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Abstract. The purpose of the paper is to provide precise esti-
mates for the Green function corresponding to the operator (I — A)*2,
0 < o < 2. The potential theory of this operator is based on Bessel
potentials J, = (I—4)"%2. In probabilistic terms it corresponds to
a subprobabilistic process obtaincd from the so-called relativistic
a-stable process. We are interested in the theory of the killed process
when exiting a fixed half-space. The crucial rdle in our research is
played by (recently found) an explicit form of the Green function of
a half-space. We also examine properties of some exponential func-
tionals corresponding to the operator (I —A4)%2,
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1. INTRODUCTION

As E. M. Stein remarked in his monograph [10], fractional Sobolev spaces
and potential spaces are among the most important Banach spaces of functions
to analyze various problems from analysis and potential theory.

While fractional Sobolev spaces are defined in terms of Riesz potentials
I, = (—4)~%2, potential spaces employ Bessel potentials J, = (I1—A4)"%>.

It is remarkable that both these objects are closely related to the potential
theory of specific Lévy processes: in the first case it is the d-dimensional sym-
metric (rotation invariant) a-stable Lévy process; in the latter case we have to
deal with the so-called a-stable relativistic Lévy process. More specifically, the
operator —(— A4)*? is the infinitesimal generator of the symmetric a-stable Lévy
process and I, is its (formal) inverse. For the Bessel potential J, the situation is
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more complicated: the operator —(I —A4)*? is the generator for a subproba-
bilistic process with the potential J,. More precisely, the operator I —(I — A)*/2
is the generator of the relativistic («-stable) process and, in probabilistic terms,
J, is its 1-potential.

Potential theory based on Riesz kernels (or, equivalently: potential theory
for a-stable rotation invariant Lévy process) is well developed and rich in
explicit formulas, much like in the classical case of Brownian motion process.
The homogeneity of Riesz kernels yields many elegant and transparent for-
mulas for harmonic measure and Green function for such basic sets as balls
and half-spaces in R? (see e.g. [1]). These formulas played an important rdle in
setting up the so-called boundary potential theory of the operator —(— 4)*? and
the Schrédinger operator based on it (see e.g. [2] and [3]).

In contrast to this situation, up to now there were no explicit formulas
known either for harmonic measure or for Green function for the relativistic
process for sets such as half-planes or balls. Nevertheless, an adequate bound-
ary potential theory for bounded smooth sets was set up by Ryznar [9].

In the recent paper [5] explicit formulas for harmonic measure and Green
function for half-spaces for the operator —(I — 4)*? are given. The purpose of
the present paper is to extend results obtained in [4] for the operator
—(—4)"2 to the case of the operator —(I —A4)*2. The basic tool employed in
this paper consists of the formula for the Green function. Section 3 contains
very precise estimates for this function. In the next section we examine an
exponential functional u} (x, b). The decisive role is played again by the Green
function. The paper ends with some examples where the critical value b, for
ul (x, b) is evaluated for various potentials g.

2. PRELIMINARIES

We present here some basic material regarding the a-stable relativistic
processes. For more detailed informations the reader is referred to [9] and [6].

We first introduce an appropriate class of subordinating processes. By
Ty (t) we denote the strictly f-stable positive standard subordinator with the
Laplace transform

(1) E®exp(—ATy(t)) = exp(—tdf), O<p<l1.

Let 04 (¢, u), u > 0, denote the density function of T(t). Next, if B, is the sym-
metric Brownian motion in R? with characteristic function of the form

2 E°exp(i¢- B) = exp(—t[¢]?),

then the process Bry, is the standard symmetric a-stable process, under the
usual assumption that the processes T;(t) and B(t) are stochastically indepen-
dent.
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Now, for m >0 and t > 0 define a probability density function
Op(t, u, m) = e™0,(t, wexp (—mPu), u>0.
Applying (1) we derive the Laplace transform of 04(t, u, m):
3) E%exp(—ATy(t, u, m)) = €™ exp(—t(A+m'P)F).

~ We define the a-stable relativistic density (with parameter m) by the fol-
lowing formula:

@ P = | 8¢, u, m)gy () du,
0

where g,(x) is the Brownian semigroup, defined by (2).

Let K,, veR, be the Macdonald function with index v, called also the
modified Bessel function of the second kind, which is given by the following
formula:

[} 2
K.m=2"""r{ e_"exp(—r—)v‘l‘“dv, r>0.
0 4U

For properties of K, we refer the reader to [8]. In the sequel we will use the
asymptotic behaviour of K,:

rr +
)] K,(r)— > <2> , r—=07, v>0,
(6) Ko(r)~ —logr, r—0%,

@ K, () = :/[_

where g (r) & f(r) means that the ratio of g and f tends to 1. For v < 0 we have
K, (r) = K_,(r), which determines the asymptotic behaviour for negative in-
dices. '

A particular case of an a-stable relativistic density when « = 1 is called the
relativistic Cauchy semigroup on R? with parameter m. The following formula
exhibits the explicit form of this density:

r— oo,

LEMMA 2.1 (relativistic Cauchy semigroup). The density py* of the relativis-
tic Cauchy process is of the form:

Ka+1y2 (m (IxI*+ t2)1/2)

P (x) = 2(m/2m)@* Di2gemt

The Fourier transform of the transition density (4) is of the following
form:
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LeMMA 2.2 (Fourier transform of pf"). The Fourier transform of a-stable
relativistic density py" is of the form:

P(z) = e™ exp (—t(jz]> +m*?).
Using the Fourier transform we obtain the following scaling property:
i (x) = m"® po, (m'/* ).

In terms of one-dimensional distributions of the relativistic process (starting
from the point 0) we obtain

@) xr&mmxg,

where X7' denotes the relativistic a-stable process with parameter m, and “d»
means equality of distributions.

In what follows we put p} (x) = p,(x) (i.e. for m = 1). By U"(x) we denote
the A-potential of p}(x), that is,

U (x) = [ e ¥ p(x)dt.
0
Again we denote by U,(x) the A-potential in the case m = 1.

LemMMA 2.3 (m-potential for relativistic process with parameter m). We have

d—ay2a Kia—ay2 (m*"* x])
n Xz

Unix)=C(x, d)

where
21 —(d+a)/2

I (/2)n%?

We also recall the form of the density function v(x) of the Lévy measure
and the infinitesimal generator of the relativistic a-stable process (see, e.g., [9]):

Cle, d)=

LemMMA 2.4 (Lévy measure and generator of relativistic process). The den-
sity v of the Lévy measure of the relativistic process with parameter m is of the
form:

vix) =

a2@— a2 (ml Jo
|x|

(d+a)/2
2T (1—a2) ) K a+ay2 (m**|x]),

while the generator is given by the formula
H = ml —(m?**1— A)"2,

We now state two results from the paper [5]. In what follows we put
H, = {xeR? x; < b}, and d(x) denotes the distance from the point xe H, to
the boundary of the set H,. The first result provides the formula for the density
function of m-harmonic measure for the set H, for the a-stable relativistic
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process with parameter m:

m'/ “)d/ 2 (b - xd)m Koz (m** |x —u)

2n u;—b [x—u¥?

P, (x, u)=2C,,1,< xXg < b <uy.

The second formula is of a prime importance here; it provides the m-Green
function for the set H, for the relativistic process with parameter m. The
m-Green function can be defined as the density function of the m-potential (or
m-resolvent) for the process killed when leaving the set H,. We have

©) Gz (x
21 —a md/Zu'lx _yla—d/Z 45(x)5(y)/|x~y|? tz/Z -1
T @I (2) o @+

Kd/Z (m”“ Ix —yl (t+ 1)1/2) dt.

In the sequel we always take m = 1; results for the general case can be easily
obtained taking into account the appropriate form of the scaling property (8).
Hence in the notation we drop the parameter m = 1: for example, Gy, (x, y)
denotes G, (x, y).

Throughout the paper, by ¢, C we denote nonnegative constants which
may depend on other constant parameters only. The value of ¢ or C may
change from line to line in a chain of estimates.

The notion p(u) =~ q(u), ue A, means that the ratio p(u)/q(u), ucA, is
bounded from below and above by positive constants which may depend on
other constant parameters only.

3. GREEN FUNCTION OF —(I—4)”> FOR H,

In the one-dimensional case we have

Hb=(—00,b), K1/2(r)=ﬁe—r

S

and the formula (9) becomes

|x __y|¢— 1 46(x)8(v)/(x—y)? exp ( _ |x _.V|(t+ 1)1/2)
2* T (0/2)? ° 172 (14 1)112

(10) G-wp(x, y) = de.

An equivalent and very useful version of the above formula reads as follows:
e—|x—y| 8(x) A 3} e~2uva;'2—1

F@P 3 e

(11) G-wpl(x, y)=
In the general d-dimensional case apart from (9) we have the following equiva-

11 — PAMS 26.1
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lent formula for the Green function of the set H,:
270 Y a1 Kap e3P+ 97
@m*2 I (@2 (1x—y* + )7
If we substitute (Jx—yj*+s)!/2 = v+|x—y}, then
21~u z*]x—ylva/Z—l(2|x_y|+v)az/2—1
QCryP I (/2 (e —yl+o)?71

z* = /MHWL
. |x—yl

In order to provide estimates for the Green function in the case o < d we
consider the following integral for a, b > 0:
b vu,!Z—-l (2a+v)a/2— 1

I(a, b)=£ (a+of?1

Gllb (xs y) =

Gy, (x, y) = Ky (Ix—yl+v)dv,

where

Kd/z (a +U) dv.

To get estimates in the case « > 1 = d it is convenient to use another integral
depending on a, b > 0:

b e—Zvua/Z—l
L(a, b) = | ———=dv.
(a: ) g(v_,_a)l—all v
Note that
1—a
Gy, (x, y) = WMX—J’L z*[x—yl)
and
e~ lx—vi

Gi— o,y (%, ) = WLUX—YL 8(x) AB(y)

in the one-dimensional case. Thus to obtain estimates for the Green function it
is enough to find estimates for the integrals I and L, which is carried out in the
following lemma.

LemMA 3.1, If a<d, then

Ku—wi @[ (bA1\Y2
(12) I(a,b) ~ 2’@_’1}2,2()[( ) /\1].

anl

If a=1=4d, then
(13) L{a,b)~a* ' (bal)?, b<aorl<ax<h,

bal
14) L{a, b)zlog(Z%), as<1i<bora<bgl.
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If o>d=1, then

(15) L(a, b) = a®>~ 1 (b A 1)*2, b<aorl1<a<h,
(16) L@, by=@v1)y?baly !, a<l<bora<bgl
Proof. We begin with estimating I:
bvu/2—1(2a+v)a/2—1
I(a, b) = K +v)d
(a ) g (a+v)d/2_1 d/z(a 1.7) v
bal , a/2—1 2 /2 —1
? ( a+v) Kd/Z (a+U)dU

B 0 (a‘f‘v)d/z-l

b vu/2—1 (2a+v)u/z—1

K _
+b£1 (a+v)P-1 42 (@+v)dv
=1(a, bAl)+R(a, b),
where
b La/2—-1 0/2—1
R@,b)= | v (2a+v) Kolat8)do.

bar (@+o)”?71

We will later show that R(a, b) is at most of the same order as I(a, b A 1).
Namely, there is a constant C such that

%)) R(a, ©0) < Cl(a, 1).

Hence I(a, b) =~ I(a, b A1) and it is enough to consider the case b < 1. Note
that

bva/2—1(2a+u)a/2—1
(18) I(a, b) = g (atoyf? 1

_ aa—d/z bj.a 01/2 -1 (2 + v)zl/Z -1
o A+ 1

K4z (a+v)dv

Ky (a(1+v)dv

b/a
~ a2 [ #2711 40) D2 K, (a (1 +v)) do.
0

First assume that a<1 and b<1. From (5 we have K;,(@v)=~v %%
0 <v < 1. Thus ‘

bla
Ia, b)ma* [ "2 (1 +v)2 dv ~ a* *{(b/a)* A1} if a<d.
0

Next we consider b <1 < a. Then by (7) we have

—a—v

Kdlz(a'i‘v)zm‘l/—ze .
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and hence

b va/z—l (2a+v)a/2—1
I(a, b)=f 32 =1
o (a+v)
_ bvu/2—1(2a+v)u/2—1
{ (a+v)@- D72

Kd/Z (a + U) dv

e—vdu ~ a—(d+1)/2+a,‘2 ba/Z e~ 4,

Now, if a < d, taking into account that I(a, b) &~ I(a, b A1) and applying the
estimates for the Macdonald function K, (see (5) and (7)) we can write a unified

estimate
- Ka-ap @[ (br 1\
I(a, b))~ P Tl All,
which is (12). To end the case @ <d we need to establish (17). We have

wvz/2—1(2a+v)m/2—1
R =
(a, OO) { (a+v)d/2—-1

Kd/z (a+ U) dv

@®
e d j Urx/2—-1(a+v)(a—d—1)/2—1e—udv
1

_ 1 K—ay2(a)
xe a<a(d+1—a)/2 A 1) <C @0z

which proves (17).
Now we deal with the situation « > d = 1. Consider first the case when
b<a:

1 b e~20 b —-2uva/2—1 1 b e~20

e
(za)l—m/2£01~a,f2 U< g(v+a)1'°‘/2 dv <

This shows that

— —=dv.
al z/2£01 /2

L(a, b) = a®*~ 1 (b A 1)*2,
which proves (13) and (15) for b < a.
Next, we consider the case when b>a > 1:
1 1 ,—-2v b —2v /21 1 -] —2v
- zji~/z Ugje IJ1— zdv < 1—zje1~z
(Qa)t 2 gpl-e olw+a) al~42ypte

A

dv.

This obviously shows that

a2

1
La, b) ~
a

which proves (13) and (15) for 1 <a < b.
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Now, what remains is the case when b > a but a < 1. Suppose that o > 1
and b = 1. Then, taking into account that a < 1, we have
1 1 e—ZU b wZUUu/Zfl a)872u

e
< dv < dv.
(1+a)1—a/2£,vl—a/2 dU 0(v+a)1—a/2 v gvz—a v

This shows that in this case
(19) L(a, b) = 1.

Assuming next that « =1 and a <1< b we obtain -

1 e*Zu b e

dv <
£U1/z (U+a)1/2 jv1/z (v+a)1/z

e—Zu [c¢] —Zv —2v

e
IW +j v du\j————lﬂ( )1/2d0+1.

—2v

dv

Next we have

e—ZU 1/a e—2ua
mmww——;du = —_—_—
£v1/2(v+a)1/2 g ut? (u+1)1?

Thus (19) and (20) give (16) and (14), respectively, for a <1 < b~
The last case to examine is a < b < 1. Then

2
(20) du =~ log —

b ua/Z—l be—2uu U

g du < [ du < [ 5
e g(u_l_a)l—rz/?.du ;E(u+a)"°‘/2du g(u_i_a)l—a/z u

af2—1 b a/2—1

Hence in this case

b

u
L ~ — ll 1
@0~ g = e

_ )log(2b/a) if a=1,
T bt if o> 1.

a/2—1 . bja az/2 1

du

This completes the proof of the last case and ends the proof of the lemma. =
Lemma 3.1 together with the observation that
0 0 o(x)o
WAS0) . SEI0)
x—yl |x—yl
gives immediately the following estimates for the Green functions.

THEOREM 3.2. Assume thatd =1and o > 1. When |[x—y| 2 1Ad(X)AS(Y)
we obtain

*|x—y|l ~

=lx—yl

e @
G-y (%, Y) mu A8 A S (),
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while for |x—y| < 1Ad(x) A 6(y) we get

LAd(x)Ad(y)| .
SAGRACHY) =1
G- (X, ) log[2 x—yl ] Fo=t,
(1/\5(x)/\(5(y))m_1 if > 1.

In the remaining case, o < d, we have

- Ku-a2 (Ix=yD| [6(x)Ad(y)Al w2 .
(21) GHb(x: y) ~ lx_yl(d_a)/z |x_y| Al AL
. N 3(x) A (y) A 1\H2 _
(22) ~ U1 (x, y) [(W All.
For 0 <o <1=d we may write a more explicit form of (21):
—lx—yl a2
G, (x, J’)zlx—_“ﬂl_—mﬂx“ﬂ/\ﬂs(x)/\a(ﬁ) .

! Another very useful estimate for the Green function is obtained from the
| “sweeping out” principle. As a result, we obtain

Gy (%, ) = Uy (x—y)— fc U,(u, y)P(x, u)du

21-@ra2 Ku—o2 (Ix—yl)

RPT(f2) Px—

< Ul(x: y) =

Applying the estimates for the Macdonald function K, (see (5)«7)) we obtain
COROLLARY 3.3. We have the following estimates:
21 7@ Ky a2 ((X—Yl)
n2 I (f2) |x—yl“="?

Gﬂb(x’ y) <

e~ =l 1 1
~ d<oa+l1
eyl ey Ny ) Jor e ds et

21-@tay2 K(d—u)/Z (x—yl)
n2 T (@/2) |x—y 7"

GHb (x’ y) <

e 1=l 1 1
¥ e ey V) S e t<d:

2 1
A
x—yl |x—y

1
Gy (x, 3) < —Ko(x—)) v e™P <1og ,1,2) for a=1=d,
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20 -2 K(l—u)/Z(Ix )

G
m, (% f (/2 lx—yl* "2
Ix—yl| 1 o
~e 1A|x—y|1_“/2 for a>1=d

4. EXPONENTIAL FUNCTIONALS CORRESPONDING TO —(I—4)*?

We now consider some exponential functionals for the operator — (I —A4)*2.

The typical assumption on potentials g defining the exponential factor in
the Feynman—Kac theory is that it belongs to the Kato class #%, determined
by the operator —(I —A)*2. It is, in fact, defined in terms of the potential U; as
follows:

DEFINITION 4.1. We say that a Borel function g on R? belongs to the Kato
class #% if

limsup | Up(x—y)lg(yldy=0;

710 xeRd |x y'..<_-y
we write ge _#%. if for every bounded Borel set B we have 1zq¢ #9.
LemMA 4.2 (properties of the class #%). () We have I*(RY) < #5. If
feIl®(RY and qe #%, then fqe #5.
@) If qe#3, then
sup [ lg(y)ldy < oo.

xeRY [x—y|<1

Hence UF qe fllocs then qe Lloc (Rd)

Remark 1. Since the local behaviour of the potential U, is identical with
that of potentials K, (or compensated potentials, if d = 1 < o) in the case of the
standard symmetric (rotation invariant) stable processes (see, e.g., [4]), the
Kato class defined in terms of the potential U; coincides with the correspon-
ding one for the symmetric (i.e. rotation invariant) stable process.

THEOREM 4.3. Assume that qe ¢% and

e Mig(y)dy
pi>1 (L 1y)eri=a?

Then Gy, lq|(x) < 0. If d =1 and q = 0, then the condition (23) is also neces-
sary. If qe #5 and qel!(R%, then Gg,q(x) is a continuous function of x
and

(23)

lim sup Gy, lgl(x) =0

b= — 0 x4<h
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Proof. We prove the first part of the theorem. For a fixed y, 0 <y < 1, we
obtain
Gr gl () = | Gu,(x, y)lg(y)dy

ya<h

< [ Ulx=ylgOldy+ | Gu,(x, y)lg(y)idy.
yasblx—y| <y yash,|x—y|>y
We have here Gy, (x, y) < U; ((x—y|). This and the assumption ge #3 yield
that for a given & > 0 the supremum over xeR' of the first term on the
right-hand side of the above equality is less than ¢, whenever y is small enough.
On the other hand, if |[x—y| = 7, then

Iyl +1 < X —yl+Ix|+1 < 1+|x|+1

Ix—yl X~y Ix—yl

Therefore, the integrand in the second term is continuous in x, vanishes at
b and is bounded by

< 1+y~1(x|+1).

e Mg ()l

We now prove that if d=1, ¢ >0 and the condition (23) fails, then
G-w.pq(¥) = 0. Assume that y <2x—b=x—(b—x) <x. Then we have
(b—x)/(x—y) < 1. Thus, we obtain

Ur(x—yDlg (M < Ce¥ [1+y~* (x| + 1))@ =2 €L (H,).

1 2x-b om(x—y) A=) o= 2u(x—y) /21 4y,
rear L ey 1wy

-

G wpng(x)= q(y)dy

2:1/2 ex——?.b 2x—-b e
=
ol (/2> (x—y)* =2

Since obviously x—y < b—y, the last expression is not less than

(b—x)"?q(y)dy.

2:1,'2 x—2b 2x—b E q(y)

s = b_ 1/2

aF(cc/Z)z( 1 o=
/2 ,x—2b 2x—b =¥
AL TR R 15/
~ ol (#/2) Zw (bl 1yl

This proves that for d =1 and g > 0 the condition (23) is also necessary.
If we assume that geI! (R, then we obtain

sup Gu, |gl(x) < &e+Ce™7y*>71 | |q(y)dy,

xa<bh ya<h
where ¢ and y are as before. This completes the proof. =m

As explained in the Preliminaries we consider the operator —(I — 4)%? as
the infinitesimal generator of the Feynman—-Kac semigroup (7)., based on
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I—(I—A)¥? with the potential g = — 1. This semigroup acts according to the
following formula:

Lfx)=Ee"f(X), fel.

We thus define the exponential functional with respect to this semigroup as

follows:
1

es(t) = exp(fe™q(X,) du).

0

We define the exit time of H, as tgy, = inf{t: X,¢H,}. We further define the
fundamental expectation related to the operator —(I—A)y* as ul(x, b)=
E*el(ty,). In the remaining part of the paper we attempt to establish criteria
under which the functional u}(x, b) is finite.

Write

At) = jt'e"‘q(X,,)du.
0
We obtain
A(t+s)=A@B)+e *A{)ol;.

Observe that for nonnegative potentials g this implies subadditivity of the
functional A(t), so a version of Khasminskii’s lemma follows (see, e.g., [7]).

LEMMA 4.4 (Khasminskii’s lemma). Suppose that q = 0. Then for all n
sup E*[A(ty,)"] < n!sup E*[A (tu)]""

If
sup E*[A(tg,)] =7 <1,

then
sup E* [exp(4 (zg,)] < 1/(1-7).

Our purpose is to evaluate for which x and b such that x; < b the func-
tional u;] (x, b) is finite. Under the usual convention that the supremum over
empty set equals —oo we have the following

LEMMA 4.5. Define for qe #3
bo = sup{beR*; sup Gy, l|q|(x) < 1}.

xqa<bh
If ge I} (R%), then by > — o0 and for x; < b < by we obtain 0 < ul (x, b) < 0.

Proof. The proof follows easily from Khasminskii’s lemma and Theo-
rem 4.3. =

We call b, the critical value for the functional u] (x, b).
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Below we present examples of potentials ¢ and evaluate the critical value
bo. In all examples potentials depend only on the last variable: g(y):= q(y,).
This, in fact, reduces the computations to the one-dimensional case:

(24) G ll(9) = E* [ e q (X4 (w)du
Q
25) SB[ e (X)) du = Gy ld] (xa):
0

: Therefore, we consider first the one-dimensional case and transform the
! formula for the Green operator into a form more suitable for computation. We
always assume that ge #7 L (RY).

LEMMA 4.6. Assume that qe #5n L (RY). Then for x < b we have

1 b xX—u U L,y—u d
@) Geant® = romml g {-I o _;1)(1{)“’3;} e

Proof. We follow the calculations provided in [4] for the stable case.
After changing the order of integration we obtain for x < b:

‘ Gi-wpnqd(x)= _f

| 2o T (e/2)?

b e—|x-y| {(b-x)/\(b—y) e—2uua/2—1
0 (u+|x—yh) >

- }q(y)dy

x —(x ») e—Zudu
B _mr(a/Z)z{ 0 u(u+x—y))1_“/2}q(y)dy
b -(y x) Zudu
oc/2)2{ g @+y—x)'~ m}q(y)dy

—2u du
((u— x) (u—
—2u du

((u— X) (u—

{ e’ uq(y)dly alz}du
“o ((u—x)(u—y))

]
e i etalydy

d
+ J.F(OC/Z)Z {j((u_x) (u_y))l—a/z} U

! __ L et [retady
J - F(oc/2)2£(u_x)1—a/z {Jm (u_y)l_m}du

x‘-—au-

x ey+x
- r(a/z)z{ ) “’Z}Q(y)dy
b ex+y
F (a/Z)Z{
e
£F (2/2)?

" ,,,2} q(y)dy

!'——,Q"

b
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1 b ex-u ® 0= g (u—v) dv
= F(OC/Z)zi(u_x)lu/Z{g T }du

1 ”]" e ™ ‘i’e“”q(u—v+x)dv p
_F(a/z)z 5 ul—ulz b Ul—a/z Uu. &

As a corollary, we provide a simple proof of the formula for E*exp (—ty,).
COROLLARY 4.7. We have

y(%/2, 8(x)) -

1—E*exp(—1tn,) = 1—E™exp(—1(- o) = r@2)

where by y we ‘denote the incomplete gamma function.
Proof. Applying the formula (24) we easily see that
E*exp(—1n,) = E™exp(— (- w,p)-
Then, by the last formula from the proof of Lemma 4.6 we obtain

1—E* eXp(_’f:(— ao,b)) = G(-w,p1(xs)

1 b3 pmu (®emvgy
=1"(ac/2)2 E‘; ula/Z{(j; Uiuﬂ}du
— 1 a(x)e—uua/2—1du _ v{(%/2, 6 (x))
I'(/2) I'(/2)

We now consider specific potentials g and evaluate sup,,<;, Gy, g(x). We
begin with a particularly simple situation which occurs when ¢(y) = exp (y,).
We then obtain

ExXAMPLE 4.8. Let q(y) = exp(y;). Then we have

2172 exp (x) (b— %)
ol (a/2)

Gp,q(x) =

Thus, if
2" 1 %2 [ (0/2)

b
e < 2 .

then u} (x, b) < oo for x;<b. For o =1 the critical value is b, = In(mne)/2.

Proof. Justifications of the above formulas follow easily from (26) and
elementary calculus, and are omitted. =

We now examine the case of the potential q(y) = exp (— y,). Note that this
function is unbounded over the set (— oo, b). Applying again the formula (26)
we easily infer that for all x such that x, < b we have Gy, q(x) = co. By Jen-
sen’s inequality and Theorem 4.3 we obtain u}(x, b) = oo as well, for all
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x4 < b. Therefore, we consider the potential g(y) = exp(—yg) 1(—c(ys With
c>0.

We evaluate the critical value b, for this potential.

ExaMPLE 4.9. Let q(y) =exp(—Ya)l(~c(ya), ¢>0. We obtain for
b> —c

2—a  b+2c
- <" (e, 2(b+0).
SUp G, q(x) = _max Gm,q(x) < re (e 2(b+0)
Thus, if b is such that -
2
3y (s, 20040) < S

then uj(x,b) < oo for x; <b.
Proof. Observe that it is enough to restrict our attention to the

one-dimensional case.
We then notice that since G(— o (x, y) =0 for y > b, we obtain

b
Gi-wnd(®) = | Gowpn(, e L o(y)dy=0

whenever b < —c. We therefore assume throughout the remainder that

b > —c. We always assume that x < b.
We consider first the case x < —c. By the form of the Green operator we

obtain

1 b e [ pug(y)dy
Grenal) = (a/2>2§<u X' “’2{_w(u—y)1'“/2}d

3 1 3: e—-(u—x) uAce—(u—y)e—ydy du
1"(t=t/2)2xv(—c)(u—X)‘_”"2 Lo (w—y)tTe

—2u unc dy
r(a/z)z f u— x)l “’2{50 (u—y)l‘“’z}d"'

We further obtain

2u UAC d
G(_w,b)Q(X) F(a/zz .[ (u x)l—u/z{j. (u yjyl a/Z}du

-

—2u

OCF(a/2)2 j‘c(u x) 1 a/z[_(u—-y)“/z]u_/;cdu

—2u

ocF (oc/2)2 j Jutot- =l

(u—y)*1“% du,
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where the last inequality follows from the fact that the previous expression is
a nondecreasing function of x. Thus, we obtain

G-wpqd(%) € G-wpnq(—c), x< —c.
Direct calculations provide the value of the last quantity for |b| < c as follows:
2V a T I (/2) "2y (o, 2(b+0)),
where y is the incomplete gamma function, or

217a:ec (zc)m e—3c (b—c)/e _
-_— 2(b T —4c 10:/2—1 al2
ar@ar! 20N ey [ ¢ W e du

21—a c . ’
<Wx/§)2y(a,2(b+c))

whenever b > ¢. We now consider the case when —c < x < b < ¢. Then, inte-
grating by parts, we obtain

ex b e—2u uAC dy
G(—cn,b)q(x) = F(a/z)zi(u_x)l—afz{_.!‘c (u_y)l—alz} du
2 b e .
- aF(oc/Z)zgjc(u—x)l‘afz (u+c)"*du
2% _,, af2 RPY)
= WE‘ (b—X) (b+C)

+ 2e } "2 (u+ o) (u—x)y?| 2— x du
2T (/2%3° ¢ 2(u+c)
Zzex

L - —=2b(1, _ /2 a2
o:ZF(oc/Z)ze (b—x)"*(b+c)

23 ex b
+—m2I,(OC/Z)Zje'z"(u+c)"‘/2 (u—x)"* du
226*!1 3.6 b 5
< - «@y - —2u a
oczl"(oc/Z)z(b+C) +oc2F(oc/2)2 _jce (u+c)*du
4eb b 2—o b+ 2¢
= WJ e_z"(u+c)“_1du = W)’(rx, 2(b+C))

Next, we consider the case when —¢ < x < ¢ < b. We obtain

X b —2u uAC d
G(—m,b)q(x) = I—-(:/Z)z{(u_ex)l—aﬂ{ ." (u_y)Ji—a/Z}du

—C
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2e* ¢ —2u
" al (@2 I (u —ex)1 —o3 W+c)* du
2e* b ~2u
+ al’ (:/2)2 ‘[ (u _ex)l —a/2 [(u + C)“/Z — (u_ c)alz:l du
2 - ; o b —2u
"ol (:/ 2)? |:£ (u —ex)1 —az (tcf* du— ! (u—exw (u—c)? d"]

2e* b e~ 2u —
< a/2 d .
T G e o du

The last integral is the same as in the previous case and is evaluated in the
same way. Thus, in this case we obtain

22 —a b+ 2¢
ol (2)2) 4

The remaining case is when ¢ < x < b and in this case we have

e* e—Zu c dy

G(-oo,b)q(x) F(O(/Z)Zj.(u x)l_a/z{_!‘c(u_y)l*ﬂﬂ} du
2e” b e‘lu

Tl (/2% J u—x)t=" K
2e* —2u

Sar (;/2)2 j(u —ex)l‘a/z (u+c)? du.

G-wpnq(x) < a, 2(b+0)).

(u+cy?* —(u—c)*] du

Again, the last integral was already evaluated. This observation justifies our
claim. m
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