem 3 is also satisfied. 
We omit this theorem because it is a special case of Theorem 4 which is more 
general. It turns out that if a strictly P-substable random vector X is a-stable, 
then it has to be strictly a-stable and the mixing random variable O has to have 
the distribution SQiB(a, 1, 0). In the proof of this fact we will need to 
solve a quite dficult functional equation and it is the point of the next 
section. 
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2. THE FUNCTIONAL EQUATION 

Tn this section we will need the fact that strictly stable distributions are 
cancelable. We have found only the proof in the case of symmetric stable 
distributions (see [7], Theorem 1). Hence, in the sequel we give the proof of this 
fact for nonsymmetric strictly stable random variables. In this proof we will use 
an idea of the set of functions separating points. We say that a set of functions 
A = {f (x): x E K )  separates points of K if for any two points x, Y E  K ,  x # y, 
there exists a function f E A such that f (x )  # f (y) .  

PROPIZITION- 1. LetX be a nonsynemetric, strictly a-stable random variable, 
rre(0, 21, urfd 19 B,, B2 be random variables independent of X .  If XB, 1 
XOZ, then O1 = B2. 

P r o  of. Let q (t)  = exp {-  K,., (t)), where 

be the characteristic function of the random variable X. It is easy to check that 
the function q ( t )  is an injection separately on the positive and negative 
half-lines, and qr (t) = rp (r1lu t )  for r 2 0, 

Let O1 - I ,  and G2 - R2. Since X8, = X O Z ,  we obtain for every r 2 0 

+ m  f m 

j rpr (ts) Rl (ds) .= . j qr (ts) l2 (ds), t E R. 
- m  -OD 

Define now A ( q )  = {(cpr (t): r 2 0 )  and L ( r p )  = (xi ai rpri (t): ai E R ,  ri > 0). 
Let us notice that 1 = rpO ( t)  E A (cp) and lim,, -, # (t)  = lirn,, +, 4 (t)  = 0 for 
every function 4 (t)  E A (rp).  Moreover, if 1x1 # Iyl, then Re 4 (x )  # Re # (y )  for 
4 E A ((P). Hence every function # E A (q), # 8 1 , separates points with different 
absolute values. If x = - y, then we can choose a, such that 7 ~ -  R,, (x )  $ Z, 
where 

Putting 4, (t)  = exp (-K,,,, (t))  E A ( r p )  we have 

Im (x)-Im 4,, (y )  = exp{ - c",xla} sin (R ,  (4) - ~ X P  (- G 1 ~ 1 ~ )  sin(&, ( Y ) )  

= exp { - a",xlu) 2 sin(R,, (x))  # 0 ,  

and hence r#,, (x) # 4, (y). Thus, the set L (q) separates points of the one-point 
compactification of the real line R = Ru{co).  Moreover, we have 
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From the StoneWeierstrass Theorem (see [2], Theorem 4E) it follows 
that L(q)  is dense in the space of continuous and bounded functions on R. 
Hence for every continuous function f on R we have 

and consequently A, = A,. I 
THEOREM 4. Let p ~ ( 0 ,  21, 0 < a < Bydand let X be a strictly /I-substable 

random-vector -with the representation X = YO1/fl. If % is a-stable, then the 
randbrn wriable O -- S,,, (a, 1, O), and consequently X is strictly a-stable. 

Proof .  The fact that X is a strictly P-substable random vector implies 
that X 2 Y ~ ~ l Q f o r  some nonnegative random variable 63 and strictly @able 
random vector I' independent of 8. 

Let X i ,  E, Oi  ( i  = 1, . .., 7) be independent copies of vectors X, Y and 
random variable 0; moreover, let and 8, be independent for all i, j and let 
a ,  b e l t + .  Since random vectors are strictly fi-stable and vectors X i  are 
a-stable, we obtain the following equations: 

where d 6 R n .  In the first line we apply twice stability of X, and then strict 
stability of k: In the second Iine we use only strict stability of I: In the third Iine 
we use stability of X for first two summands, and then strict stability of Y: 
Hence we have 

d 
= 2 [(aa+b")ia8, + a f l ~ , + b S 8 3 ] 1 i ~ k ; + [ a S ~ 4 + b ~ 0 5  + a S @ ,  + - b % ~ l / f l ~ , .  

Using once more the fact that random vectors 8,  i = 1, 2, are strictly 8-stable 
we have 

Let Y,  = (Y:, . .., xl). Then for every i = 1 ,  2, . . ., n 
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and from Proposition 1 it follows that 

(aa f b")ala B1 +(au + b")ai" B2 +(2a)@ 0, + (2b)B B4 + (2@ 0, + (2b)P 0, 
d 
= 2 a ( a a + b ~ s ~ a ~ , + ( 2 a ) B 0 2 + ( 2 b ) a ~ 3 + a B 0 4 + b a ~ 5 + a a B 6 + b f l ~ , .  

Putting aa = c and bfl = d we get 

+ dat8)B1" f (Cat' + d"lB)Biu 0 2  +2# ( c @ ~  + dG4) + 2' ( c @ ~  f d B 6 )  
d 
= 2s(cuis+daM)s1a~l + 2 P ( c ~ z  +d03)+c@4+d85+c@6+d07.  

Now let q be the characteristic function of the random variable 63. Hence 
we obtain the following functional equation: 

(1) qZ (ct) q2 (dl) q~ (2@ (cUiD + da13fl/a t )  9 (2fl ct) q (28 dt) 

= y2 ((caIa f dalB)B1a t )  q2 (2# ct) rp2 (2b  dt), c, d 3 0, t E R.  

Notice that cp {E) + 0 for every t E R. Indeed, let us assume that there exists 
t > 0 such that q(t)  = 0, and let to = inf {t > 0 :  q ( t )  = 0). Since q is a con- 
tinuous function and y, (0) = 1, we obtain to > 0 and cp(t,) = 0. Substituting 

in the equation (1) we have 

Taking t  = to we obtain 

Since A/c, A/$, 2F > 1, we get a contradiction to the choice of to. In a similar 
way we proceed if there exists t  < 0 such that q ( t )  = 0; then we define 
t ,=sup{t<O: q( t )=O).  

Since y, ( t)  # 0, we can transform the equation (1) into the equation: 

Define now h ( t )  = rp (ct) 9 (dt)/q ((caia + du/B)BIa t). It is easy to check that - 
h ( - t )  = h(t), h(0) = 1 and 

Hence 

Putting P = - l ip  we can write the last equation in the following form: 

Itlr ln h ( t )  = 2'' Itlr In h (2@ t).  
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Substituting H(t) = ItJrlnh(t) we obtain 

H (t) = H (2fi t )  . 
Thus, h (t) = exp {H (t) I tl and 

(2) cp ((c"!, + daiB)fila t )  exp ( H  (t) It( l iB j = cp (ct) q (d t) , t E R . 
- 

From the above equation it follows that H (- t )  = H (t). 
Substituting t = 1 and g (PI8) = q (t) exp { - H  ( 1 ) )  in the equation (2) we 

have 
-- 7 .  

-- - - ,  

g (ca!3 g (PI3 = g (caIB + dSl@). 
I 

Let r  = cal@ and s = dalP, r ,  s > 0. Then we obtain the follow.ing Cauchy equa- 
tion: 

B(r)g(s) = g ( r + s ) ,  

which has only one solution g (t) = Bt, 3 = g (1) = cp (1) exp { - H (1)) # 0, 
BE C. Hence 

Since q~ (0') = 1, we have N(1) = 0. Hence In B = In q~ ( 1 )  = D and 

Consequently, cp (- t )  = a = exp {In q (1) t"lB}, which implies that if t < 0, 
then 

cp (t) = exp {In cp (1) (- t)"la). 

Thus 
cp (t) = exp { D  (t("ia], t E R ,  

where 

- 
Now, it is easy to see that the random variable O is strictly @-stable, and 

hence O - Salfi(o, y ,  0). Since O 2 0, we obtain y = 1 (see, e.g., [6] ,  Remark 2, 
p. 15; Property 1.2.14). Theorem 3 implies that the random vector X is strictly 
a-stable, which completes the proof, rn 

3. SOME PROPERTIES 
OF STRICTLY SUBSTABLE RANDOM VECTORS 

Let X Y@'/@ be a strictly fl-substable random vector with the random 
vector Y - y, and a nonnegative random variable O - 1 independent of I: It is 
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easy to see that for the random vector X we have 

That is why the distribution of Tr' is often called the scale mixture of the 
distribution y B  with respect to the mixing measure A. 

Nojice- that we can mix the measure y, also with respect to a signed 
measure rn bn LO, m) defining 

m 

yB 0 m (B) = 5 ya (Bu- l i B )  m (du) . 
0 

This formula makes sense if the measure m is finite, but the result of such 
a mixture will be a signed measure. If m({O}) = p > 0, then 

Now we give some properties of strictly substable random vectors. 

THEOREM 5. Let X be a strictlj fi-substable random vector, P E ( O ,  21, and 
let a nonnegative random variable O be infinitely divisible. Then h e  random 
vector X is also injnitely divisible. 

P r o  of. Let @ - R be an infinitely divisible random variable. Then for 
every n E N there exists a random variable On - I, such that 

where On,i, i = 1 ,  .. ., n, are independent copies of On. Thus 

OD m 

= j exp { - uKp (t)} ?I.:n (du) = [I exp { - uKp ( t ) )  A, (du)In 
0 0 

= [Eexp ( i  ( t ,  YO,!/))]" = E exp { i  (t, Y B ; / ~ > ) .  . . . -Eexp {i (t, YO:$)). 

Hence 
d x = y(e, , ,+ ... +B.,.)~" Y, @;!!+ ... +Y.B:$,  

where Y,, . . ., Y,  are independent copies of Y; and and for all i ,  j = 

1, . . . , n are independent. H 
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Let us remind here a very well-known concept of the exponent of the 
measure m (possibly a signed measure) on Rn: 

dcf 1 
Exp (m) = exp { - m (Rn)) - rn*k. 

k =  0 k ! 

For every positive measure m on Rn it follows that Exp(m) is an infinitely 
divisible probability measure with the characteristic function 

, . 
(Exp (m)) " (t) = exp ( - J (I - ei('*J'>) pn (dy) )  . 

-- .. R" 
-d 

7 .  

L E M ~  I. Let na be a Jinite signed measure on LO, m), f l  E (0, 21. Then 

m m 

J e-uSm*n (du) = [I e-'sm(du)]n. 
0 0 

Proof.  This formula does not require any proof if m is a probability 
measure, otherwise let m = m + -m-. Then, obviously, 

def def 
h+ = m+/m+([O,  a)) = m + / a  and 1- = rnL/m- ( [0 ,  m)) = mU/b 

axe probability measures on [0, a). Let U1 -- R f  and U ,  - Ap. Now we need 
only standard calculations: 

m m 

j e-us m*n (du) = J eeuS(a3rf - bR-)*" (du) 
0 0 

= f (:I(- I)"-' [aEn+ exp {- U, s ) l k -  [bEA- exp {-u,s)]"-' 
A= 0 

0  

THEOREM 6.  For every strictly 8-stable measure y,, PE(O, 21, and every 
finite signed measure m on [0, oo) 

P r o of. Let Y be a strictly fl-stable random vector with distribution yl, and 
density function fB(y) ,  and II  = Exp(m). Then the Fourier transform of the 
measure ysod is equal to 

m * l r n  
fa (tul"?) Exp (m) (du) = exp { - m ( R  +)) C - J exp { - uKg  ( t ) )  mhk (du). 

0 k=O k! 0  
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Using Lemma 1 we obtain 

m 

= ex, { - j (1 -exp {- uKp @I)) ~ P U ) )  
0 

m 

= exp {- j (1 - ei<*'">) j fa (vu-liP) U - ~ ~ P  m (du) d ~ j  
R" 0 

Theorem 6 implies 

Remark 4. The strictly fl-substable random vector X with mixing probabil- 
ity measure A = Exp (m) for some $nite signed masure rn on [0,  co) is infinitely 
divisible only 

OD 

~fa(tu-1iB)u-n1Pm(du)2~ for a 1 I t ~ R "  
0 

An example of a mixing variable O - Exp (m) which is not infinitely divisi- 
ble while the P-substable random vector X (which is also strictly P-substable) 
has this property (i.e. the above condition is satisfied) can be found, e.g., 
in [4], p. 94. 
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