PROBABILITY AND MATHEMATICAL STATISTICS Vol. 27, Fasc. 2 (2007), pp. 153–166

FINITE DIFFERENCE EQUATIONS AND CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM

Lars Lindhagen

Abstract: We apply the theory of finite difference equations to the central limit theorem, using interpolation of Banach spaces and Fourier multipliers. Let S_n^* be a normalized sum of i.i.d. random vectors, converging weakly to a standard normal vector \mathcal{N} . When does $||Eg(x+S_n^*)-Eg(x+\mathcal{N})||_{L_p(dx)}$ tend to zero at a specified rate? We show that, under moment conditions, membership of g in various Besov spaces is often sufficient and sometimes necessary. The results extend to signed probability.

2000 AMS Mathematics Subject Classification: Primary: 46B70, 60F05, 65M06; Secondary: 35K05, 42B15, 65M15;

Key words and phrases: Finite difference equations, central limit theorem, convergence rate, interpolation theory, Fourier multipliers, Besov spaces, signed probability.

THE FULL TEXT IS AVAILABLE HERE