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Abstract. The class of a-stable distributions is an attractive 
probabilistic model of asset returns distribution in the field of finance. 
When dealing with real issues, such ar optimal portfolio selection, it is 
important that we can compute the ConditionaI Value-at-Risk [CVaR) 
accurately. The CVaR is also known as the expected tail loss (ETL) 
proposed in literature as a coherent risk measure. In our paper we 
propose an integral expression for the calculation of the CVaR of 
a stable law. We compare the current approach to some existing 
method and we demonstrate how to relate the derived result to some 
common multivariate distributional assumptions. 
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1. INTRODUCTION 

The theoretical properties of the class of a-stable distributions allow the 
explanation of empirically observed phenomena such as: heavy tails and excess 
kurtosis. For this reason it has been proposed as a probabilistic model for asset 
returns distributions. Abandoning the classical assumption of normality, we 
need to rework the basic building blocks of financial theory and modeling. For 
various mathematical models and related discussions, see Rachev (2003), and 
Rachev and Mittnik (2000) and the references therein. A central problem that 
undergoes revision is the portfolio selection problem, see Ortobelli et al. (2003). 

* Rachev gratefully acknowledges research support by grants from Division of Mathemati- 
cal, Life and Physical Sciences, College of Letters and Science, University of California, Santa 
Barbara, the Deutschen Forschungsgemeinschaft and the Deutscher Akademischer Austausch 
Dienst. 
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The classic performance measure called Sharpe Ratio, founded on the Marko- 
witz mean-variance framework, needs to be generalized to allow for comparison 
among portfolios with heavy-tailed, possibly skewed, returns distributions. 
The Sharpe Ratio is defined as: 

where z = (zl, z2, ..., 3,)' is the vector of assets returns, x = (x,, x,, ..., x,)' 
denotes a vector of portfolio weights, rf is the risk-free return and G,,, is the 
standard deviation of portfolio returns. The assumption of heavy tails makes 
the standard deviation no longer a reasonable measure of risk. 

In literature a set of axioms has been presented (see Artzner et al. (1997) 
and Artzner et al. (1998)) to define a "coherent" risk measure. The set of axioms 
is complete, i.e. if a measure does not satisfy some of them, it may lead to 
undesirable conclusions. If we consider a set V of real-valued random variables, 
a function Q: V -+ R is called a coherent risk measure if it is 

1. monotonous: X, Y E V ;  Y > X = - p ( Y ) < q { X ) ,  
2, sub-additive: X, Y, X +  Y EV Q(X+ Y) & Q(Y)+Q(X), 
3. positively homogeneous: X E /, > 0, JlX E V * g (hX) = h~ (X), 
4. translation invariant: X E V, a E R * Q (X+ a) = e (X) - a .  
The Conditional Value-at-Risk (CVaR) of an absolutely continuous ran- 

dom variable X at s i d c a n c e  level E is defined as1 

where VaR, (X) is implicitly defined by P ( X  < - VaR,(X)) = E and it is the 
industry standard risk measure Value-at-Risk (VaR). It  satisfies the axioms, 
hence it is a coherent risk measure; for a discussion see Bradley and Taqqu 
(2003). For a discussion on the CVaR and a comparison to VaR, see Yamai 
and Yoshiba (2002a) and Yamai and Yoshiba (2002b). 

As an alternative to the Sharpe Ratio we can define other performance 
measures which assume a-stable distributed portfolio returns. A new ratio, 
recently proposed in Martin et al. (2003) is the Stable Tail Adjusted Return 
Ratio (STARR) defined as 

E (x' z )  - r, 
S TARR, (x' z) = 

C VaR, (x' z)/D, ' 

where the normalization constant D, = CVaR,(YJ and Y follows the standard 
normal distribution. It is shown in Martin et al. (2003) that the new ratio 
generalizes the Sharpe Ratio in a reasonable way. Another example is the 

We tacitly assume that X is interpreted as portfolio returns. 
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Rachev Ratio (RR): 

C VuRcl (rf - x' z) 
RREl .el (x' 2) = C VuR,, (x' z - rS) 

capturing the asymmetry in portfolio returns distribution. It is reported in 
Biglova et al. (2004) that the Rachev Ratio seems to have the best ex-ante and 
ex-post performance when tested among a variety of uthty functions, 
out-performing significantly the Sharpe Ratio. 

For the efficient use of ratios involving the CVaR as a risk measure, it is 
very important to have an accurate method of computing the €VaR. The 
principal difficulty of working with the class of a-stable laws is that their 
densities are not known in closed form and normally a researcher relies on 
approximations introducing a certain error. On the other hand, the power decay 
of the tail, an inherent property, makes Monte Carlo techniques unreliable. 

The current paper develops an integral representation of CVaR, (X), where 
X folIows a-stable distribution with 1 < a < 2, which is numerically easy to 
handle. Throughout the paper we shall assume that if X follows a stable law, 
X E S, (g, 8, p), then we have the following parameterization of the characteris- 
tic function vx(t) = Eexp (itX): 

7 - 

were sign(t) denotes the sign of t if t # 0 and sign(0) = 0. We are assuming 
1 < a < 2 to make sure that conditional expectation used in the definition of 
CVaR is well defined. For further details about the properties of a-stable laws 
see Samorodnitsky and Taqqu (1994). In the next section we state the main 
results. The proofs are given in the Appendix. A comparison to Monte Carlo 
method and direct numerical integration follow. In Section 4 we demonstrate 
how to associate the main result with some common assumptions for the 
multivariate asset returns distribution. Finally, we provide tabulated values for 
CVaR0.01 (XI and CVaRo.05 (a. 

2. INTEGRAL REPRESENTATION 

The main result will be derived for the standardized case, i.e. X E  
S, (1, /I, 0). As a matter of fact, using the properties of translation invariance 
and positive homogeneity of the CVaR, under the assumption that CT > 0 and 
PER are a scale and a location parameter, respectively, we obtain 

CVaR,(oX+p)=oCVaR,(X)-p ,  where uX+pES,(a,B,p). 

PROPOSITION 1. Let X E S,(l,fl, 0) with ol > 1. If VaR, (X) # 0, then the 
Conditional VaR of X at signgcance level E admits the following integral 
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representation: 

a IVaR,(X)l " I Z  
(3 )  CVaR, ( X )  = - 1 g (8) exp (- I VuR, (X)lal(u - l) u (6)) dB, 

1 - f f  XE - 8 ,  

where , 

sin (cc (8, + 0) - 20) ci cos2 0 
- g(e' = sin a (8, + 8) sinZ M (Po + 8)' 

cos 8 cos (018, + (01 - I) e) 
o (8) = (cOs l) ( ) 

sin a(& + 8) case - ' 

and jf = - sign ( VaR, (X)) j3, 
bl 

Furthermore, if VaR,(X) = 0, then 

2 ( (  - 1 cos 8 ,  
CVaR,(;K) = 

(K - 200) (cos ~ 8 ~ ) ~ ~ ~ '  

where Bo = a- l arc tan (p tan (742)). 

The symmetric case (j? = 0) yields the following 

COROLLARY 1. If X E S,(1, 0, 0) with a > l and VaR,(X) # 0, then 
CVaR,(X) admits the representation: 

a I VuR, ( X )  I "I2  
(5)  CVaR, ( X )  = - J g (0 )  exp ( - I VaR, (X)lai("- v (0)) do, 

1-a 7CE 

where 

If  VaR, ( X )  = 0, then 

C VaR, ( X )  = 2 3  ( (m - 1 )/a) 
X 

In addition, we have the following symmetry property of a-stable 
CVaR,(X) which they share with other zero mean absolutely continuous ran- 
dom variables. 

COROLLARY 2. Let X E Su ( l ,  8, 0) with a > 1. Then the following relation 
holds: 
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Corollary 2 follows from the equalities 

0 = E ( X )  = E E ( X I X  < - v ~ R , ( x ) ) + ( I - E ) E ( X I X  > -va~,(X))  

= -ECVUR, (X) - (1 -E)E( -XI -X  < VUR,(X)) 

= - E C V ~ R , ( X ) - ( l - ~ ) E t - X l  -X < -VuRl - , ( -X) )  

= -&CVaR,(X)+(l-&)CVUR1-,(-XI,  

where the fourth equality is a consequence of the VaR definition and 

VaR,(X) = -VaR, - , ( -X) .  - 

It is possible to show that in the Gaussian case (a = 2) the integral expres- 
sion is reduced to a closed form expression. 

COROLLARY 3. If X E S ,  (1, 0, 0) = N (O,2), then 

C VuR, ( X )  = 

1 (VaR. ( ~ 1 ) ~  
=-exp(- ). 

E f i  

Pro of. If we set a =  2 in equation (31, for CVaR, (X) we receive the expres- 
sion 

C VaR, (X) = 

Now we apply a change of variables 

and the result is 

C VaR, (X)  = 

If we represent 

and combine it with the variable t, the integral is recognized as the gamma 



6 S. Stoyanov et a]. 

function 

which proves the statement. H 

The integraI representation given in Proposition 1 is well suited for numer- 
ical work. This is suggested by the properties of the integrand given in the next 

PROPOSITION 2. If T/aR,(X) # 0, than the integrand in equation (3) 
- 

z (0) = g (0) exp (- I VaR, (X)lafla- l1 u (8)) 

is a bounded function in [-go, n/2]. Moreover, 

p >  -1, 
lim- z (0) = 0 and lim z (0) = 

8 -  -en B-cn/Z 1 / ~ - 1 ,  /J= -1. 

We do not consider the Gaussian case because we have a nice closed form 
expression, see Corollary 3. The proofs of Propositions 1 and 2 will be given in 
the Appendix. 

3. COMPARISON TO OTHER METHODS 

In this section we explore the accuracy of some existing methods for the 
CVaR computation. It should be noted that the only source of error when 
using the expression in Proposition 1 is in the quadrature that numerically 
calculates the integral. Because of the nicely behaved integrand and the bound- 
ed integration range, this error is easily controllable. 

3.1. Monte Carlo. From the definition of the Conditional Value-at-Risk it 
is clear that it could be computed using Monte Carlo scenarios according to 
the following algorithm : 

1. Draw a large sample XI,  X,, . . ., X, from a stable law with parameters 
E =  aO, f i=f io ,  O =  and p = p o .  

2. Sort the observations X(,, < X(,) < . . . < X{,) and compute 

where by [a] we mean the largest integer smaller than or equal to a. 
By the law of large numbers, the statistic (6) converges almost surely to the 

true value CVuR,(X). For comparison, Figure 1 (see Section 7) depicts the 
surface of CVaR with E = 0.1 for a large part of the entire (a, 8) space com- 
puted by using the integral representation we have developed, and Fig- 
ure 2 (Section 7) depicts the same surface computed by using the Monte Carlo 
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method with N = 1000000. Because of the heavy tail, we observe larger fluc- 
tuations in Monte Carlo estimates as u decreases. Very few extreme outliers 
have been ignored because they destroyed the scale. The fluctuations are sig- 
nificant even when E is as high as 0.1, which means that in the computation of 
the sample average we have effectively used 100000 simulations. Another study 
of the CVuR,(X) calculation done with the Monte Carlo method can be found 
in Yamai and Yoshiba (2002b). They consider only the symmetric case @ = 0) 
and provide 95% confidence bounds for the estimates. 

3.2. Direct numerical integration. We can also calculate the CVaR of a sta- 
ble law using equation (11) and computing the integrals numerically. We can 
verify if the derived formula (3) is advantageous from the practical viewpoint by. 
checking that the error from the numerical integration is small. Since stable 
densities are not known in closed form, it is possible to use either the Zolota- 
rev's integral representation given in Theorem 1 or the FFT-based approxima- 
tion developed in Rachev and Mittnik (2000). We replace the infinite upper 
limit of the first integral with a large constant K: 

The absolute error is given by 

1" 
(7) (X) = IcVaR, (X)-(CVaR, (XI)-] = ; ufx(u: m, -8) du. 

K 

Note that 6, ,K(X) does not incorporate the error arising from the use of 
a pdf approximation instead of the pdf itself. The following result provides 
a way to compute S,,,(X). 

PROPOSITION 3. Let X - Sail ,  0, 0) with a > 1. The absolute error S,,= (X) 
deJined in equation (7) admits the following representation: 

a Kni2 
~ E . K  (X) = - - J g (0) exp ( - K"/("- v (0)) dB, 

l-a71& 0, 

where 
sin (a (6- 8,) -28) a cos2 f3 

- 
'(') = sinaid-0,) sin%(e-Us 

a~(a-l)cos((ol-l)O-aOo) 
sin a (6 - 00) cos 8 3 
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Proof.  Equation (7) is the same as equation (81, the only difference is that 
the lower bound is the large positive constant K instead of VaR, (X). Therefore 

(X) admits the same integral representation as CVaR, (X) if VaR,(X) > 0; 
see Proposition 1. In this case 8 = - p ,  8, = - 8, and we obtain equation (8) 
from equation (3). H 

Tables 1 and 2 (see Section 7) show the absolute and relative errors in the 
case E = 0.01 and K = 100 for a large part of the entire (a, P) space. This choice 
of E would be typical when measuring the risk of extreme losses. Clearly, the 
error a,, (X) is not neghgible even when a w 1.7, which would ntrmally be the 
case when considering stock returns. 

4. APPLICATION TQ PORTFOLIO THEORY 

In this section we briefly show how to relate the derived expression to 
some common assumptions on the multivariate distribution of assets returns. 

4.1. Multivariate a-stable disiriklioms 

4.1.1. General case. Let us assume that the vector of assets returns z = - 

(zl, z2, . . ., 2,)' follows a multivariate a-stable distribution with ol > 1, a vector 
of expected returns ,u = (p,,  p,, . . ., p,,)', and a spectral measure r. The nota- 
tion is z E S, (r, p). We can claim (see Samorodnitsky and Taqqu (1994), p. 67) 
that portfolio returns x'z E Sa(ap, #lp, pp) with 

Js, Ix'sla sign (x's) r (ds) 
op = ( J Ixr sla I- Bp = PP=X'P, 

S" SS" I X ' S I ~  r (ds) 

where Sn denotes the n-dimensional unit sphere, i.e. Sn = {u€Rn: Ilull = 1). 
Then for the Conditional Value-at-Risk of portfolio returns we have 

where 
x'z - pp 

E S , ( ~ ,  BP,  01. 
gP 

The entire class of multivariate a-stable laws is quite general and the 
spectral measure is hard to estimate. The sub-Gaussian family is often con- 
sidered in the applications. 

4.1.2. Sub-Gaussian stable laws. The sub-Gaussian stable laws are shifted 
symmetric multivariate a-stable laws with characteristic function 

qZ (t) = E exp (it'z) = exp ( -(t Qt)"I2 + it' p), 
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where Q is a positive-definite matrix called the dispersion matrix and p = Ez is 
the vector of expected returns (recall that we assume u > 1). For further details 
about these distributions and their parameters estimation see Ortobelli et al. 
(2003) and. Samorodnitsky and Taqqu (1994). For this multivariate distribu- 
tional assumption, portfolio returns follow the symmetric stable law x ' z ~  
S ,  (GP, 0 ,  PP) with 

Therefore equation (9) can be rewritten as 

where 

Notice that CVaR, (X) ((x'z- pP)/-) is constant with respect to the vector of 
portfolio weights x. 

The sub-Gaussian stable laws form a special case of the more general class 
of the elliptical distributions. We mention this class of models in the subsection 
below for comparison, even though it is somewhat outside of the framework of 
this paper. 

4.2. Elliptical distributions. Let the vector of portfolio returns follow an 
elliptical distribution with a vector of expected returns p (we consider the case 
with finite expectation), a non-negative definite symmetric matrix Z and char- 
acteristic generator $ (-), z ~ E , ( p ,  1, 4); for further details see Embrechts et al. 
(2003). In this case, the CVaR of portfolio returns equals 

where Y is distributed according to a standardized univariate elliptical law, i.e. 
Y EE, (0, 1). The multivariate t-distribution is an elliptical distribution that 
exhibits heavy tails for which CVaR,(Y) can be explicitly given: 

where Y E  t (v) with v > 1 degrees of freedom. 

5. CONCLUSION 

Accurate computation of the Conditional Value-at-Risk of univariate sta- 
ble laws is a non-trivial task. The current paper develops an easily computable 
integral representation and compares it to some existing methods - Monte 
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Carlo and direct numerical integration. The first approach is hampered by the 
fact that a-stable distributions exhibit heavy tails. This produces large fluc- 
tuations of the estimated values. The second approach is hampered by the lack 
of closed form expressions of the stable densities. As a result of the comparison, 
the proposed integral representation appears superior to the two tradition- 
al approaches. Tables 3 and 4 (see Section 7) provide tabulated values for 
CVuRo o, (X) and CVuR,.,, (X). These values 0.01 or 0.05 would represent 
a common choice for E in portfolio selection problems. 

- 

6. APPENDICES 

APPENDIX 1 - PROOF OF PROPOSITION I 

For the proof of Proposition 1, we need some preliminary results given in 
the sequel. 

6.1. Preliminary results 

LEMMA 1. If' X is distributed according to a standard stable Iaw, X E  
S,(1, 8, 0), with density fX(u; a ,  PI, then 

Proof.  From the definition of the conditional expectation we have the 
following representation of CVaR, (X): 

that can easily be transformed into 

and 

1" 1 - VaRdX) 

CV&(X)=-Iufx(-u;a,P)du-- j ufx (u ;a ,B)du  if VUR,(X)<O. 
E o  E O  

The statement follows immediately from the symmetry property of stable den- 
sities 

fx(-u; a? P) = f x b ;  01, -PI 
and the CVaR,(X)  expressions from above. H 
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We will take advantage of the integral expressions of the stable densities 
with 1 < a < 2 given in Nolan (1997). For this purpose we restate them in the 
current parameterization (2). The results are summarized in 

THEOREM 1. Let X E S, (1, 8, 0). The density function of X when x 0 is 
given by 

where 

O. = 1 arc tan (/I tan 7 ) , 
u 

,,(a- ,, ( cos u ) a l ( a - l l c ~ ~  (adO +(a- 1) e) 
v(o;a,p)=(cosaeO) sinu(gO+M cos 0 

Moreover, v (d; a, 8) is continuous, positive, strictly monotone on ( - B,, ~ /2 ) ,  and 

(13) lirn v ( 0 ;  a,  /3)= m, lim v ( 8 ;  a,p) = 0 ,  
0 -  -00 e+u/2  

with the second limit under the assumption p > - 1. The limit is finite and posi- 
tive for = -1. 

Proofs of these results can be found in Nolan (1997), Zolotarev (1983), 
Buckle (1995) and the references therein. We also need the following 

LEMMA 2. The function 

a cos (ago + (a - 1) 9) 
L(0; a, 8) = ---COS 6 

l-~l cos ff 9, cos e 
is a primitive function of 

c o s ( ~ O ~ +  (a-119) 
(V (u; a, fl))'l-di' = (MS C d 0 ) - "  

cos e C O S . ~  

and has the following properties: 

a cos 9, 
lim L(0; a, P )  = lim L(9; a ,  P) = 0, 

e- -8: (1 -a) (cos aO0)l/"' e+,,-  

where v(0; a,  8) and do are as above. 

Proof.  The most straightforward way to show that the statement holds is 
to dzerentiate L(9). First note that since 
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we have 

cos ( ~ 6 ,  +(a - 1) 8) + C ,  sin go ( cose 

where C, = (cos c ~ O , ) - ~ / ~ .  Writing 

a 1 /a 
L (6; a, f l )  = - Cl (cos (uOo +(a! - 1) 8))  (cos B)(" -J)/" 

l -a 
(1 -a)/x . 

and differentiating we obtain the equation for (v (0 ;  a, 8)) in Lemma 2. 
The limit properties are easy to compute from (IS). s 

Some elementary facts that we shall take advantage of are gathered in the 
following 

LBMMA 3. Let 6, be defined as in Theorem 1. Then O0 = 0, (b) is a de- 
creasing function of b. Furthermore, 

where P E [- 1, 11. Moreover, 

(17) 0 $ sina(Bo+8) < 1 for 6 ~ [ - - 8 ~ ,  71/21 

and sina(Oo+6) =Oi f6  = -80 forany choieeof f l o r i f 8 = ~ / 2 a n d  P =  -1. 

Proof.  Since 

we have 

and therefore BO(b)' < 0. The chain of inequalities (16) follows directly, ob- 
serving that by assumption 1 < a < 2. If 6~ [-go, x/2], then 

The last inequality turns into equality if 8, = 00(-  1) = n(2-a)/(2a) and we 
obtain equation (17) together with the limit cases. rn 

6.2. Proof of the maim result. The proof follows directly from the integral 
representation of the density function fx(u; a ,  b) given in Theorem 1. We 
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substitute the expression of the density into equation (11): 

t 19) 

with 

where 
- 

and p = - sign ( V ~ R ,  (X)) P .  
M 

The lower bound of the integral in the density representation in I 1  is 0, since 
arc tan( -x) = -arc tan (x). We shall consider first I ,  assuming that 
VaR,(X) # 0. The case VaR, ( X )  = 0 is trivial since I, = 0. Switching the inte- 
gration order yields 

and after a change of variables t = ual("-')v (9; ol, j7) we obtain the expression 

where a (0) = IVuR, [X)Iul(a-l) v (0; a, B). The equation above can be rewrit- 
ten as 

where E(6;  a, B) = v(8;  a, p)(l-a)". Lemma 2 gives the particular expression 
for L (6;  a, p) and some useful function properties. Integration by parts leads to 

- - r ((a - i)/a) cos Po 1 "I2 
-- L(0;  a, ~ ) ( a ( ~ ) ) " - ' ~ ' ~ e - ~ ( @ ) d a ( 8 )  

n: (cos n -8, 

* -  
( a  - a )  cos 8, 

* - + 1 3 .  
x (COS 
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The second equality holds because: 

At the left endpoint the value of L(0; a, is given in Lemma 2 and 
from the properties of the function v (0; a, 8) given in Theorem 1 we obtain 

when computing the value at the left endpoint. 

At the right endpoint the value of L(U; a ,  Ji) is zero, and-so is the value 
of the incomplete Gamma function since the upper integral bound approaches 
the lower one. Hence, at the right endpoint the first term is zero. 

a Finally, 

Integration by parts is used once again: 

Since lime,,12- a(8) = 0 = lime,ni2- L(8; a, p), the first summand is zero at the 
right endpoint. At the left endpoint we have 

lirn L(0; a, ~)(a(~))'"-~)'"e-"(" = liq L(8; a, ~)(a(0))-'~"a(0)e-"(') 
a+ -80 e+ -ao 

= lim- L(8; a, B)(~(O))-~ '"  lim o(8)e-"('). 
e+ -60 a+-eo 

We can easily see that lim,, -ao a(B)e-"(?I = Q from .the prapeiiies of the fun& 
tion v ( 0 ;  a, f l )  given in Theorem 1. It remains to compute 

lim L(6; a, /J)(~(o))-'~" = [VaR.(X)I1fll-") lim L(8; a, B)(v(O; a,  jJ))-l" 
a+ -80 e+-oo 

a 
-- - I VaR,(X)I1/(l-a)(~~~ ~~&,)li(l-") lim cos 0 (sin f co+ O))"('- " = 0. 

l -a  e+ -80 

The last equality holds because it follows from equation (16) that 

lim- cosO#O for any 1 < a < 2  and - 1 < / 3 < 1 .  
8- -80 
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Therefore the limit at the left endpoint is zero. The term behind the dif- 
ferential in the expression for I, equals 

(a - 1 )/a ct ~os (a8~+(a -1 )6 )  L(6;~,8l(a(Q))  =IvaR,(X)I- 1-a  sinot(8,+6) cos 8. 

Decomposing cos (ug, f (a - 1) 0) = cos a (go + 0) cos 0 + sin cl (go + 6) sin 6 and 
computing the derivative of L (0; a, /J) (a (8))@- "'" we arrive at 

sin (a (go + 0) -28) a-cos2 8 - 
= v ~ R ' ( ~ ' & (  siool(B,+U) sin2a(R,+8) 

Finally, for I ,  we get 

The first integral II is handled similarly: 

Since the upper bound is inf i ty ,  we get the complete Gamma function after 
the corresponding change of variables: 

- - ' ((a - l a )  eos 6, r((2a-l)/ff)L(e;a,-p) 
x n; (cos aOo)llu' 

Substituting the relevant expressions for I ,  and I 2  in (19) and bearing in 
mind that the cosine is an even function, we prove the main statement. If 
VaR,(X) = 0, then I 2  = 0. We can easily see it from equation (12). Hence 
if VaR,(X) = 0, then 

2 - PAMS 26.1 
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where, according to Nolan (1997) and after the corresponding change of pa- 
rarneteriza tions, 

and we obtain the second statement in the proposition. s 

APPENDIX 2 - PROOF OF FROFQSlTION 2 

From the properties of the function v ( 0 ;  GI, P) given in Theorem - 1, and 
noticing that v (0; a, f i  = v ( B ) ,  we obtain 

lim exp (- IVaR, (x)\"~{~- v (0)) = 1 . 
B+n/2 

Therefore 

sin (a (8, + 8) - 28) 0: cosZ 8 
lim z (8) = lim g (0) = lim - lim . 

e + ~ / 2  o + x / ~  O+X,Z sina(iJo+O) ~ + ~ , ~ s i n ~ a ( i J ~ + O )  

- - sin (or (go + n/2) - n;) 
= - 1  if fT>-I .  

sin a (8, + n/2) 

The case 8 = - 1 is more complicated because the denominator turns into zero 
(see Lemma 3). Applying the intermediate result in formula (18) and l'H6pital's 
rule, we obtain 

lim 
sin (0: (go + 0) - 28) sin (n +a  (0 - 4 2 )  L28) 2 - 0: 

= lim =- 
i sin a (61 + W e-ni2 sin (n + a (0 - 42)) GI 

and 
olcos2 0 a cos2 0 

= lim - 
1 

lirn - - 
0 - ~ / 2  sin2 u (go + 8) e-qr sin' (n + 0: (0 - 42)) a' 

Therefore, if fJ= - 1, lime,ni2 z(6) = (1 -u)/ol. The other limit can be seen as 
a product of limits. That is, 

= lim g(B' lim v(8;ol,F)enp(-I~a~.(~)I~~(~-~)v(8;lr,~)). 
o+-iio v(0; a,  p)e+-eo 

Using the properties of the function v (0; a,  B) given in Theorem 1, it is easy to 
see that 

lirn v (0; a, fT) exp ( - 1 VUR, (x)lai'"- l1 v (8; a , p)) = 0. 
e-+ -00 
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It remains to calculate the first limit: 

lim 4 (0) 
- = (cos ag,)'"' -'I lim (sin (a (6, + 0) -26) sin a (go + 0) - a cos2 0) 

e+ -ao v (6; a, 8) O+ - 30 

(sin a (8, + 8)) (2 - 4 / ( a -  1) 

X = 0. 
(cos %)llfa-')  cos (a& +(a- I) 0) 

The last equality holds because we consider the case 1 < a < 2, and hence 
(2 - .)/(a - I) > 0. - 

We can easily see that the integrand is a bounded function because of the 
properties of v ( 0 ;  a, m: 

The function 

has a bounded numerator. The denominator turns into zero only when 
0 = - 8, for any ol and B or when 9 = n/2 and p = - 1. This result is contained 
in Lemma 3. Those limit cases have already been considered and we know that 
at these points the entire integrand has finite limits. Clearly, since the denomi- 
nator does not turn into zero for any middle point, it follows that g(8) is 
bounded for any (a, P) pair, and so is the entire integrand. E 

APPENDIX 3 - RELATION TO THE CLOSED FORM EXPRESSION OF E ( X ( ,  GL > 1 

The closed form expression (4) can be related to the closed form expression 
of the first absolute moment of X E S, (1, P, 0): 

- - 217 (1 - i/a) 
1 + p2 tan2 - cos 00, 

7C "*)iP" 2 

where 6, is defined in Theorem 1 (for details see Samorodnitsky and Taq- 
qu, p. 18). Since the integral in the expectation can be equivalently rewrit- 
ten as 
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in the case of stable laws we get 

where - X E &(I ,  - P ,  0), so = P ( X  < 0) and 8; = B (X 2 0). Therefore 
- 

2r ((a - l ) /a)  cos 8, 
E 1x1 = 

n; ( c o ~ c l e ~ ) l / ~ '  

It is possible to show, using some algebra, that equation (21) equals the closed 
form expression (20). 

7. PLOTS AND TABLES 

X E S,  (1, P ,  O), the integral representation 

B a 

FIGURE 1. CVaR,, ,(X) computed with the integral representation for different (a, P) pairs 
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X E S ,  (1, P,  0), the Monte Carlo method 

FIGURE 2. CT.irR,., (X )  computed with the Monte Carlo method using 1 million simulations for 
dflerent (a, 8)  pairs 

TABLE 1. The absolute error 6,,K (X), where E = 0.01 and K = 500 for different 
(a, PI pairs 
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TABLE 2. The relative error G,,,(X)/CVaR,(X) in percent, where E = 0.01 and 
K = 500 for different (a, ~9) pairs 

T ~ L E  3. Tabulated values of CV&o.ol (X)  for different (a, fi) pain 
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TABLE 4. Tabulated values of CVaR,.,,(X) for different (a, $1 pairs 
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