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1. POISSON PROCESSES O N  GENERAL SPACES 

In my 1993 book [6] ,  I offered a treatment of the theory of Poisson 
processes in which they were regarded as random countable subsets of a state 
space about which only minimal assumptions were made. The point of con- 
sidering very general state spaces was to avoid special considerations such as 
topology or ordering, which obscure the essential simplicity of the theory. 

Experience in using the book for teaching postgraduate courses has shown 
that this general approach is sound. Students develop an intuition in which 
they think of the state space as the plane R2, but reaIise that the arguments 
apply much more generally. They then have no difficulty coping with Poisson 
processes on, for instance, complicated manifolds of the sort that arise in 
stochastic geometry [5 ] .  

I have however also come to realise that the particular assumptions made 
in [6] are clumsy and lack intuitive appeal. They also lead to unnecessarily 
complex proofs, involving quite subtle uses of Fubini's theorem. There is a bet- 
ter way, which is the purpose of this paper to explain. 
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The state space of which the Poisson process is to be a random countable 
subset is a quite general measurable space S. That is to say, S is equipped with 
a non-empty family of subsets called measurable sets, and this family is closed 
under the formation of complements, countable unions and intersections. Let 
p be a (positive) measure on S. For simplicity, p will be assumed a-finite, 
although this is not strictly necessary. A Poisson process on S with mean 
measure p is then defined to be a random countable subset h' G S such that, if 
N ( A )  is the number of points of I7 in the measurable set A E S ,  then 

(i) N (A)  is a random variable having the Poisson distribution with mean 
PIA), and 

- 

(ii) for disjoint A,, A,, . . ., A,, the random variables N (A,), N ( A , ) ,  . . ., 
N (Ak) are independent. 

Such a random set needs to be defined on some probability space 
(Q, P) (and as usuaI the probability measure B is assumed to be complete), 
so that 17 is a function from 52 into the set of all countable subsets of S, and 
N ( A )  is an .F-measurable function from i2 into { O ,  1, 2, . . ., a ) .  Condition (i) 
means of course that, if 0 < p(A) < m, 

(1.1) P { N  ( A )  = n )  = ,~L(A)" epp(A) /n!  

for n = 0 ,  1, 2, ... If p(A) = O ,  it means that 

(1.2) P{N(A) = 0) = 1,  

while if p ( A )  = a ,  it is to be read as 

Condition (ii) need only be verified when 0 < p (Aj)  < CQ for j = 1, 2, . . ., k. 
In order to prove the existence of 17 and to develop its properties, some 

mild condition must be imposed on S and p. In [6] it is assumed that the 
diagonal 

(1.4) D = {(x, x); XES) 

is a measurable subset of the product space S x S. This implies that every 
singleton {x) is measurable in S, and the fact that N ((x)) < 1 then requires us 
to assume that 

(1.5) p{x) = 0 ( ~ E S ) ,  

that p has no point atoms. By Fubini's theorem, this is equivalent to the 
statement that 

(1.6) (P x P)  (D) = 07 

where @ x p) is the uncompleted product measure on S x S. 
These conditions are quite easy to check in particular cases, but they 

cannot be said to be natural or transparent. A much better approach will be 
described in the next section. 
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2. THE BISECTION PROPERTY 

In this alternative approach no assumptions at all are made about the 
measurable space S. The measure p is said to have the bisection property if, for 
any measurable A G S with p(A) < my there exists a measurable B G A with 

This implies (1.5) if (x) is measurable, but is in general stronger. In fact, Hal- 
mos (141, Section 41) has shown that the bisection property is equivalent to 
a more general version of non-atomicity of p. - 

However, the Halmos result lies rather deep, and is not reaIIy relevant to 
the theory or application of Poisson processes. The bisection property has 
three great pedagogical advantages : 

(i) it is concrete and easy to visualise, 
(ii) it is easy to check in particular cases, and involves very little loss of 

generality, and 
(iii) it leads to straightforward proofs. 

These assertions will be justified below. 
The easiest way to prove the bisection property for a measure f i  is to 

construct a cheesewire. (The name comes from the device used to cut a measu- 
red portion of cheese in old-fashioned shops.) A cheesewire for p is a measura- 
ble function f : S + R with the property that, for any 4: E R, the measurable set 

has 

If p admits such a function, and A E S has p(A) < coy the function g :  R + R 
defined by 

is monotone increasing, with 

Because it is monotone, g has only jump discontinuities, and such a discon- 
tinuity at would contradict (2.2). Thus g is continuous, and takes every value 
strictly between 0 and p(A). In particular, there exists 5 with 

and 

(2.7) B = { x E A ;  f ( x )  < 5). 
then satisfies (2.1). 

6 - PAMS 26.1 
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Thus the existence of a cheesewire implies the bisection property (and it is 
an interesting exercise to prove the converse for a-finite p). It is usually possible 
to write down a cheesewire by inspection of p. For instance, if S = Rd (with the 
usual measurable structure) and p has a density with respect to Lebesgue 
measure, any coordinate function is a cheesewire. If S is a manifold embedded 
in Rd, it may be necessary to choose f more carefully to cut across S, but 
I know of no significant case in which the construction of f presents any real 
difficulty. 

Nevertheless, it is important to understand just how strong is the restric- 
tion imposed by the bisection property, and this is an issue to-which we shall 
return in Section 5. 

3. USES OF THE BISECTION PROPERTY 

Let us now test assertion (iii), that the bisection property leads to straight- 
forward proofs of the basic theorems about Poisson processes. The first difficult 
proof encountered by the reader of [6] is that of the Disjointness Lemma. This 
states that if 17, and T7, are independent Poisson processes on the same space S, 
and if their mean measures p1 and p, are both finite, then they are disjoint with 
probability 1 : 

If pl and p2 both have the bisection property, proceed as follows. Let 
n = 2" be any power of 2. Use (2.1) v times to express S as a disjoint union of 
measurable sets S,, S,, ..., Sn with 

(3.2) p l ( ~ i ) = n - l p l ( S )  ( i = 1 , 2 ,  ..., n). 

Then apply (2.1) to p2 to express each Si as a disjoint union of measurable 
S, with 

(3.3) p2(Sij)=n-1p2(Si) Q =  1 , 2  ,..., n). 

Observe that 
{u; n l n D 2  # 0) G En,  

where 
n 

En = U (m; NI (Sij) 2 1 ,  Nz(Sij) 2 1) 
ij= 1 

belongs to 9 and has probability 
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Letting n -, ci3 shows that 

which implies (3.1) since P is complete. 
A very similar argument proves the Mapping Theorem, whose proof in [6]  

again involves a subtle Fubini argument. This theorem concerns a function 
f : S + S*, where S* is another measurable space and f is measurable. It gives 
conditions to ensure that, if 17 is a Poisson process on S with s-finite mean 
measure then 

is a Poisson process on S* whose mean measure p* is given by 

This will be true if, with probability 1, no two points of I7 map under f into the 
same point of S*. 

This will be the case if p* has the bisection property. To see this, suppose 
that p* has that property, and let A c S* be measurable with p* (A) < co. For 
n = 2', dissect A into disjoint A l ,  AP, . . ., A, with 

If two points of 17 map into the same point of A, then there is a value of i with 
two points of f (ll) in A,, and so 

Now the probability that a Poisson random variable with mean p is 2 or more 
is at most iP2 ,  SO that the probability that (3.6) holds for some i is at most 

1 < ~ f -  ' (A~)]' = 2 n-' p* (A)' = p* (A)'/2n. 

Letting n + ca gives the required result. 
These two examples should be enough to show the power of the bisection 

property, but there is a third which is glossed over in [6].  In the proof of the 



Existence Theorem, it is necessary to know that a number of independent 
random variables take distinct values with probability one. An obvious ap- 
plication of the bisection property deals with this too. 

4. POISSON RANDOM MEASURES 

It might be argued that the complications of the last section could be 
avoided by working with the integer-valued random measure N ( - )  rather than 
the random set 17. Thus N (-1 is a random measure on S whose values N ( A )  
have Poisson distributions, and are independent on disjoint sets. 

In this approach the mean measure 

may have point atoms. If (x) is measurable and p {x) > 0, the variable N ({x)) 
is greater than 1 with positive probability. The proofs of results like the Map- 
ping Theorem are almost trivial. 

There comes a point, however, when one needs to know whether or not 
N ( . )  does have multiple points. Under what conditions, in other words, is it 
true that 

(4.2) P { N  ({x)) < 1 for all x E S )  = I? 

Arguments just like those of Section 3 show easily that a suficient condition is 
that p be a-finite and have the bisection property. 

The two approaches are mathematically (but not pedagogically) equiva- 
lent, and a choice between them is a matter of taste. It is true that random sets 
with multiple points arise in applied probability (think of queues with batch 
arrivals) but the multiplicities are not usually Poisson distributed. It is better to 
handle multiple points by means of the theory of marked Poisson processes, 
allowing more general distributions. 

5. THE FORCE OF THE BISECTION PROPERTY 

It is natural to ask how the bisection property compares with the con- 
ditions assumed in [6], measurability of the diagonal and absence of point 
atoms. If the bisection property were more restrictive, this might outweigh its 
greater transparency. However, the opposite is the case, as the next theorem 
shows. 

THEOREM 1. Let p be a a-finite measure on the measurable space S. Then 
p has the bisection property if and only $the diagonal D G S x S has zero outer 
measure for the product measure p x p. In particular, i f D  is a measurable subset 
of S x S and p (x) = 0 for all x, then p has the bisection property. 
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Proof.  Suppose first that p is a-finite and has the bisection property. 
Dissect S into disjoint S1, S, ,  . . . with 

For any E > 0, let ni be a power of 2 with 

and use the bisection property to dissect Si into disjoint Sij (j = 1 ,  2, . . ., ni) 
with 

(5.3) 
- 

p(Si j )  = rni/ni (j = 1 ,  2, . . ., ni).  

Then, since 

the (p x p) outer measure of D is at most 

Thus the outer measure of D is 0. 
To prove the converse, suppose that p does not have the bisection proper- 

ty. The result of Halmos cited above shows that there is a measurable A s S 
with 

and that every measurable B E A has either p ( B )  = 0 or p(3) = p(A) = m. 
Consider these families of subsets of A x A: 
d consists of all sets of the form 

with N 1  and N ,  measurable and 

Clearly, d is closed under countable unions, and every set in d has (p x pj 
measure 0. 

W consists of all subsets of A (measurable or not) which are contained in 
some member of d; it is closed under countable unions and intersections, and 
every member of 9 has x p) outer measure 0. 

W consists of all sets in B and all sets whose complements in A x A are 
in a. It is easy, but not quite trivial, to check that Gi? is a a-algebra, and of course 
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If B and C are measurable subsets of A, then 

is in 99 unless p(B) and p(C)  are both non-zero. If this is so, p(B)  = p ( C )  = rn, 
and the complements N ,  and N 2  of B and C in A satisfy (5.7). The complement 
of B x C in A x A is then given by (5.61, so that this complement is in 97. Hence 
W contains B x C for all measurable B, C, and since it is a a-algebra, it contains 
every measurable subset of A x A. 

Now suppose that E is any measurable subset of A x A which contains 

Then E E %, and therefore either E or its complement belongs to AT. If E E 9, 
there are sets N ,  and N ,  satisfying (5.4) with 

This implies that p ( A )  = 0, contradicting (5.5). 
Thus the complement of E must belong to B, so that 

Since this holds for every measurable cover of DA, the ( p  x p) outer measure 
of DA is m2 > 0, which shows that D G DA has non-zero outer measure, as 
required. 

To complete the proof, note that if D is measurable and p is a-finite, then 
the bisection property is equivalent to (1.6), which is equivalent to (1.5) by 
Fubini's theorem. 

6. &M'S THEOREM 

In [9] R6nyi proved a very surprising result about Poisson processes in R. 
Let 3 be a random locally finite subset of R with the property that the number 
of points of E in any finite union A of bounded intervals has a Poisson dis- 
tribution with mean p(A),  p being a non-atomic measure finite on bounded 
intervals. No independence assumption is made, but RCnyi proves that E is 
a Poisson process. The force of this theorem is emphasised by a counterexam- 
ple due to Moran [8], which shows that 'finite union of bounded intervals' 
cannot be replaced by 'bounded interval'. 

Section 3.4 of [6] generalises RCnyi's result to Rd, but the result is in fact 
much more general, depending only on the bisection property of p. 

THEOREM 2. Let p be a a-finite measure on S with the bisection property. 
Let c" be a random subset of S, and denote by N (A) < oo the number of points of 
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B in the measurable subset A of S.  If 

for every A with p ( A )  finite, then 9 is a Poisson process with mean measure p. 

Proof.  Let s$ be any family of subsets of S with finite measure, such that 
any two sets in A? are disjoint. Then, by (6.1), if A, ,  A , ,  . . . , A, belong to d,  

n 

P(N(A1) = N ( A 2 ) =  ... = N ( A n ) = O }  = P { N ( U  A,) = 0 )  
r = l  - 

Hence the events 

as A runs over d, are independent. 
Now fm a set A with p(A) = m < co. Use the bisection property to divide 

A into disjoint sets A,, A,  with 

and think of A. and A,  as the 'children' of A. Divide each of A, and A,  into 
disjoint 'grandchildren' of measure am, so that 

Continue in this way, so that the sets of the kth generation, labelled by strings 
of k binary digits, each have measure 2 - k m .  

The 2k sets A... of the kth generation are pairwise disjoint, and so the 
events 

are independent, with equal probabilities 

Hence Nk(A),  defined as the number of the kth generation sets that contain 
points of E, has a binomial distribution with 

(6.8) E {N , (A) )  = 2k [l -e~p(-2-~m)] .  

Clearly, 
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so that 

N ,  ( A )  = lim Nk (A)  
k+ CC 

exists, and 

E { N ,  (A)] = lim E { N k  ( A ) ]  = rn 
k-t  w 

by (6.8). Since N ,  { A )  is the limit of binomial variables N ,  (A), it has the Poisson 
distribution with mean na = p(A). The random variable - 

is non-negative by (6.9) and has zero expectation by (6.1), so that 

P ( N  (A)  = N ,  (A))  = 1, 

and therefore N ( A )  has the Poisson distribution with mean p(A).  
Now let A,,  A,, ..., A, be disjoint sets of h t e  measure. Carry out the 

repeated bisection for each A,, and for a fixed value of k let dk consist of a11 the 
kth generation subsets of all the A,. The sets A*.. in dk are pairwise disjoint, 
and so that events E(A..,) are independent. Thus, for any fixed value of k, the 
random variables N ,  (A,) (r = 1,  2 ,  . . . , n) are independent. It follows from 
(6.10) that the N ,  (A,) are independent, and (6.13) shows that the N(A,)  are 
independent. This completes the proof. 

7. SEPARATING BISECTION 

Theorem 2 contains RCnyi's theorem as a special case. It is stronger not 
only because the state space S is quite general, but also because it only uses 
the two properties (6.1), rather than the full panoply of the Poisson distribu- 
tion (1.1). However, the theorem proved in Section 3.4 of 161 is still stronger 
(when S = Rd), because it assumes only that 

(7.1) P ( N  (A) = 0 )  = e-p(A).  

An examination of the proof of Theorem 2 shows that the only point 
where we need the other condition of (6.1) is in proving that N ,  (A) = N (A) 
with probability 1, and this is achieved in a different way in [6]. Before ex- 
plaining this for general S, consider what can be said if N ,  (A) can be strictly 
less than N (A)  with positive probability. 

If A is a set of finite measure m, the repeated bisection of A described in the 
proof of Theorem 2 defines a function 
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from A into the space D of infinite binary sequences 

such that the kth generation set containing x has label 

Because each kth generation set has measure 2 - k  m, the restriction pA of p to 
A induces under II, the measure 

where /? is the Bernoulli (coin tossing) probability measure on B which makes 
the W R  independent random variables taking the values 0 and 1 with probabili- 
ty 9. 

The random subset EnA maps into a random subset 

of a, and it is easy to see that, for B c SZ, N ,  ($-I B) is the number of points of 
ll in B. The argument of Theorem 2 shows that, if (7.1) holds, then I7 is 
a Poisson process on D with mean measure m/3. If N ,  (A) < N (A), it is because 
distinct points of E n A  map into the same point of Q. 

The reason why this possibility can be excluded when S = Rd is that, at 
least if p has a density, it is always possible to carry out the bisection of A so 
that the function $ is an injection. One has only to use as cheesewires the 
coordinate functions in rotation, the kth bisection using the cheesewire 

where r ( k )  is the remainder of k when divided by d (or d if d divides k). 
More generally, Theorem 2 holds under the weaker assumption (6.1) if 

there is an injection (7.2) satisfying (7.5). If this holds for all A of finite measure, 
we say that ( S ,  p) admits separating bisectors. Thus (Rd,  p) admits separating 
bisectors if p is finite on bounded sets and has a density with respect to 
Lebesgue measure. 

The concept has other applications. For instance, Section 8.3 of [6] con- 
tains a version of an argument of Blackwell 131 for proving that certain ran- 
dom measures are purely atomic with probability 1. Blackwell makes topolo- 
gical assumptions which imply the existence of an injection (7.2), and then uses 
the sequential structure of D to bring to bear a technique from the theory of 
games. The proof is considerably simplified if one can control the induced 
measure under t j ,  and if this is a multiple of 8, the simplification is optimal. 
Thus the concept of separating bisectors is a powerful one. 

Although the proofs are similar, the contents of the theorems in [3] 
and [6] are distinct. Blackwell is concerned with a Dirichlet random mea- 
sure on S, which is a random probability measure P 'such that, for disjoint 
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A l l  A2, . . ., A, with union S,  the vector 

has the Dirichlet distribution with density 

on the simplex 

The parameters cl, are given by 

where y is a finite measure on S. 
On the other hand, Section 8.3 of [6] deals with completely random 

measures, for which the values on disjoint sets are independent. However, 
Blackwell's theorem can be brought within this framework although Dirichlet 
measures are not completely random. An argument used for a different purpose 
in [7] shows that, if Z is independent of P(.)  and has a gamma distribution 
with parameter ,u(S), then 

is a completely random measure. 

8. THE POISSON-DIRICHLET DISTRIBUTION 

Chapter 9 of [6] is an introduction to the theory of the Poisson-Dirichlet 
distribution, a theory which has developed s i d c a n t l y  since 1993. Arratia et 
al. give in [l] an exhaustive account of the theory and its applications. A weak- 
ness of [6] is that the fundamental properties of the distribution are proved 
using deep results from the Lkvy theory of subordinators. In fact, the elemen- 
tary theory of Poisson processes is all that is needed. 

THEOREM 3. Let no be a Poisson process on (0, a) with density 

where O is a positive constant. Then the points of 118 may be written in descending 
order as 

and Y, -t 0 with probability one. The random variable 
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is almost certainly finite, and has the gamma distribution with probability density 

18-41 ["-"e-'/r(O) ([>o). 
The random variables 

are independent of Z and satisfy 

The joint distribution of the infinite sequence 

is the Poisson-Dirichlet distribution $9 (19). It first arose [I03 as a limiting form 
of the Dirichlet distribution (7.91, when n is large and aj  small. The only difficult 
aspect of Theorem 3 is the independence property, but the advantage of the 
proof below is that it also establishes the limit theorem in full generality. 

THEOREM 4. Suppose that, for any n 3 1, the random uariabIes c,, , t,,, . . ., 
t,, have joint distribution of the Dirichlet form (7.9), with parameters 

i anl, un2, . . ., an*. Suppose that, as n + c ~ ,  

and that 

Denote by X,, the rth largest of the 9,. Then the joint distribution of the random 
sequence 

converges as n + cr, to those of 99 (8). 

To prove these two theorems, we first construct a Poisson process fl on 
the positive quadrant 

(8.11) S = ((u,  v); es, v > 0) 

of RZ whose density 

(8.12) u- l  e - u  

depends only on u. For any 0 > 0, the Mapping Theorem 161 shows that 

(8.13) no = {u; (u, n ~ n ,  v < el 
is a Poisson process on (0, m )  whose density is given by (8.1). This density is, 
for any E > 0, integrable on ( E ,  m )  but not on (0, E), SO that no has a limit point 
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at 0 but not at m. Its points can therefore be written in the form (8.2), and 
Y, -+ 0 with probability 1. We can and shall take the process lI, of Theorem 3 
to have been constructed in this way, so that is the rth largest of the points 
U ,  where ( U ,  V) runs over those points of I7 with V <  8. 

For any 0 6 n < b, consider the random variable 

Its distribution can be calculated by Campbell's theorem [6 ] :  for t 2 0, 
- 

m b 

E { e - r W f a ~ b ) )  = exp { j  J(e-'"- 1 )  up' ~ - ~ d u d v )  = (1  f t )p (bpa) .  
0 e 

This shows that W ( a ,  b) is finite with probability one, and has the gamma 
distribution (8.4) with parameter (b - a). Moreover, the independence property 
of I7 means that the W(a,  6)  for disjoint intervals (a, b) are independent ran- 
dom variables. 

In particular, for fixed 0 > 0 and any n 2 2, the variables 

are independent with the same gamma distribution with parameter On-', and 

A well-known fact, easily proved by change of variables, is that the variables 

are independent of W(8)  and have joint distribution of DirichIet form (7.9) in 
which all the parameters a, are equal to On-'. 

Let Y,, be the rth largest of the qn, (s = 1, 2, ..., n), so that 

is the rth largest of the t,,. Then it is a matter of elementary, non-stochastic, 
analysis to show that 

lim Y,, = Y,. 
n+ m 

To see this, first note that, with probability 1, the points V for f U, V )  E I;I are 
distinct (proof as in Section 3). Hence, for sufficiently large n, the points 
V corresponding to the u-values Yl , &, . . . , Y, fall in different intervals 
((s - 1 )  On- I ,  s8n- l). Hence, for any r > 1, 
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for some N(r ) .  On the other hand, 

If (8.19) is false, there exist r 3 1 and e > 0 such that 

for infinitely many n. Choose k > r so large that 

and then choose n 2 N(l), N(2), . . ., N ( k )  to satisfy (8.22). Then 

which contradicts (8.21). 
The contradiction proves (8.19), so that, for r 2 1, 

(8.25) lim X,, = Y,lW(0) = X,, 
n+oO 

in the notation of Theorem 3. Since the X,, are independent of W(0) = Z, their 
limits X, are independent of 2, and Theorem 3 is proved. 

Notice that we have also proved the special case of Theorem 4 in which 

However, the only use we have made of the dissection of (0, 8) into equal 
subintervals has been to ensure that distinct points are, for large enough n, in 
different subintervals. For general a,, satisfying (8.8) and (8.9), the same ar- 
gument works with (8.15) replaced by 

This proves Theorem 4 in full generality. 

The independence property asserted in Theorem 3 is characteristic of the 
density (8.1) and its mean relatives. To see this, suppose that 17 is a Poisson 
process on (0, co) with mean measure p. Suppose that 

(8.28) 

so that 

(8.29) 

is finite with probability one. Suppose finally that the (mn-Poisson) random set 
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is independent of 2. Colom the points of L! red or green with equal probabili- 
ties, distinct points coloured independently. Then the red points and the green 
points form independent Poisson processes. 

Let Z1 be the sum (8.28) taken over the red points, and Z2 the same over 
the green points. Then Z, and 2, are independent and 

Moreover, Z,/Zz can be expressed in 'terms of a colouring of (8.29) which is 
independent of 2. Thus Z, and 2, are independent positive random variables 
with the property that Z1/Zz and Z1+Z2 are independent It is easy to 
show that this can only happen if, for some c > 0, cZ1 and cZ2 have gamma 
distributions (8,4), so that cZ has that distribution for some 8 > 0. 

Campbell's theorem then shows that, for t 2 0, 

(1 +t ) -@ = E{e-'"1 = exp {j(e-tcY- l ) p ( d y ] } ,  
so that 

j(l-e-*cy)p(dy) = 0Iog(l+ t), 

and this inverts to give 

For many purposes, Theorem 3 is an adequate description of P9(6), but 
what it does not give is explicit formulae for the marginal distributions of the 
infinite random sequence (XI, X,, X,, . . .). These were first calculated by Billing- 
sley [2] in the special case 8 = 1 which arises in number theory (see [7] for the 
tangled history). The general case is due to Watterson [lo] in the context of 
population genetics. None of the derivations in the literature [I] is entirely trans- 
parent, and it seems worth giving a self-contained calculation in the spirit of [6]. 

Consider first a Poisson process I7 on (0, 1) with density 

(9.1) 0u-I ( O < u < l )  

and let 

Campbell's theorem shows that T is finite with probability 1, and for t 2 0, 
1 

E(e-IT) = exp (- 8 J (1 - e-*")- l du). 
0 

By a well-known identity, 
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where y is Euler's constant, so that 
m 

19.3) ~ ( e - ' ~ )  = e-~'t-~exp(--tI J e-"u-' dv). 
i 

Expanding the exponential shows that the right-hand side is the Laplace 
transform of an integrable function, which must be the probability density of T. 
The process I7 has now served its purpose and is discarded, retaining only the 
fact that, for any 13 > 0, there is a probability density p, on (0, co), defined by its 
Laplace transform 

m t - 
(9.4) 1 pe (u) e-" du = exp (- 0 J (1 - e-') V - I  du) 

0 0 

A great deal of information about p, can be found in 111. 
Returning to the Poisson process 

of Theorem 3, note first that, conditional on the values of YI, Yz, . . ., Y,, the 
points Y, (r  > n) form a Poisson process on (0, Y,) with density 

Campbell's theorem can then be used to find the conditional distribution of 

2, = Y,+1+Y,+2+ ... ; 
for t 2 0, 

Y" 

(9.6) E{exp(-tZ,)I Yl, Yz, .. ., Y,) = exp(-B J (1 -e-ry)y-i e-ydy). 
0 

Now 

and 

so that 

m m 

= exp(-tS,) Jp,(u)exp(-(l+t)xu)duexp(O J e-Vv-ldv)Y,oeye. 
0 Y. 

Regarded as a function of t, this equation is a Laplace transform identity, 
which can be inverted to show that, given Yl , & , . . . , Y,, Z has a conditional 
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probability density 

in < > S,. The joint distribution of Yl, Y2, . . ., Y, has density 

and multiplying this by g ( 5 ;  y y, , . . . , yn) gives the joint proba6ility density of 
2, Y1, Y,, . . ., Y, in the form 

in i > s , ,  = y l+y2+  ... + y , .  
Now make the change of variable 

(9.9) x, = VZ, 

to show that the joint distribution of 2, XI, X,, ..., Xn has density 

where 

This shows that, as we already know, (XI, X,, . . ., X,,) and Z are independent, 
and that Z has a gamma distribution. But it also shows that the joint distri- 
bution of XI, X2, . . ., X, is given by (9.101, consistently with the calculations of 
Billingsley and Watterson. 

The densities f ,  must of course satisfy the consistency conditions 

Xn- L 

(9.12) J fn(xlr XZ, -.., x.-1, 5)dS = fn-1(~1, ~ 2 1  --.' xn-1) 
0 
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for n 2 2, and 

Substituting (9.10) into these equations gives 

(9.14) 

and 
CO 

(9.1 5) Oe~'r(8)  J v - ' P ~ ( v -  1)dv = 1 .  
1 

Taking Laplace transforms we easily recover (9.4), so that p, is uniquely deter- 
mined by (9.14) and (9.15). 
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