
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

Vol. 27, Fasc. 2 (2007), pp. 303-323 

ON AN EXTENSION OF MIN=SEMISTABlLE DISTRIBUTIONS 

M. BEN A LA Y A (VILLETANEUSE), T. H U I L L E T (CERGY-PONTOISE) 
AND A. P 0 R Z I 0 (VILLETANEUSE AND PALAISEAU) 

Abstract. This work focuses on a functional equation which ex- 
tends the notion of min-semistable distributions. Our main results are 
an existence theorem and a characterization theorem for its solutions. 
The first establishes the existence of a class of solutions of this equa- 
tion under a condition on the first zero on the positive axis of the 
associated structure function. The second shows that solutions be- 
longing to a subclass of complementary distribution functions can be 
identified by their behavior at the origin. Our constructed solutions 
are in this subclass. The uniqueness question is also discussed. 
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1. INTRODUCTION 

In this paper we shall consider the functional equation defined on the 
space of complementary cumulative probability distribution functions (for 
short, ccdf) F with support [O, a]: 

Here M E N* is an integer-valued random variable and (Ci, i 2 1) and 
( r i ,  i 2 1) are sequences of random variables such that Ci > 0, ri 2 1. In the 
statistical literature, the function F is also called the survival or survivor func- 
tion. The solution F of (E) can be regarded as a fixed point of the transfor- 
mation T defined on the set of complementary cumulative distribution func- 
tions by 
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Let X be the random variable with ccdf F satisfying (E). When Ti are 
integer-valued random variables, the equation (E) reads in terms of random 
variables 

X min min Ci,jXi,j. 
l < i < M  1 < j < T i  

Here the Xi,j are i.i.d. copies of X; for each i, Ci,j are i.i.d. copies of Ci, and 
Xi,j are independent of Ci,j, Ti and M. After a suitable identification of varia- 
bles, this distributional equality can be put into the simpler form 

X min AiXi 
1 6 i d N  

in terms of new random variables N E N* and {Ai, i 2 I} positive. Here, Xi are 
i.i.d. copies of X 2 0 and independent of the random variables {N, A,, i 2 1). 
This identity in law expresses the invariance property under weighted minima 
considered by Alsmeyer and Rosler [I]. 

Let again Ti be integer-valued random variables. Equation (1.1), on the 
space of Laplace-Stieltjes transforms instead of the space of ccdf yields an 
equation similar to (14 ,  namely 

Under this form, it has been intensively studied by several authors. 
Initially, the functional equation associated with (1.3) was introduced in 

Mandelbrot [I91 and [20] in the context of a model for turbulence. Later, 
Kahane and Peyrikre [I61 obtained necessary and sufficient conditions for the 
existence of solutions of (1.3), when the Ai are independent and identically 
distributed and N is a constant. Holley and Liggett [14] obtained the same 
kind of results when A, are a fixed multiple of a given random variable. 

On physical grounds, such distributions provided examples of invariant 
measures for infinite interacting particle systems. Motivated by questions 
raised by these works on the nature of such invariant measures, their ergodic 
behavior, notably the possible display of phase transitions, Durrett and Liggett 
[ I l l  studied (1.3) in a quite general setting. More precisely, taking N constant 
and Ai non-negative with arbitrary law, they gave necessary and sufficient 
conditions for the existence of solutions under a sole condition on the moments 
of the A,. Moreover, they characterized all these solutions and proved some 
convergence results. 

Random variables satisfying (1.3) can also be viewed as a generalization of 
semistable laws, in that they are stable under random weighted means. In this 
view, Guivarc'h 1131 discussed equation (1.3) when the Ai are independent 
identically distributed variables and N is constant. He gave theorems on ex- 
istence and uniqueness of solutions and analyzed particularly their behavior at 
infinity. 



Extension of min-semistable distributions 305 

More recently, Liu [17], [I81 extended the results of [ll] on equation (1.3) 
allowing N to be an almost surely finite random variable, finding the optimal 
conditions for the existence of its solutions. As reviewed in [17], equation (1.3) 
or some its variants, arises in several other application fields: for instance, it 
defines distributions appearing as limiting distributions of some branching 
processes (either of the Bellman-Harris or of the Crump-Mode types) or Haus- 
dorff measures of some random fractal sets [17]. See also Caliebe [7], [8] for 
recent results and references. 

Coming back to equation (1.1), the idea of taking non-integral powers 
Ti > 1 in a similar equation is initially due to Barral [2]. Considering the 
following functional equation 

where C is a positive random variable and y 2 1 is non-random, he was able to 
obtain analogous results as in [11] and [I81 by studying it in a space con- 
taining the space of Laplace-Stieltjes transforms and included in the space of 
complementary distribution functions. 

On the other hand, in [3], the problem of characterizing the cumulative 
distribution functions (for short, cdf) with support [0, co], say G, satisfying the 
functional equation 

for some integer m > 1, and real numbers ci > 0, yi > 0, i = 1, . . ., m, was con- 
sidered. These have been called multiscaling max-semistable distributions. The 
functional equation (1.4) may be viewed as a version of the integrated Cauchy 
functional equation whose solution can be defined by appealing to Corolla- 
ry 2.3.2 of [21]. This constitutes a by-product of Deny's theorem (see [21]). 

Setting F(x) = G(l/x) when x > 0 and F(x) = 1 for x < 0, the comple- 
mentary cumulative distribution function F, with support [0, co], is a solu- 
tion to 

and we can deduce similarly the class of the so-called multiscaling min-semista- 
ble distributions. 

In [3], the physical meaning of the functional equation (1.4) has been 
discussed to some extent. Essentially, it was emphasized that any strictly posi- 
tive random variable, interpreted as some observable, can be viewed as the 
maximum of a Poisson number of "micro-events". The model (1.4) expresses 
that the observable under concern might as well result from the aggregation of 
m > 1 independent observations of statistically similar events, each with its 
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specific intensity yi and scale ci (in other words, it might as well result from 
more frequent micro-events but with smaller reduced amplitudes); it translates 
an amplitude and scale invariance principle for the observable. Such a fixed- 
point equation also appears in discrete scale invariance in Renormalization 
Group Theory in Physics. This model exhibits log-periodic features, whose 
empirical evidence was underlined in diverse application fields such as finance, 
turbulence, rupture theory, DLA growth, geophysics and frustrated systems' 
statistics (see 6153 and references therein). In a concrete physical situation, it 
seems natural to imagine that the intensity and scale parameters are unknown 
or, more realistically, modelled by some random variables. This motivates the 
randomization of this model. 

The functional equation (E) given by (1.1) can indeed be viewed as a ran- 
domization of the equation (1.4). By putting G(x) = F(l/x) when x > 0 and 
G(x) = 0 when x < 0, conclusions drawn from (E) can readily be translated to 
the randomization of the equation (1.4), namely 

Central to the solution of the functional equation (1.4) was the Kahane-Pey- 
ri6re-Mandelbrot (KPM) real-valued structure function defined by 

In its randomized version, the KPM structure function now reads 

We shall assume that z (q) < co whenever q 0. Essentially, this function is 
convex. We note that z (0) >, 1 and z (0) = 1 correspond to the case M = T1 = 1 
and the equation (E) admits a non-degenerate solution if and only if C1 = 1. 
This trivial situation will be avoided in the sequel by assuming z(0) > 1. 

The first main result is an existence theorem, which establishes the exist- 
ence of solutions under a condition on the first zero on the positive axis of the 
structure function (1.7). Following [ll], [13], [I71 and [18], we first prove the 
existence of solutions of (E) in the special case, where z (1) = 1 and z'(1) < 0. 
Then the general case is investigated by introducing a transport operator. Our 
techniques follow the lines of Durrett and Liggett [I 11, and Liu [17], [18]. 

Next, we exhibit a large space of complementary distribution functions 
containing the given solutions, namely, with F : = 1 -F, 

F = {FeCO(R+,  [0, 13): 

3 1  >0, c > 0, satisfying F(ax)/F(x) < ca? Va > 1, x > 0). 
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Then we show a characterization theorem, which states that the solutions of (E) 
belonging to 9 can be identified by their behavior at the origin. 

The paper is organized as follows. In Section 2, the existence of solutions 
of the equation (E) in the special and general cases is studied. In Section 3, the 
main characterization theorem is first stated. The core of Section 3 is devoted 
to the proof of some technical results, which will contribute to elucidate the 
behavior at the origin of the solutions belonging to space 9. In Section 4, we 
discuss the uniqueness of solution. 

2. EXISTENCE OF SOLUTIONS 

2.1. The special case: existence of a solution. In this section we suppose 
that, with log, x := Ovlogx, x > 0, 

M 

(ii) z (1) = E [ C Ti ci] = 1 and (iii) z' (1) < 0. 
i =  1 

We note that z(0) > 1. If conditions (ii) and (iii) are fulfilled, we shall refer to 
the special case. Define 

8 = {F ccdf: F convex with - m < F (0) < 01, 

and let 8, : = { F  ccdf: F convex with F (0) = - 1). Note that if FE 8,  then 
F is absolutely continuous with respect to Lebesgue measure. In the following 
theorem we give sufficient conditions which guarantee the existence of 
a non-degenerate solution to the functional equation (E). This result is ob- 
tained by adapting the proof of Theorem 3.1 of Liu [17]. Liu himself used 
techniques developed in Durrett and Liggett [ll] and some ideas of Doney 
and Biggins (see [9], [lo], [4]). For the reader's convenience the proof of some 
technical arguments used in Theorem 2.1 below will be postponed to Section 3. 

THEOREM 2.1. Under the above conditions (i), (ii) and (iii), there exists a so- 
lution of (E) in b l ,  implying, in particular, F(x)/x + l as x LO. 

P r o of. For a complementary cumulative distribution function (ccdf) F, 
we define non-negative functions D and G on R by 

1 -F(e-') 
D (z) = 

e-' 
and 
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Let Z be a random variable with distribution determined by 

for all bounded measurable functions Y.  Since z (1) is finite, Y (2) is integrable. 
Let Fo(x )  = e-xl(x30,+l(x,o,  and Fn+l = TFn ,  n 2 1. Replacing F by 

Fn in equations (2.1) and (2.2) we obtain the associated functions denoted by 
Dn and G,, in place of D and G for all  EM. Noticing that, for x 2 0, 

M 

(2.4) F1 (x)  = E [exp (- x C I'i ci)] 
i =  1 

and F1 ( x )  = Fo ( x )  = 1 for x < 0, we deduce, by the monotonicity of ?: that 
Fn+, 2 Fn. By Lemma 3.2 (iii) below, Gn+ < Gn, and by Lemma 3.1 we have 

Thus, 

for all n 2 1. Here, Sn : = 1; = ,  Z k ,  where (Zk) ,  3 1 is a sequence of independent 
random variables with the same distribution as Z, and So = 0. As 

Sn goes almost surely to + co when n tends to infinity. Since Do (2) is bounded 
and lim,, + , Do (z)  = 1, we get 

lim E(D0(z+sn))  = 1.  
n-+ + co 

The function f (z)  : = C,"= E G o  (z  + S ) )  satisfies the renewal equation 
f = Go-tF-,*A where F - Z  is the cdf of the random variable -Z, with 
- co < E ( - Z )  < 0. When Go is direct Riemann integrable, as we will show 
below, the renewal theorem yields limzt, f (z)  = 0 ([12], p. 381). This result, 
together with (2.6) and (2.8) implies 

lim lim Dn (z)  2 1. 
ztco n t c o  

But using Dn+, < Dn < . . . < Do we obtain 

lim lim Dn (z )  < lim Do (z)  = 1. 
zf co n i c o  z t  03 
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This shows that limzTa, limn?, Dn (z) = 1. Calling Fa, (x) the limiting ccdf of 
&(x), we infer that Fa, (x) is derivable at point 0 with F& (0) = -1. 

Next, we show that the sequence Fn remains in gl n C 1  (R+, [0, 11). In 
other words, suppose Fn E C1 (R, , [0, 11) with Fn convex and Fn (0) = - 1; let 
us show that this also holds for Fn+, = TF.. By the dominated convergence 
theorem, 

because the term in the brackets is bounded from above by CE Ti Ci, which is 
integrable. Hence Fn E 8, n C1 (R, , [0, 11). By passing to limit, the convexity 
property is preserved. 

Now, it remains to prove direct Riemann integrability of Go. By Lem- 
ma 3.2 (ii), e-" Go (z) is a decreasing function of z and, following [I l l ,  p. 287, it 
suffices to show that Go is Lebesgue integrable. Using u < e-('-"), when 
U E  [0, 11, we get 

where 4 (x) : = e-" - 1 + x, x 2 0. We shall split S, Go (z) dz into two parts. 

For z < 0, we note that 4 is decreasing and 4(x) < x. Therefore, 

For z > 0, using the inequality 1 -e-" < x, x 2 0, and recalling that 
Fo(x) = e-", x > 0, we obtain 

As a result, we have 

Introducing the random variable S = CEl Ti Ci and letting u = e-', we get 

which by Theorem B of Bingham and Doney ([5], p. 718) is finite if and only if 
ES log, S < GO. This condition has been imposed. a 

2.2. Behavior of solutions in the special case. Let us distinguish the lattice 
and non-lattice cases. 
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DEFINITION 2.1. We will speak of the lattice case when a common span of 
-log Ci, i 2 1, exists and is -log c, c > 0. 

We consider the random walk previously defined by Sn = xi=, Z,, where 
(Zk)k31 are i.i.d. random variables with the same distribution as Z given in 
equation (2.3), and So = 0. It is easy to check that 

PROPOSITION 2.1. The random variables -log Ci have a common span 
-Isgc if and only if the random walk S,  is arithmetic in the sense that the 
support of the distribution of S ,  is { -  klogc),,,. 

Let us give the following definition: 

DEFINITION 2.2. We denote by Ye the set of functions s (a) : R -, R + satis- 
fying : 

In the l a t t i c e  case with common span -logc, c > 0, s(z) := e-''') for 
some right-continuous bounded periodic function v (-) on R with period -log c, 
such that z - v (z) is a non-decreasing function. 

In the non - l a t t i c e  case, s(z) := s > 0, the constant function for all ZER. 

The following corollary is easily obtained from Theorem 2.1. 

COROLLARY 2.1. In the special case, if FE 8' is a solution to the functional 
equation (E), then Fs (x) : = F(xs (-log x)), where s E Ye, is also a solution to the 
same equation. The solution F,(x) now satisfies the property 

This means that in the special case the solutions to (E) are determined 
modulo a scaling factor s which can be a log-periodic function in the lattice 
case. 

2.3. Existence of a solution in the general case. Consider the functional 
equation (E). We recall that z (0) > 1 and z is convex. Under the condition on z, 
we obtain the following existence theorem: 

THEOREM 2.2. Suppose that there exists 0 < a < co such that z (a) = 1 and 
z'(a) < 0. Two cases arise: 

(i) If z' (a) < 0 and I2 [xEl Ti Cq log + (EM t =  1 Ti Cq)] < CO, then there exists 
a non-trivial ccdf F solution to (E). 

(ii) If 7' (a) = 0 and Ti Cf log + (c:, Ti ~ f ) ]  < co for all P < a, 
then there exists a non-trivial ccdf F solution to (E). 

P r o  of. (i) Suppose z' (a) < 0. Consider the ccdf Fa as a solution to the 
functional equation 

M 

(E,) : I', (x) = E [ x Fa (C? 
i =  1 
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The associated structure function is zu(q) = z(aq) with zu(l) = 1, 
z& (1) = az'(a) < 0. The existence of Fa in Bl is given by Theorem 2.1, in the 
special case, when substituting Cf by Ci. Finally, the ccdf F(x) = Fu(xu) solves 
the functional equation (E). 

(ii) Suppose z' (a) = 0. Let 0 < P < a. Consider the random variables 
Ci (P) = Cf z (P)- ' and introduce the functional equation 

Its associated structure function is zfi (q) = z (Pq)/z (P)q. We have zfi (1) = 1. As 
z (0) > 1 and z is convex, z (P) > 1 and z' (P) < 0 for each fl < a. We have 

Consider now a sequence P, with 0 < P, < a, and P,, -+ a as n -+ co. By Theo- 
rem 2.1 and Corollary 2.1, (Eon) has a solution, say Fp,, in B satisfying 
Fbn (1) = 112. The sequence FBn E B is an equi-continuous sequence of functions 
[0, co) + [O, 11, because, for all x > 0, FBn(x)/x is non-increasing. By an ex- 
tended version of Arzelss theorem [6], one can extract a convergent 
sub-sequence. By the same transformation as in (i), the ccdf F(x) = Fu (xu) also 
solves the functional equation (E) in this case. 

Remark  2.1. From the proof above we infer that when a < 1, the con- 
structed solution is convex. 

3. CHARACTERIZATION OF SOLUTIONS 

The space of solutions. We will look for a solution of equation (E) in the 
space F. We recall that F = 1 - F  and 

9 = {F€CO(R+,  [0, 11): 

3A > 0, c > 0, satisfying F(ax)/F(x) < ca" Va > 1, x > 0). 

We note that this space contains the space of all absolutely continuous dis- 
tributions with density f such that x f /F is bounded, which itself contains 8. 
For the first inclusion, there exists A > 0 such that xf (x)/F (x) < A. Then, for 
a > 1 and x > 0, integrating on the interval [x, ax], we get F (ax)/F (x) < a? 
For the second inclusion, as F is convex, (1 -F(x))/x is decreasing. Differen- 
tiating, we obtain x f (x)/F (x) < 1. Moreover, we have B c 97 

As recalled in the Introduction, Barral (in his paper [2]) studied a similar 
equation and found out a space of continuous functions having some key 
properties. We go further along this way, defining a space 9 containing the 
constructed solutions given by Theorems 2.1 and 2.2. 
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3.1. Behavior of the solutions in F. We now come to the behavior at the 
origin of the solutions to (E) belonging to 9? In [ll], Durrett and Liggett 
characterize the behavior at the origin of the solutions of the functional equa- 
tion for Laplace transforms corresponding to the identity in law given in (1.3). 
This is found in Theorem 2.18 of [I 11, pp. 288-291, and is based on several 
technical results, namely, Lemma 2.3, Corollary 2.17 and Theorem 2.12. Re- 
placing them by our Lemma 3.1, Corollary 3.1 and Theorem 3.2, respectively, 
we can adapt their proofs and obtain the following theorem. For the reader's 
convenience the statement and proofs of the quoted technical results are post- 
poned to a subsequent subsection. 

THEOREM 3.1. Suppose the following condition (Ha) holds: 

Suppose also that there is an a > 0 such that z (a) = 1, zl(a) < 0. Then, f F is 
a solution to (E) and if FE there exists s (.) : R + R+ , continuous and periodic 
with period -log c, c > 0, in the lattice case and constant in the non-lattice case, 
such that x -+ xu s ( - log x) is increasing, with 

(ii) F ( 4  " 3 1  if zf (a )=0 .  
xu ]log X I  s ( - log x) 

3.2. Technical results. In order to adapt the techniques developed in Dur- 
rett and Liggett [11] and Liu [I71 we start by giving several technical lemmas 
which are essential to obtain Theorem 3.2 and Corollary 3.1. Finally, we derive 
our main Theorem 3.1. We recall that z (q) < co whenever q 3 0. Let us define 
a random variable Z,, a > 0, by the equality 

M 

(3.1) EY (Z,) = T (a)-' E ( C ri C: Y(-log Ci)) 
i =  1 

for all bounded measurable functions Y.  
For an arbitrary ccdf F, we define the functions D, and G, by 

Let F1 be an arbitrary ccdf and F, = TF,. We denote by D,,i and G,,i the 
corresponding functions associated with Fi, i = 1, 2. We first give a series of 
lemmas. 
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LEMMA 3.1. We have 

Proof .  We have 

LEMMA 3.2. We have: 
(i) G, (2)  >, 0. 

(ii) e-"" G,(z) is a decreasing function of z. 
(iii) If F2 F1, then, for all z, G,,, (z) < G,,, (2). 

P r o of. From the inequality 

0 < ui < vi < 1, we deduce the monotone decreasing feature of the function 
e-" G, (2). Let F1 and F2 be two ccdfs with F1 < F2. Replacing F by Fl or by 
F2, respectively, in equation (3.3), we obtain their associated functions G,,l and 
G,,,. From the above inequality we have G,,, < G,,, . Finally, inequality (3.4) 
can be checked by observing 

LEMMA 3.3. With 4 (u) : = eAU - 1 + u and a ccdf F E 9 with corresponding 
1, we have 

(9 G, (2) S euz E [4  ( WDu (2) e -"')], 
where W : = zEl Ti max (cCf , 1); 

(ii) Gu (2) lim ----- = 0. 
z t  Da(z) 

Proof .  (i) Using u < e-('-") if 0 < u < 1, we get 

1 1  - PAMS 27.2 
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Now, two cases arise: 
if Ci < 1, then Cie-' < e-' and 1-F(Cie-") < 1-F(e-'); 
if Ci 2 1, then F(Cie-') < cC?F(e-I), and so 

Consequently, 1 - F (Ci e - ') < (cC" 1) (1 - F (e - ')) and function u -+ 4 (u) 
being monotone increasing it follows 

Finally, G, (z) < euz E [4 ( WD, (z) e . 
(ii) We first note that e-uzD,(z) 'a 0. To prove (ii), we need to check 

lim E {+ ( Wt)/t) = 0. 
t l 0  

Now, 4 (u)/u is bounded, and so 14 (Wt)/tl < K W for a suitable constant 
K > 0. Further, W is integrable since 

M M 

W <  C r i + C c T i C :  and E W < r ( o ) + c ~ ( A ) < m .  rn 
i = l  i = l  

LEMMA 3.4. Let a E R  and Z, be deJined by (3.1). Let g be a non-negative 
function on R. If g (y) = r (a) Eg (y + Z,), then 

where c8 (y) 0 with la (x + y) = la (y) for all x E Supp (Z,), and 9 : = 

{p : z (p) = 1) with 191 E {O, 1, 2). If 191 = 0, we use the convention g = 0. 

P r o  of. Following the Lau-Rao-Shanbhag theorem [21]: if 191 = 0, then 
g = 0; if 191 E {I ,  21, we get 

where q8 satisfies 

7 ( 4  (exp ( - llp 2,)) = 1 
Clearly, 

M M 

E ( C ri C: exp (lla log ci)) = E ( C Ti c:+") = 1, 
i =  I i=  1 

which implies p = a + qp9 where p E 9 

Remark  3.1. In the lattice case, cp are periodic functions, and in the 
non-lattice case, cp are constants. Under the additional hypothesis, g (0) = 1 
when 191 = 2, necessarily 5p2 (0) = 1 - cP1 (O), where (/Il, pz) are two solutions 
to T(p) = 1. 
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THEOREM 3.2. Assume that F E  9 and that FE 9 is a solution of (E). Then: 
(i) There exists a > 0 such that z (a) = 1. 
(ii) Let a > 0 satisfy z (a) = 1 and 7' (a) < 0; then 

lim sup D " ( X + ~ ) < l  if zl(a)<O 
x r Da (x) 

and 

lim Da(x+y) = 1  if .el(a)=O, 
x t m  Da(x) 

where y is any non-negative multiple of -log c in the lattice case, and y E R+ in 
the non-lattice case. 

Proof .  Following [Il l ,  let a > 0 and 

We have 

Note that F is not necessarily convex as in the Laplace transform context. 
Nevertheless we can adapt the proof of Theorem 2.12 in [ll] to ccdfs FEE 
When F E ~ ,  there exist A> 0 and c > 0 such that 

Consequently, the set {h, (-), x E R )  is uniformly bounded and equi-continuous 
on the bounded subsets of R. We can therefore extract a subsequence hXn 
converging uniformly on the bounded subsets of R to some function h. The 
sequence ( x ~ ) ~ ~ ~  converges to infinity when n tends to oo. From the inequality 
above we infer that h,,(y + 2,) is dominated by 

and 

~ C e x ~ ( ~ ( ~ + ~ a ) ) ~ , y + z ~ ) 3 o ) + c e x P ( ( ~ - ~ ) ( ~ + ~ a ) ) ~ ( ( , + z ~ ) < o ) 1  

7 (0) z ( 4  < e a ~  - + C e ( a - ' ) ~  - 
T7 (a) 7 (a) < * . 

By the dominated convergence theorem and Lemma 3.3 (ii), we obtain 

Consider an a > 0 satisfying z (a) > 1. From Lemma 3.4 we infer that there 
exists P E R such that 7 (P) = 1 ; equivalently, P satisfies E exp (- (P - a) Z,) = 

l/z(a), and hence > a > 0. This proves (i). In the non-lattice case, assuming 
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IYI = 2 with 9 : = { P  : z ( P )  = I}, for ip > 0 we obtain 

Assuming P I  < p2 ,  taking a = pl and recalling that h(0) = 1, we have for 
Y > O  

h ( Y )  = i,, + (1 - i,,) exp (- ( P ,  -a) y) < 1. 

In the case p1 = P, with zr(PI) = 0, we have h ( y )  = cp, = 1. In the lattice case, 
for y a multiple of -loge, we get 

and using similar arguments we obtain h ( y )  < 1 if zl(PI) < 0, h ( y) = 1 if 
z' ( P I )  = 0. 

Fix y > 0. Let (x,),,, be a sequence converging to infinity when n tends 
to GQ such that 

lim sup Du ( x  + Y )  
= lim h,,, ( y) . 

xtm Du(x) ntm 

Extracting a convergent subsequence from {hxnjnB converging uniformly to 
some h on bounded subsets of R, we see that this function h fulfills the above 
conditions and similar arguments apply, completing the proof. 

COROLLARY 3.1. Let P E F  and assume that there is an a >  0 satisfying 
z(a) = 1 and z'(ot) < 0. Then, under the condition (Ha) which states that 

G,(x) is direct Riemann integrable on R. 

P r o of. We first note, following [I 11, that if G, (x) is integrable, and if, as 
follows from Lemma 3.2, e-"" G, ( x )  is a decreasing function of x, then Gu (x )  is 
direct Riemann integrable. Hence it suffices to show that G, is integrable. By 
Lemma 3.3, for FE 9 we have 

0 6 Gu (z)  < ea' E [ ~ ( W D ,  (2) e-")] , 
M where q5 (u) = e-" - 1 + u and W = zi = , ri max (cc;, 1). 

At z = - oo, from monotonicity of 4 and recalling that 4 (x) < x we ob- 
tain 

M M 

Hence G, (z)  < e"' (z (0) + cz (A)), which is integrable at z = - m. 
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At z = + co, as e-" D,(z) 'B 0, there exists z0 such that, for all z 20, 
D,(z) ,i ePz for some 0 < P < a. By Lemma 3.3, 

Passing to the variable u = e(D-")", letting uo = ~(P-")'o, we obtain 

where q,(u) is the Laplace-Stieltjes transform of W By Theorem B of 
Bingham and Doney ( [ 5 ] ,  p. 718), this integral is finite if and only if 
E 4  (W'+B/(~-~)) < co. Assuming 0 i P/(a-P) < 1, this condition holds as soon 
as we have 

3.3. Characterization of the constructed solutions. We now give a more 
precise statement on the constructed solutions of equation (E) as given by 
Theorems 2.1 and 2.2. Using Theorem 3.1 we are able to describe more precise- 
ly their behavior at the origin. Definition 2.2 of the space % is adapted to the 
special case. We introduce a more general space YU,, which will be used in the 
general case and for which Y1,, : = 9,. 

DEFINITION 3.1. Define the space YU,, as the set of functions s (a) : R -+ R+ 
satisfying: 

In the la t t i ce  case with common span -logc, c > 0, s(z) := e-""(') for 
some right-continuous bounded periodic function v (.) on R with period - log c, 
such that z - v (z) is a non-decreasing function. 

In the non - l a t t i c e  case, s(z) := s > 0, the constant function for all ZER. 

THEOREM 3.3. Suppose that there exists 0 < a < co such that z(a) = 1 and 
zt(a) 6 0. Two cases arise: 

(i) If ~'(cx) < 0 and E [c:, Ti Cqlog+ (c:, Ti c?)] < co, then for each 
S E  Yap, there exists a solution F of (E) satiSfying 

(ii) If zt(a) = 0 and E [(z:, Ti ~f '''1 < co for all 0 < /? < a, then for 
each SEY~,, there exists a solution F of (E) satiSfying 



318 M. Ben  A l a y a  et al. 

P r o  of. Consider the ccdf Fa as a solution to the functional equation 

(i) If ?(a) < 0, reconsidering the proof of Theorem 2.2 concerning this 
case, we see that there exists Fa in df1, a solution to (E,). In particular, we have 

F a  (4 lim ---- = 1. 

Now for each s E 9,,, the ccdf F (x) = Fa (xu s ( -log x)) solves the functional 
equation (E) with the claimed behavior at 0. 

(ii) If zt(a) = 0, reconsidering the proof of Theorem 2.2 concerning this 
case, we see that there exists Fa, a solution to (E,). By construction, Fa is 
convex, and a fortiori K E ~ ?  Hence we can deduce from Theorem 3.1 that 

lim F a  ( 4  
= 1, 

x l 0  x [log xl s, ( -log x) 

where s, (.) is continuous and log-periodic. The structure function z, (q) = z (aq) 
associated with (E,) now satisfies z,(l) = 1 and zL(1) = 0. Following the ar- 
guments of [ I l l ,  p. 290, using the convexity of Fa and the fact that the function 
s,(-) is monotone and periodic, we can infer that s,(.) is constant, say 
s,(-) = K > 0. 

Now, for each function s(.) E YE,,, the ccdf 

solves the functional equation (E) and 

lim F (x) 
x l 0  xa llogx] s(-logx) 

Using the behavior of F,(x) at 0 and recalling that s,(.) = 7c, we obtain 

F (x) lim = K lim = 1. 
X ~ O  xa ]log xl s (-log x) XJO 7ca ]log xl 

Consequently, F(x) has the claimed behavior at 0. a 
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Remark  3.2. From the proof we observe that, for a < 1 and s (0)  = s > 0 
constant, the constructed solution is convex. 

4. UNIQUENESS OF SOLUTIONS 

In this section we discuss the uniqueness of solutions to equation (E). 
As noticed in the Introduction, when Ti are integer-valued random variables, 

a fortiori when Ti = 1, equation (E) yields the following equation in distribution: 

X A min AiXi, 
1 S i 6 N  

where Ai > 0. We can adapt the proof of the uniqueness theorem given in Liu 
1181, p. 105, to our ccdf context. We obtain the following result: 

THEOREM 4.1. Let ri be integer-valued random variables. Assume that there 
is an a > 0 satisfying r (a) = 1 and zf(a) < 0. Under the condition (H,) of 
Theorem 3.1, the solution to (E) in the space 9 is unique. By uniqueness, it is 
meant that: if F1 and F, are solutions whose behaviors in a neighborhood of zero 
are both given by the same pair (a, s (.)) in (i) and (ii) of Theorem 3.1, then 
& = F2. 

Ske tch  of t he  proof .  For all sequences o ~ u ~ , , N *  of positive in- 
tegers, with la1 the length of o, let (A,,,, A,,,, . . .) be i.i.d. copies of (A,, A,, . . .). 
For a ccdf F, Tn F is the ccdf of minlgl =. 1, X,, where I, : = A,, A,,,, . . . A,,,, ...,n 

if 0 = o, 0, . . . on, {X, : (ol = n) are i.i.d. copies with ccdf F, independent of 
{A,: lo1 < n}. The results of Lemmas 7.1 and 7.2 of [18], p. 104, still hold 
because we have the same tree structure. We are in the position to obtain 
a version of Lemma 7.3 of 1181, p. 104, while considering the quantity 
Tn F (x) = E nl,, = F (xl,) replacing Laplace-Stieltjes transforms by ccdf s. 
Under the condition (H,), let F1 and F, be two solutions in 9- of (E) whose 
behaviors in a neighborhood of zero are both given by the same pair (a, s(.)) 
in (i) and (ii) of Theorem 3.1. Then 1 - F, -- 1 -F2 in a neighborhood of zero 
and, following the steps of Theorem 7.1 in 1181, p. 105, we obtain 
limn?, TnF1 =F2.  

In the general case, when Ti 1 but is not necessarily integer-valued, we 
obtain the uniqueness in the only case when we suppose that there is an 
a satisfying r (a) = 1 and zf(a) < 0. 

THEOREM 4.2. Assume that there is an a > 0 satisfying z(a) = 1 and 
zf(a) < 0. Under the condition (H,), the solution to (E) in the space 9 is unique: if 
F, and F2 are solutions whose behaviors in a neighborhood of zero are both given 
by the same pair (a, s (.)) in (i) of Theorem 3.1, then Fl = F, . 

Proof .  Let us now show that if there are two solutions in with similar 
behavior close to 0, then they coincide. Let Fl and F, be two distinct ccdf s 



320 M. Ben  Alaya  et al. 

in 9 which are solutions to (E), with F1 and F2 both equivalent close to 0 to 
xu s (-log x) with s (.) continuous and periodic by Theorem 3.1. Consider 

d (PI, F2) : = sup 

As F1 and F2 are solutions in the function 

is continuous on [0, co), vanishes at co, so its supremum is attained at some 
point xo in (0, co). Clearly, 

Now, by Jensen's inequality, 

Using the inequality In:, ai - )JEl biJ < x:, la, - bil for a, E [0, 11 and 
bi E [O, 11, i = 1, . . ., M, we obtain 

Let A : =  {F l (C ixo )~F2(Cixo ) ,  ri> 1 for some i t { l ,  ..., M}}. 
If P (A) > 0, using the Holderian character of u -+ uY, y > 1, u E [O, 11, that 

is 1x7 - yYI < Y I X  - yl for X, y E [0, 11 and x # y, we get from (4.2) the inequality 

M 

. ITF1 ( ~ 0 ) -  TF2 (xo)l < [ C Ti IF1 (cixo)-F2 (Cixo)~]. 
i =  1 

Now, 

For the first inequality, we use the fact that -log Ci, i 2 1, have a common 
'span -logc, c > 0, and s(.) is periodic with period - logc. In this case, 
d (F1, F2) < d (F1, Fz), which is absurd. 
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If P (A) = 0, we have almost surely either Ti = 1 or F1 (Ci x0) = F2 (Ci xo) 
for all i~ (1, . . ., M}. Consequently, we get 

almost surely. In this case, using the argument above on the support of 
-logCi, i 2 1, and the periodicity of s(.), we obtain 

If d (Fl , F2) # 0, then E (z:, C:) 2 1. Since 

recalling that E(c:, Ti C?) = 1, we obtain 

which means that Ti = 1 for all i E {1, . . ., M )  almost surely. Hence, we recover 
the first case, which was dealt with by Theorem 4.1. rn 

5. CONCLUDING REMARK 

In this paper, solutions to the functional equation (E), extending min- 
semistable distributions, are considered. The main extension with respect to 
previously studied functional equations of the same type is that it involves 
non-integral random powers. The techniques employed to derive our results 
are largely inspired from the ones originally designed for Laplace-Stieltjes 
transforms in the semistable case for sums. 

In a special case, we start constructing solutions from scratch in the space 
involving convexity. When considering the general case, we need to in- 

troduce a larger space, namely the space 35 It is the largest space within which 
solutions can be searched for, with the techniques we use to do so. The behav- 
ior at the origin of the solutions within 9 is elucidated. The characterization 
theorem involving the space YE,, shows that there are solutions to (E) whose 
behaviors in a neighborhood of the origin are possibly far from regular. This 
suggests that, due to some restrictions imposed on the solutions (in particular, 
continuity), we possibly miss some solutions with a wild behavior near zero. 
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Nevertheless, despite some technical constraints that we feel not intrinsic- 
al to the solutions of the posed problem, we hope to have done a fur- 
ther step towards the comprehension of a widely explored functional 
equation. 
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