
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

Vol. 27, Fasc. 2 (2007), pp. 167-179 

INFORMATION INEQUALITIES 
FOR THE BAUES RISK OF PREDICTORS 

MAREK K A L U S  Z K A (LODZ) 

Abstract. The paper provides several lower bounds and an upper 
bound for the Bayes risk in statistical prediction theory. The bounds 
depend on the Fisher information or the bias of the Bayes predictor. 
The results improve and extend the inequalities of Brown and Gajek 
(1990), Takada (1999) and Koike (1999). As an application we evaluate 
the minimax risk in a problem of sequential prediction. 
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1. INTRODUCTION 

An information inequality for the Bayes risk provides a useful lower/upper 
bound for the estimation error when the conditional expectation is difficult to 
find explicitly. Unlike the classical CramCr-Rao bound, it usually requires mild 
regularity conditions. The first results of this kind were established by Van 
Trees (1968) and Borovkov and Sakhanienko (1980). Using a bound of local 
type and integrating it with respect to the prior, Brown and Gajek (1990) 
obtained some improvements of the Borovkov and Sakhanienko inequality. 
Sato and Akahira (1996) applied a method based upon the variational calculus 
which works in some non-regular cases. The multidimensional parameter case 
was treated by Bobrovsky et al. (1987), Brown and Gajek (1990) and Gill and 
Levit (1995) among others. 

Several applications of inequalities for the Bayes risk both in parametric 
and nonparametric problems can be found in the literature. The bounds enable 
evaluating the rate of convergence of the Bayes risk (Borovkov and Sakha- 
nienko (1980)) and lead to estimates for the minimax risk (Van Trees 
(1968); Borovkov and Sakhanienko (1980); Bobrovsky et al. (1987); Brown 
and Gajek (1990); Gajek and Kaluszka (1994), (1995); Gill and Levit 
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(1995); Mizera (1996); Sato and Akahira (1996); Kaluszka (1997); Koike 
(1999)). The bounds are also employed in deriving asymptotically minimax 
estimators of a regression function and variance function in nonparametric 
regression (Belitser and Levit (1996); Munk and Ruymgaart (2002)). The last 
(but not least) possible application is to derive optimal choice of observation 
window (Kutoyants and Spokoiny (1999)). 

In recent years, prediction models have received considerable attention. 
Bjarnstad (1996) extended the concept of likelihood to prediction models. The 
classical UMVUE theory was generalized by Yatracos (1992), Miyata (2001) 
and others. Cramhr-Rao type lower bounds were derived by Yatracos (1992) 
and Nayak (2002). Minimax and admissible prediction of the signal with 
known background was examined by Zhang and Woodroofe (2005). The ex- 
plicit form of minimax predictors can also be found in Wilczynski (2001), 
Jokiel-Rokita (2002), Trybula (2003) and in the papers cited therein. The first 
bound for the Bayes risk of predictor was established by Takada (1999) who 
extended Theorem 2.1 of Brown and Gajek (1990). A bound on the Bayes 
prediction risk was also obtained by Gajek and Lipinska (2006). 

The aim of the paper is to provide new lower bounds in a problem of 
prediction for squared error loss. We start with a factorization of the Bayes risk 
different from that of Brown and Gajek (1990) which gives an improvement of 
known inequalities under weaker assumptions. In particular, we do not assume 
that the family of data distributions is weakly differentiable in L2. An applica- 
tion of derived inequalities to evaluation of the minimax risk in a problem of 
sequential prediction is presented. 

2. MAIN RESULTS 

Let X be a random element from a probability space (Q, P) to a measu- 
rable Bore1 space (S, 9) and let Z be a real-valued random variable on Q. We 
consider predicting Z based on the observed value x of X. Suppose X 
has a density, say p,, with respect to a o-finite measure ;1 on S, where 
0 E O = (01, 8,) and - co < el < O2 < a. Suppose also that 0 is a random 
variable having a density g with respect to a o-finite measure z on O. Put 

Og={0;g(0)>0)  and L Y 2 = { U ( X , 0 ) ; [ E O ( U 2 ) h ( 0 ) d 0 < c o ) ,  

where h (0) = m (0) g (0) with a given strictly positive weight function m. Through- 
out the paper, we will write [ fd0 and [ fdx instead of [, f (x, 0)z(d0) and 
[, f (x, 0) A (dx), respectively. Given functions f, g on a measurable space, we 
also write f = g provided f = g almost surely. 

Denote by B(g) the Bayes risk with respect to the prior g, i.e. 

B(g) = min [ E , ( ~ - Z ) ~  h(0)dO. 
BEY$ 
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Herein, 9; c 9, means the set of all predictors. By 6, we denote the Bayes 
predictor of Z with respect to the prior g, that is, 

where Y = Eo [Z I XI. Clearly, Y is the best mean-square predictor of Z if 0 is 
known. We assume that there exists a random variable L = L ( X ,  0) such that 
O<VaroE<  cx, and 

for all 0 E @, . The prime ' denotes differentiation with respect to 8. The variance 
Var, L is called a generalized Fisher information. A standard choice of L is 
L = (lnp, (x))' but other functions are possible, e.g. 

L = (ln ~ 0 ( ~ ) ) ' + $ 1  4 2  Eo(6, $,YE0 (6, $2) 

with $, E 64, such that Eo (6, $,) # 0 for all 0 E 0,. 
Given a differentiable function, say H(0), we set 

where 010 is by convention 0. Here and below, V(8) = l/Varo L and 

(2.4) b(8) = E0(6,- Y), ~ ( 0 )  = (Eo Y)'-Eo(YL). 

Clearly, b (0) = Eo 6, - Eo 2, so b (0) is the bias of 6,. Theorem 2.1 provides 
a lower bound on the Bayes risk which is expressed in the bias of the Bayes 
predictor and the generalized Fisher information. 

THEOREM 2.1. Assume that 0 < C + D < co . Then 

Equality holds in (2.5) iff there exists a function c(8) such that 

6,- Y = c(0)(L-EoL)+b(8). 

P r o o f. Obviously, 

2 - PAMS 27.2 



170 M. Kaluszka  
I 

I 
From the Cauchy-Schwarz inequality we get 

I 

for any K E dp2. Equality occurs in (2.7) iff 6, - Y = c (8) (K - E, K) + E, (6, - Y) 
with a real-valued function c. Putting 

in (2.7) and integrating with respect to h(B), we arrive at 

where 
a = { ~ , ( ( 6 ~ - ~ ) ~ ) h ( B ) d 8  = A + B  < CO, 

Combining (2.6) and (2.8) yields (2.5). 

Remark  2.1. Adopt assumptions of Theorem 2.1. For the sake of con- 
venience, assume also that [ (H (8) b (8))'d~ = 0 and let E, L = 0. From (2.5) 
we get 

where 

Observe that for Z = Y = 8 and L = (lnp,(~)): we obtain a lower bound 
different from that in Theorem 2.1 of Brown and Gajek (1990). By (2.9) we 
obtain the Van Trees inequality for a prediction problem: 
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Put H (0) = y (0) V (0) h (0) in (2.1 1) to get inequality (2.3) of Takada (1999) 
under weaker assumptions; observe that Assumption 1 of Takada (1999) im- 
plies that y (0) = Ee [(Y)'].  See also Gajek and Lipinska (2006) for an improve- 
ment of (2.11). 

We say that Van Trees' inequality (2.1 1) is optimal if it cannot be improved 
by (2.9). Clearly, (2.11) is optimal iff the bias b of the Bayes estimator 6, satisfies 
the system of equations: 

which gives the following necessary condition: [(b' + y) hV]' = hb or, equiv- 
alently, 

(2.13) hVb"+(hV)'bf-hb+(yhV)' = 0 .  

To make the presentation clear, we drop the argument 0 in h, T/; b and y. For 
h = g and Y = 0, (2.13) is the Sato-Akahira differential equation (see Sato and 
Akahira (1996), formula (2.6)). Furthermore, from (2.12) it follows that if (2.1 1) 
is optimal, then H satisfies the equation 

with a real c. Observe that (2.14) is the Euler-Lagrange condition for 
the problem of minimization of C + D subject to 1 y (0) H (0) d0 = B, 
H(0,) = H(O1) = 0. If H = mgV as in Brown and Gajek (1990), then 

where is such that ((j(0)YlI (@)I = 1 -cy (0) and d is such that j gd0 = 1. For 
instance, if Y = 0 and if I (0 )  = m (0) = 1 for all 0 E 0, = R, then an optimal 
prior distribution may be the normal one. 

Remark  2.2. Given L = L ( X ,  0) E Z2, we have 

by the Cauchy-Schwarz inequality; we do not assume that (2.1) holds. Hence, 
the following Van Trees type inequality is valid: 

where L is such that 
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and C, D are defined by (2.3). This becomes equality iff (6, - Y - c1 L - c2) x 
p,(X) = 0, with ci being a function on O for i = 1, 2. A standard choice is 

d 

H = 1 and L = (ai (0)/p, (x)) (ai/dO') pe ( X ) .  
i =  1 

The bound (2.15) with H = 1 and L = ( Q ( X ,  0 ) p , ( X ) g ( ~ ) ) ' / ~ , ( X )  is due to 
Gajek and Lipinska (2006). Under some assumptions on g, Q, and p, which 
ensure that J (Q ( X ,  0) p, ( X )  g (0))'dd = 0, they have shown that (2.15) becomes 
equality in a few prediction problems. Clearly, the inequality (2.15) is the same 
as (2.11) if j (H (0) E, Y)'d0 = 0 but they hold under different assumptions on 
L and H. 

Remark  2.3. Put EX = jE0Xh(0)d0.  Since Ed, = EY, we have 

Let L E  dP2 be such that (2.1) is satisfied. By the Cauchy-Schwarz inequality 
we get 

(2.17) E ( ~ , - E C ~ , ) ~  3 (J ( ~ 9  ( f i g  L )  - Es 6g Ee L )  h (0) 

j Eo (L2) h (0) 

Combining (2.16) and (2.17) one obtains the upper bound for the Bayes risk 
involving only the bias of the Bayes estimator and the Fisher information: 

- ( j  (b'(0) - b (0) E, L + Y (0)) h (0) 
j'(Var, L+(E, Q2) h (0) do 

with equality iff 6,-E6, = cL, where c is real. 

The right-hand side of (2.5) depends on the bias of predictor 6, which may 
be difficult to calculate. We will get rid of this dependence. To simplify the 
notation, we assume Y = Z. Recall that y (0) = (E,  Y)' - E, (YL) .  Put 

0 

(2.19) 1 (0) = exp ( - j E, ~ d t ) ,  
80 

(2.21) 
1 (H' (0) + H (0) E, L) 1 (0) 

U 2  (" = c+o( 
h (0) -eS, H ( t )  V ( t )  h(t1 i(t) 
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- j' ui (0) w (0) do 
ui = for i = 1, 2, 

S w (0) 

where B, C, D are given by (2.2) and (2.3). The following result provides a coun- 
terpart of Theorem 2.7 of Brown and Gajek (1990). 

THEOREM 2.2. Under the assumptions of Theorem 2.1, suppose 

is absolutely continuous and unimodal with maximum at 0, E O. Then 

Moreover, if j' (H (0) b (0)r d0 = 0, then 

Proof .  Put 

Theorem 2.1 implies 

where 

Applying the inequality (2.17) in Brown and Gajek (1990), we obtain 

Taking the infimum over all ,!?(0), we get 

z.2 j' w (0) (u1(0) + Au2 (8) - B ( 0 0 ) ) ~  
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Minimizing the quadratic in P(0,) leads to 

Clearly, if (H(0)  b ( 0 ) ) ' d ~  = 0, then A = 0. Otherwise, we minimize the quad- 
ratic in (2.27) with respect to A to obtain (2.25). a 

We now derive an analogous result to that of Theorem 2.9 in Brown and 
Cajek (1990). Let B, C, D, 1 and ul be defined by (2.2), (2.3), (2.19) and (2.20), 
respectively, with a real 6, E O. Recall that b (0) = Ee (6, - Y) and y (0) = 

(Eo Y) '-Eo(YL).  Put 

where M is an absolutely continuous function on O. 

THEOREM 2.3. Suppose j (H (0) b (0)rd0 = 0 and j (/I (0) M ( 0 ) ) ' d ~  = 0. Under 
the assumptions of Theorem 2.1 we have 

P r o  of. From (2.5) we have 

Remark  2.4. Suppose H (0) b (0) is an absolutely continuous function 
and suppose z is the Lebesgue measure. It is evident that the assumption 

(2.29) j (H (0) b (e))' d e = o 
holds if H (0) b (0) has a compact support. Moreover, if 1 (H (0)2/h (0)) d0 < a,, 
then 

0 H2 (0) 
( ~ 1 ~ ( 0 ) b ( 0 ) l  < ~ w d 0 j b ( 0 ) ~  h(0)d0 < j-d0B(g) < a,. 

h (0) h (6) 
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This implies (2.29) provided O = (el, oo) or O = (- oo, 0,). The condition 
(2.29) also holds if 

[IH1(0)b(O)ldO<m and limsupIH(0)l=m, i = 1 , 2  
8+6i 

(see Gajek and Kaluszka (1995), Remark 2.3, for a proof). 

We now show that the inequalities (2.5), (2.25), (2.26), and (2.28) improve 
several, bounds which can be found in the literature. 

EXAMPLE 2.1. Let Z = Y = 0, let H(8) = h (0) V(8), and let the following 
assumptions be fulfilled : 

Al. (E, 6,)' = J 6,(x)(p, (x))'dx, 0 E 0,; 

A2. 0 < I(0) < oo, 0 ~ 0 , ;  

A3. J(H(0) b(0))'d~ = 0; 

A4. 0 -+ H (0) is absolutely continuous and unimodal with maximum at 
8, E O, 

where I(0) stands for the Fisher information and b (0) = E, 6, - 0. Put 
L = (lnp,(~))'.  Under the assumptions A1-A4, from (2.26) it follows that 

where 

with 

By Theorem 2.7 of Brown and Gajek (1990), 

Since for any positive reals C, D, E we have 
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the inequality (2.30) is an improvement of the Brown and Gajek inequal- 
ity (2.32). 

EXAMPLE 2.2. Put M ( 0 )  = q(0) H (0), where q is an absolutely continuous 
function. Under the notation and the assumptions Al-A3 of Example 2.1, we 
infer from Theorem 2.3 that 

where 

From Theorem 2.9 of Brown and Gajek (1990) it follows that 

By (2.33), the inequality (2.34) improves (2.35). 

EXAMPLE 2.3. Let X = ( X I ,  X 2 ,  . . .) be a discrete time stochastic process 
with values in S c R". Assume X n  = ( X I ,  . . ., X,) has a density pl; relative 
to the Lebesgue measure on Rn, with 0 E O = ( O , ,  02). We want to predict 
Y = Y ( X ,  0) by 

03 

d N ( X )  = x d n ( X n ) l ( N  = n), 
n = l  

where N is a proper stopping time (i.e. P,(N < co) = 1 for all 0) and 
Y 1 (N = n) = yn ( X n ,  0) for all n. Hereafter, 1 (c) stands for the indicator func- 
tion, i.e. 1 (c) = 1 if the condition c is true and 1 (c) = 0 if it is not so. We assume 
that 0 -+ E, Y is absolutely continuous. The risk of a sequential predictor 
(N, d N  (x)) is given by 

where y is a given positive real and p; (X) = x:' pl; (Xn)  1 (N = n). The second 
term of the right-hand side of (2.36) is a penalty based upon the Fisher infor- 
mation. 

Let (N*, 6;') be a sequential Bayes predictor in a class JV; that is, 

" 1 yn(Xn, e)pl;(Xn)h(0)d0 dT(x) = 1 (N* = n), 
n= I 1 pl; (xn) h (0) do 
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where N* is a minimizer of the risk (2.36) in Jlr with dN = 6:. Put L = 

(lnp:* (x))' and assume that for all 8 E 0, 

C 1. (E, 6:*)' = E, (6:* L) and E, L = 0; 

C2. 0 < VareL < co; 

C3. [ ( H  (8)~,(6:*- ~ ) ) ' d8  = 0. 

From (2.11) we get the Koike type bound: 

(2.37) 
B2 B ~ I D  for BID i A, 

B(g) 2 -+YC 2 
{2B - yD otherwise, 

where 

Suppose (Xi) are i.i.d. random variables and suppose 0 < I1 (8) < co for all 8, 
where I1 (8) denotes the Fisher information of XI. If H  (8) = g (8)/11 (0) and if 
m (8) = 1, then from (2.37) we obtain Theorem 1 of Koike (1999). The bound 
(2.37) is also valid under the assumptions different from C1-C3 (see Re- 
mark 2.2). Clearly, applying Theorem 2.2 or 2.3 one can improve the Koike 
inequality. 

Suppose Jlr is a class of sequential rules such that for every N E Jlr the 
function 8 -+ E, 6: is absolutely continuous, Var, [(ln p f  (x))'] = I (8) E, N, 
and C1 is satisfied. Putting H  (8) = g(8) and m(8) = Il (8) in (2.37), we obtain 
the following bound for the minimax risk: 

(2.38) inf sup [I1 (8)E0(dN- Y ) ~ +  YEON] 2 max(B:/Dl, 2B1 A - Y D I )  
NyaN eso 

for every g~ C1 (0 )  with a compact support, where 

The explicit form of the bound (2.38) can be obtained by solving a varia- 
tional problem. For example, if O = (81, co) and if there exist finite limits 
P:=lime,,(EeY)'>O and a:=lim,,,I(8) >0 ,  then 

To obtain (2.39) put g (8) = go (0-n), where go has the support [0, 11, take the 
limit of the right-hand side of (2.38) as n -+ co, and use the well-known fact that 



178 M. Kafuszka  

the infimum of the functional J: ((9; (t))2/go ( t ) )  dt over the set of probability 
densities go which are twice differentiable with go (0) = go (1) = 0 is equal 
to 4n2. 
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