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Abstract. This paper studies and describes stochastic orderings of
risk/reward positions in order to define in a natural way risk/reward mea-
sures consistent/isotonic to investors’ preferences. We begin by discussing
the connection between the theory of probability metrics, risk measures,
distributional moments, and stochastic orderings. Then we examine several
classes of orderings which are generated by risk probability functionals. Fi-
nally, we demonstrate how further orderings could better specify the in-
vestor’s attitude toward risk.
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1. INTRODUCTION

In this paper, we describe the admissible classes of probability functionals that
are consistent with a given order of preferences. To classify the orderings and risk
probability functionals, we distinguish between primary and compound probability
functionals; between uncertainty and risk orderings/measures; between orderings
and survival/dual orderings; and between bounded and unbounded orderings. By
doing so, we present a general and unifying framework to understand the connec-
tions between the investor’s preferences that are consistent to a given order and
choice problem.

We first discuss the links between continua stochastic dominance orders, dual
stochastic dominance rules based on Lorenz orders, and the different distribu-
tional moments of a portfolio of assets returns; see Fishburn [6], [7] and Muliere
and Scarsini [19]. We tie together the consistency-isotonicity of risk and reward
measures with the classical orderings. We study the properties that a probability
functional must satisfy to solve optimal choice problems. The theory of prob-
ability functionals and metrics was developed by Zolotarev and his students to
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solve stability problems, see Rachev [27] and the references therein. Furthermore,
there exists a strong connection between probability functionals and orderings; see,
among others, Kakosyan et al. [13], Kalashnikov and Rachev [14], and Rachev and
Rüschendorf [29], [30].

In this paper, we discuss the static approach to the theory of choice under
risk and uncertainty. In particular, we are interested in the economic use of prob-
ability functionals to optimize choices for a given order of investors’ preferences.
As a consequence of this discussion, we propose a new set of orderings, risk and
reward measures that are coherent to investors’ choices. The new probability func-
tionals and orderings generalize those found in the literature and are strictly re-
lated to the theory of choice under uncertainty (see, among others, von Neumann
and Morgenstern [37], Machina [17], Yaari [38], Gilboa and Schmeidler [11], and
Maccheroni et al. [16]) and to the theory of probability functionals and metrics; see
Rachev [27] and the references therein. While the new orderings serve to further
characterize and specify the investors’ choices/preferences, the new risk measures
should be used either to minimize the risk of a portfolio of financial assets or to
minimize its distance from a given benchmark, see Rachev et al. [28], Stoyanov et
al. [33], and Ortobelli et al. [25]. We will call these new measures/orderings “FORS
measures/orderings”. We show how one can generate further orderings and mea-
sures by using the Mellin transform when applied to the fractional integral.

In the next section, we examine continua and dual stochastic dominance and
their connection to the distributional moments of portfolios. In Section 3, we de-
scribe how to use probability functionals to define new orderings and portfolio risk
measures. Finally, we briefly summarize the results.

2. CONTINUA AND DUAL STOCHASTIC DOMINANCE THEORY

In this section, we study the stochastic orders in a complete probability space
(Ω,=, P ). By doing so, we take the perspective of an investor who wants to solve
a portfolio selection problem. In particular, we denote by L0 (=) the space of all
real-valued random variables defined on (Ω,=, P ) while

Lp (=) = {X : (Ω,=, P )→ R | E (|X|p) < +∞}.
Recall that X dominates Y with respect to n (integer) order stochastic dominance
(X 

n
Y ) if and only if E

(
u(X )

)  E
(
u(Y )

)
for every utility function u whose

derivatives satisfy the inequalities (−1)k+1u(k)  0 for k = 1, . . . , n, if and only
if for every real t we have

F
(n)
X (t) :=

t∫
−∞

F
(n−1)
X (u)du ¬ F

(n)
Y (t).

Furthermore, we observe that for any m > n, X 
n

Y implies X 
m

Y . In addi-

tion, we state that X dominates Y in the sense of Rothschild and Stiglitz [31]
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(X R− S Y ) if and only if E
(
u(X )

)  E
(
u(Y )

)
for every concave utility func-

tion u, if and only if X 
2

Y and E(X) = E(Y ). This order is also called concave

in the ordering literature; see, among others, Shaked and Shanthikumar [32] and
Müller and Stoyan [21]. Moreover, all these relations can be easily generalized in
continuous terms.

2.1. Continua, survival, bounded/unbounded stochastic dominance rules.
Fishburn [6], [7] considers continuous orders applied to bounded and unbounded
random variables. In the following, we further characterize and generalize these
orders. This extension is possible because the first lemma found in Fishburn [6] is
still valid following the Fubini–Tonelli theorem; see also Miller and Ross [18] and
Zhang and Jin [39].

LEMMA 2.1. Let (R, BR, µ) be the real space with the Borel sigma algebra
BR and a positive sigma finite measure µ. Then for any −∞ ¬ a < z ¬ +∞

z∫
a

(z − x)v−1
( x−∫

a

(x− y)α−1dµ(y)
)
dx = B (α, v)

z−∫
a

(z − y)α+v−1dµ (y),

z∫
a

(x− a)v−1
( z∫

x+

(y − x)α−1dµ (y)
)
dx = B (α, v)

z∫
a+

(y − a)α+v−1dµ (y),

where

B (α, v) =
Γ(α)Γ(v)
Γ(α + v)

and Γ(t) =
+∞∫
0

zt−1e−zdz.

These relations are still valid if α, v are complex numbers with Re α, Re v > 0 and
B(α, v) is the beta function with complex arguments.

We assume that F
(1)
X = FX and put a = inf {x | FX(x) > 0}. Using the defi-

nition of fractional integral (see Erdelyi and McBride [5] and Miller and Ross [18]),
we obtain for every real α > 0 and α 6= 1, F

(α)
X (t) = 0, for all t ¬ a and for every

t > a

(2.1) F
(α)
X (t) =

1
Γ(α)

t−∫
a

(t− y)α−1dFX(y) =
E

(
(t−X)α−1

++

)

Γ(α)
,

where (t− x)α−1
++ = (t − x)α−1I[x<t] and I[x<t] is the indicator function equal

to 1 if x < t, and 0 otherwise. Thus, F
(α)
X is a positive continuous function for

α > 1; it is right continuous for α = 1 and left continuous for α ∈ (0, 1). A slightly
different definition (see Fishburn [7]) is necessary for α ∈ (0, 1) in order to include
the probability measures that satisfy P (X = ti) > 0 for some real numbers ti.
Analogously, we can use the survival function F̄

(1)
X (x) = P (X > x) = 1−FX(x)
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and we obtain, for every positive real α 6= 1 and for every t < b,

(2.2) F̄
(α)
X (t) =

1
Γ(α)

b∫
t

(y − t)α−1dFX(y) =
E

(
(X − t)α−1

+

)

Γ(α)
,

and F̄
(α)
X (t) = 0 for all t  b, where b = sup {x | FX(x) < 1}. In this case, the

function F̄
(α)
X (x) is right continuous for all α ∈ (0, 1] and it is continuous for α>1.

In particular, when X is a continuous random variable, F̄
(α)
X (u) = F

(α)
−X(−u) for

every u ∈ [a, b] and α > 0. From Lemma 2.1 it follows that, if µ is the probability
measure obtained by the right continuous distribution function of X , F

(1)
X (y) =

FX(y) = µ(y) or, by the survival function µ(y) = F̄
(1)
X (y), we obtain

(2.3) F
(α)
X (t) =





1
Γ(α− v)

t−∫
a

(t− u)α−v−1F
(v)
X (u)du

for all α > v  1 or for all 1 > α > v > 0,

lim
tn↘t

1
Γ(α− v)

tn∫
a

(tn − u)α−v−1 F
(v)
X (u)du

for all α  1 > v > 0,

(2.4) F̄
(α)
X (t) =

1
Γ(α− v)

b∫
t

(u− t)α−v−1F̄
(v)
X (u)du for all α > v > 0.

We can define stochastic orders as follows:

DEFINITION 2.1. For every α > 0, we state that X dominates Y with respect

to the α bounded stochastic dominance order (X
b
α

Y ) iff F
(α)
X (t) ¬ F

(α)
Y (t) for

every t belonging to supp {X,Y } ≡ [a, b], where a=inf {x |FX(x)+FY (x)>0},
and b = {x | FX(x) + FY (x) < 2}. We state that X strictly dominates Y with re-

spect to the α bounded order (namely, X
b
>
α

Y ) iff X
b
α

Y and FX 6= FY .

Moreover, following Fishburn [7]: for every α  1, X dominates Y with re-
spect to the α stochastic dominance order (X 

α
Y ) iff F

(α)
X (t) ¬ F

(α)
Y (t) for ev-

ery real t. X strictly dominates Y with respect to the α order (namely, X >
α

Y ) iff

X 
α

Y and FX 6= FY . Since X 
α

Y (X
b
α

Y ) is simply X >
α

Y (X
b
>
α

Y ) plus

the identity relation, we shall consider only >
α

(
b
>
α

) explicitly. As proven by Fish-

burn [7], bounded and unbounded orderings
b
>
α
, >

α
are equivalent among random

variables with finite expected values if and only if α ∈ [1, 2]. When α /∈ [1, 2], the
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orders >
α

,
b
>
α

do not generally coincide. Similarly we define the survival bounded

order (X
a

sur α
Y ) iff F̄

(α)
X (t) ¬ F̄

(α)
Y (t) for every t that belongs to supp {X,Y } ≡

[a, b] (and the survival unbounded order: X 
sur α

Y iff F̄
(α)
X (t) ¬ F̄

(α)
Y (t) for every

real t). We prefer to concentrate on stochastic dominance orders because when
α > 1, we have

F̄
(α)
X (u) = E

(
(X − u)α−1

+

)
/Γ(α) = F

(α)
−X(−u)

and the results are equivalent to those obtained for orders on the opposite of random
variables.

Even if Definition 2.1 generalizes the orders proposed by Fishburn [6], [7] to
α bounded orders with α ∈ (0, 1) that imply first stochastic dominance, in many
cases we cannot compare random variables with respect to these orders. In partic-

ular, if X
b
>
α

Y with α ∈ (0, 1), a point t < sup {x | FX(x) + FY (x) < 2} such

that 0 < P (Y = t) < P (X = t) cannot exist because in the right neighborhood
of t we have F

(α)
X (t+) > F

(α)
Y (t+). In addition, as follows from the proposition

below, we cannot express the α order X >
α

Y for any α ∈ (0, 1).

PROPOSITION 2.1. For any pair of bounded (from above or/and from below)
random variables X and Y that are continuous on the extremes of their support,
there is no α ∈ (0, 1) such that F

(α)
X (t) ¬ F

(α)
Y (t) for all t ∈ supp(X,Y ). In

addition, for any pair of random variables X and Y, there is no α ∈ (0, 1) such
that F

(α)
X (t) ¬ F

(α)
Y (t) for every real t.

P r o o f. Consider α ∈ (0, 1). Let X and Y be bounded random variables con-
tinuous on the extremes of the support. Then

X,Y < sup {x | FX(x) + FY (x) < 2} = b < +∞.

Suppose X
b
>
1

Y . Then we obtain

Γ(α)F (α)
X (b) =

b∫
−∞

(b− x)α−1 dFX(x)
b∫
−∞

(b− x)α−1 dFY (x) = F
(α)
Y (b)Γ(α)

because X and Y are continuous on the extreme b and the function u(x) =
(b− x)α−1I[x<b] is an increasing function for x ¬ b and

Γ(α)F (α)
Y (b) = E

(
u(Y )

)
, Γ(α)F (α)

X (b) = E
(
u(X)

)
.

Furthermore, because the function g(α) = F
(α)
X (b) = E

(
(b−X)α−1

)
is analytic,

there exists r ∈ (α, 1) such that F
(r)
X (b) > F

(r)
Y (b); otherwise FX = FY because
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using the Mellin transform we can univocally determine the distribution func-
tions. In the case where X and Y are bounded random variables not necessar-
ily continuous on the extremes X, Y < b < +∞, for every increasing function
v(x) = (t− x)α−1I[x¬b] and t > b it follows that

E
(
v(X)

)
=

b∫
−∞

(t− x)α−1 dFX(x) 
b∫
−∞

(t− x)α−1 dFY (x) = E
(
v(Y )

)
,

and similarly the inequality is strict for some t. There are analogous considerations
when X,Y > inf {x | FX(x) + FY (x) > 0} = a > −∞ because−X,−Y < −a

and X
b
>
1

Y iff−Y
−a
>
1
−X . Next, suppose X and Y are a pair of random variables

such that X
b
>
1

Y . Observe that X
b
>
1

Y iff X
(M)
−

M
1

Y
(M)
− , X

(M)
+

b
1

Y
(M)
+ and at

least one dominance is strict, where X = X
(M)
+ + X

(M)
− and X

(M)
+ = XI[XM ],

X
(M)
− = XI[X<M ] for every M ∈ supp {X,Y }. Thus the assertion follows. ¥

Due to this proposition, we cannot compare random variables according to
the α bounded order with α ∈ (0, 1) except in a few cases. However, although α
bounded orders with α ∈ (0, 1) are not applicable in many cases, they could serve
to rank financial losses and truncated variables. This is why this generalization
could be interesting from a financial point of view. Typically, for every pair of
random variables X and Y , with density of probability such that fX(t) ¬ fY (t)
for all t < M and P (X ¬M) = P (Y ¬M) = 1, we have F

(α)
X (t) ¬ F

(α)
Y (t) for

all t ∈ supp {X, Y }, and X
M
>
α

Y for every α > 0. The following example shows

the use of the α order for truncated variables.

EXAMPLE 2.1. Let Y1 and Y2 be two financial losses with truncated Gaussian
distribution functions:

(a) the function

FY1(t) =
1

σ
√

2π

t∫
−∞

exp
(
−

(
x− µ√

2σ

)2)
dx

for t < µ < +∞ is equal to a Gaussian N(µ, σ) and FY1(t) = 1 for t  µ;
(b) the function

FY2(t) =
1

σ
√

2π

t∫
−∞

exp
(
−

(
x− µ− ε√

2σ

)2)
dx

for t < µ < +∞ is equal to a Gaussian N(µ + ε, σ) with ε > 0 and FY1(t) = 1
for t  µ.
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Since the probability density of the two losses are fY2(t) ¬ fY1(t) for all t < µ

and P (Y1 ¬ µ) = P (Y2 ¬ µ) = 1, F
(α)
Y2

(t) ¬ F
(α)
Y1

(t) for all t ∈ supp {Y1, Y2},
and Y2

µ
>
α

Y1 for every α > 0. Therefore, all investors would prefer loss Y1 to Y2.

In addition, equation (2.3) extends the use of functions F
(α)
X . From a practical

point of view, this has an immediate effect as shown in the following:

REMARK 2.1. The following implications hold:

(1) X >
α

Y implies X
b
>
α

Y . These orders coincide if and only if α ∈ [1, 2].

Therefore, every outcome of the
b
>
α

order is true when >
α

holds, but the converse is

not generally true if α /∈ [1, 2].
(2) For every α > v > 0, F

(v)
X (t) ¬ F

(v)
Y (t) for all t ∈ supp {X, Y } im-

plies F
(α)
X (t) ¬ F

(α)
Y (t) for all t ∈ supp {X, Y }. In particular, the order X

b
>
v

Y

(X >
v

Y if v  1) implies the order X
b
>
α

Y (X >
α

Y ).

(3) X
b
>
1

Y if and only if X
(M)
−

M
1

Y
(M)
− , X

(M)
+

b
1

Y
(M)
+ and at least one

dominance is strict, where X = X
(M)
+ + X

(M)
− and X

(M)
+ = XI[XM ]; X

(M)
− =

XI[X<M ] for every M ∈ supp {X, Y }. In addition, X
b
α

Y with α > 1 implies

X
(M)
−

M
α

Y
(M)
− for any given M ∈ supp {X,Y }.

(4) X 
α

Y (X
b
α

Y ) if and only if cX + t 
α

cY + t (cX + t
cb+t

α
cY + t)

for every t ∈ R, c > 0, α > 0.

P r o o f. Points (1) and (2) are a logical consequence of the previous discus-
sion and of formula (2.3). Point (4) is proved by the equality

FcX+t(x) = FX

(
x− t

c

)
for every t, x ∈ R, c > 0.

Thus, with this affine transformation, the assertion follows for any α > 0. Point
(3) follows from the definition of the distribution functions F

X
(M)
+

(t) = 0 for

all t < M and F
X

(M)
+

(t) = FX(t) for all t M , while F
X

(M)
−

(t) = FX(t) for all

t < M and F
X

(M)
−

(t) = 1 for all t M . Thus, for every M ∈ R, the order X
b
α

Y

implies X
(M)
−

M
α

Y
(M)
− . Observe that generally we cannot say that X 

α
Y implies

X
(M)
− 

α
Y

(M)
− . ¥
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There is a strong connection between moments and stochastic orders as many
authors have pointed out (see, among others, Fishburn [8] and O’Brien [22]).
Proposition 2.2 summarizes some of these results and provides necessary condi-
tions on moments for α stochastic orders. It is interesting to observe that generally
these implications do not always hold when we consider α bounded stochastic
orders.

PROPOSITION 2.2. The following implications hold:
(a) Suppose X >

α
Y and the moments of X and Y through integer n are finite

for n− 1 < α ¬ n. Then
(
E(X), . . . , E(Xn)

) 6= (
E(Y ), . . . , E(Y n)

)

and (−1)k+1E(Xk) > (−1)k+1E(Y k) for minimum integer k such that E(Xk) 6=
E(Y k).

(b) If X
b
α

Y with α > 1 implies

(2.5)

1
2
E(|X1 −X2|α−1) ¬ E

(
(X1 − Y1)

α−1
+

)
,

E
(
(Y1 −X1)

α−1
+

) ¬ 1
2
E(|Y1 − Y2|α−1),

where Y1, Y2 are independent realizations of Y, X1, X2 are independent realiza-
tions of X, and X1, Y1 are independent.

P r o o f. The first part of the proposition summarizes one of Fishburn’s [8]
and O’Brien’s [22] results. In order to prove the inequalities given by (2.5), recall

that if X
b
α

Y , then F
(α)
X2

(X1) ¬ F
(α)
Y1

(X1); F
(α)
X1

(Y1) ¬ F
(α)
Y2

(Y1). If we apply

the Fubini theorem to the expected value of these random variables, we get for all
α  1:

Γ(α)E
(
F

(α)
X2

(X1)
)

=
1
2
E(|X1 −X2|α−1)

¬ Γ(α)E
(
F

(α)
Y1

(X1)
)

= E
(
(X1 − Y1)

α−1
+

)
.

Similarly we obtain the other inequality. ¥

As for integer orders, we can characterize stochastic orders with respect to a
given class of utility functions. In particular, as the result of the previous lemma
and of Fishburn [6], [7], we observe that 

α
is a reflexive and transitive preorder,

while >
α

is a strict partial order (asymmetric and transitive) on the space

L̃α−1 =
{{X | E(|X|α−1) < +∞} if α 6= 1, α > 0,

all r.v. X if α = 1.
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Moreover, for every pair of random variables X,Y ∈ L̃α−1, X 
α

Y if and only if

E
(
u(X)

)  E
(
u(Y )

)
for all utility functions u belonging to

Uα =
{
u(x) = c−

+∞∫
x+

(y − x)α−1dv(y) | c, x ∈ R;

where v is a positive σ-finite measure:
+∞∫
−∞
|y|α−1dv(y) <∞}

.

In particular, for every random variable X ∈ L̃α−1, all utility functions

−Γ(α)F̄ (α)
X (x) = −

+∞∫
x+

(t− x)α−1 dFX(t) = −E
(
(X − x)α−1

+

)

belong to Uα. Similarly, for every pair of random variables X, Y ∈ L̃α−1 with

support on [a, b] (a, b ∈ R̄), X
b
α

Y if and only if E
(
u(X)

)  E
(
u(Y )

)
for all

utility functions u belonging to

U b
α =

{
u : [a, b]→ R | u(x) = c−

b∫
x+

(y − x)α−1dv(y)− k(b− x)α−1;

c ∈ R, k  0; where v is a positive σ-finite measure:
b∫
a

|y|α−1 dv(y) <∞}
.

The classes Uα and U b
α are closed under positive affine transformations and are suf-

ficient to characterize the α stochastic order (
α

,
b
α
), although more general base

classes could be used. On the other hand, Fishburn [6], [7] and Müller [20] prove
that Uα ⊇ Uβ (U b

α ⊇ U b
β) for every 1 ¬ α < β and the derivatives of u ∈ Uα

(u ∈ U b
α) satisfy the inequalities (−1)k+1u(k)  0, where k = 1, . . . , n − 1 for

integer n such that n− 1 ¬ α < n. The main advantage of using continua orders
is given by their definitions in terms of moments. It is well known that portfo-
lio returns exhibit heavy tails that do not always guarantee finiteness of the first
moments. We apply α stochastic dominance orders to portfolios:

(1) with α 6= 1 only if all portfolios X belong to the Lα−1 space (i.e., Lα−1 =
{X | E(|X|α−1) < +∞};

(2) when α = 1 (first-order stochastic dominance), no regularity conditions on
moments are needed.

Thus, one can rank the investor’s choices by using orderings >
α

with α ∈
(1, 2), even when the finite first moments cannot be guaranteed. The following
definition considers orders that generalize the classic Rothschild–Stiglitz (R-S)
order.
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DEFINITION 2.2. We state that X dominates Y in the sense of α-(bounded)
R-S (strict) order (α-(bounded) R-S (strict)) when

X 
α

Y (X
b
α

Y,X >
α

Y, X
b
>
α

Y )

and
−X 

α
−Y (−X

−a
α
−Y,−X >

α
−Y,−X

−a
>
α
−Y ).

We remark that in the literature, the α-R-S order is also known as an α-con-
cave order when α is an integer that is greater than or equal to 2. In particular,
when α = 2, we obtain the classic R-S order. Furthermore, a (bounded) R-S order
is strictly linked to the moment order. The following corollary summarizes some
of the main implications regarding R-S type orderings.

COROLLARY 2.1. The following implications hold:
(a) X α-(bounded) R-S (strict) Y implies X β-(bounded) R-S (strict) Y for

all β  α.
(b) Suppose that X strictly α-R-S Y and the moments of X and Y through

integer n are finite for n− 1 < α ¬ n. Then
(
E(X), . . . , E(Xn)

) 6= (
E(Y ), . . . , E(Y n)

)
and E(Xk) < E(Y k)

for the minimum even k such that E(Xk) 6= E(Y k). In particular, if X and Y
are random variables with finite first moments, then X α-R-S Y implies E(X) =
E(Y ).

(c) X α-(bounded) R-S (strict) Y if and only if dX + c α-(bounded) R-S
(strict) dY + c for every c ∈ R d > 0 if and only if for every real t for all
t ∈ supp(X,Y )

Γ(α)F (α)
X (t) = E

(
(t−X)α−1

+

) ¬ E
(
(t− Y )α−1

+

)
= Γ(α)F (α)

Y (t),

Γ(α)F̄ (α)
X (t) = E

(
(X − t)α−1

+

) ¬ E
(
(Y − t)α−1

+

)
= Γ(α)F̄ (α)

Y (t)

(and at least one inequality is strict for some t when the respective orders are
strict).

(d) X α R-S Y implies that

E(|X1 −X2|α−1) ¬ E(|X1 − Y1|α−1) ¬ E(|Y1 − Y2|α−1),

and E(|X − t|α−1) ¬ E(|Y − t|α−1) for every real t (that is strict for some t
when the α-R-S order is strict), where Y1, Y2 are independent copies of Y, and
X1, X2 are independent copies of X, and even X1, Y1 are independent.
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P r o o f. Points (a) and (c) are a consequence of the α-R-S order (α bounded
R-S order) definition. Point (b) is a consequence of the Fishburn [8] and O’Brien
[22] necessary condition of moments expressed in the previous proposition; that
is generally true only if we consider unbounded dominance orders. Point (d) is a
consequence of point (b) of Proposition 2.2. ¥

Clearly, α must be strictly greater than 1 in the definition, because X >
1

Y

implies −Y >
1
−X and we cannot have E(X) > E(Y ) and −E(X) > −E(Y ).

In addition, we can compare bounded random variables in the sense of α-R-S order
only when α  2, as it follows from the next proposition that summarizes some of
the most important implications relative to R-S type orders.

PROPOSITION 2.3. The following implications hold:

(a) Assume Y belongs to Lp with p > α. If X α-R-S Y and E (|X|r) =
E (|Y |r) for a given r ∈ (α − 1, p], then FX = FY ; otherwise X α-R-S strictly
Y implies E (|X|r) < E (|Y |r) for every r ∈ (α − 1, p]. In particular, a random
variable X /∈ Lp can never α-R-S dominate a random variable Y ∈ Lp.

(b) If X and Y are (below or above) bounded random variables with first mo-
ment finite, then there exists no α ∈ (1, 2) such that X α-(bounded) R-S strictly Y .

(c) If X and Y are symmetric with null mean, X α-(bounded) R-S Y if and

only if X 
α

Y (X
b
α

Y ).

P r o o f. Point (a) generalizes Theorem 2.6 of Li and Zhu [15]. By the previ-
ous Lemma 2.1, we know that

|x|r =
1

B(α, r − α + 1)

|x|∫
0

(|x| − y)α−1 yr−αdy

for every r > α− 1. Then, as a consequence of the Fubini theorem, we get

B(α, r − α + 1)E (|X|r)

=
b∫
a

( |x|∫
0

(|x| − y)α−1 yr−αdy
)
dFX(x)

=
b∫
0

yr−α
( b∫

y

(x− y)α−1 dFX(x)
)
dy +

0∫
a

(−y)r−α
( y∫

a

(y − x)α−1 dFX(x)
)
dy

= Γ(α)
b∫
0

yr−αF̄
(α)
X (y)dy + Γ(α)

0∫
a

(−y)r−αF
(α)
X (y)dy.
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Thus,

B(α, r − α + 1)E (|Y |r − |X|r) = Γ(α)
b∫
0

yr−α
(
F̄

(α)
Y (y)− F̄

(α)
X (y)

)
dy

+ Γ(α)
0∫
a

(−y)r−α
(
F

(α)
Y (y)− F

(α)
X (y)

)
dy.

If X α-R-S Y and E (|X|r) = E (|Y |r) with r > α − 1, we have F
(α)
Y = F

(α)
X

(i.e., FX = FY ); otherwise E (|X|r) < E (|Y |r) for every r > α − 1 for which
the finite r-th moment exists.

In order to prove (b), suppose X and Y are random variables bounded from
below; then X, Y > a > −∞. Since X and Y admit the finite first moment, we can
suppose X dominates strictly Y in the sense of α-R-S order. However, under this
assumption we have E (X − a) = E (Y − a). By the previous point (a), if α ∈
[1, 2) and X α-R-S Y (X α bounded R-S Y ), then E

(
(X − a)r

)
< E

(
(Y − a)r

)
for every r > α− 1, against E (X − a) = E (Y − a). Similar considerations can
be done when X,Y < M because −X,−Y > −M . Thus point (b) follows, and
so α ∈ [1, 2) such that X α-R-S Y (X α bounded R-S Y ) cannot exist when X and
Y are bounded and they admit the finite first moment. If X and Y are symmetric
with null mean X = −X and Y = −Y , the point (c) holds true. ¥

From the previous analysis, we deduce that the inequalities between absolute
moments allow us to order portfolio uncertainty coherently to different types of
investors. Another immediate consequence is the next corollary.

COROLLARY 2.2. If in the market there exist two portfolios X and Y with the
same mean and dispersion E

( |X − E(X)|r )
= E

( |Y − E(Y )|r )
, then either

one portfolio is redundant (because it has the same distribution as the other) or
the two portfolios are not comparable in the sense of (p + 1)-R-S order for any
p < r.

According to an operational definition of the risk and uncertainty that is per-
ceived by investors (see, e.g., Rachev et al. [28] and Holton [12]), the previous
discussion suggests distinguishing the orderings with respect to (a) the uncer-
tainty of different positions and (b) the investor’s exposure to risk. Generally,
R-S type orders serve to characterize the different degrees of portfolio uncertainty

and for this reason are called uncertainty orders, while the orders (such as 
±α

,
b
α

)

derived by the monotonicity order (i.e., the order X > Y implies that X dominates

(
±α

,
b
α

) Y ) also take into account the downside risk of portfolios and are called risk

orders. Clearly, this first distinction could have an important impact for investors.
Specifically, to select the set of admissible choices which are coherent to a

given category of investors, we can consider the direct risk measures ρ(X) (as-
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sociated with random wealth X) that are consistent with the order relation (
±α

,

b
α

, α-(bounded) R-S); that is, ρ(X) ¬ ρ(Y ) if X dominates (
±α

,
b
α

, α-(bounded)

R-S) Y . Typically, it follows that ρt,α(X) = E
(
(t−X)α−1

+

)
is a measure con-

sistent with 
α

(
b
α

) order for any fixed t (belonging to the support of all optimal

portfolios). Similarly, the measures ρ̃α(X) = E(|X1 −X2|α−1) and ρ̃t,α(X) =
E(|t−X|α−1) are consistent with α-R-S (α-bounded R-S) order for any fixed
t (belonging to the support of all optimal portfolios) under the assumption that
X1, X2 are independent copies of X . The measures consistent with risk orders
are called risk measures, while the measures consistent with uncertainty orders are
called uncertainty measures. Thus, as discussed by Ortobelli et al. [26], their use
is different in portfolio choice problems.

Furthermore, we can order the choices considering reward instead of risk. Ac-
cording to the definition given by Rachev et al. [28] and De Giorgi [4], we assume
a reward measure to be any functional v defined on portfolio returns that is iso-

tonic with respect to a given stochastic risk order (for example:
α

,
b
α

). Thus, when

a given category of investors (e.g., non-satiable, non-satiable risk averse) prefers
X to Y , then v(X)  v(Y ). On the other hand, Rachev et al. [28] and Biglova et
al. [3] have shown that the use of a reward-risk ratio could be important not only
from a computational point of view, but also because it takes into account portfolio
diversification. Any consideration that we do for measures consistent with some
risk orderings can be extended to reward measures considering a maximization
problem instead of a minimization problem. That is, if ρ(X) is a risk measure con-
sistent with a risk ordering, then−ρ(X) is a reward measure isotonic with the same
order. Thus, if we characterize the consistency with respect to risk orderings (say


α

,
b
α

), we also implicitly characterize isotonicity. For this reason, in the following

we place much more emphasis on the consistency with a given order.

2.2. Inverse stochastic dominance. Similarly to classic stochastic dominance
rules, we can describe stochastic dominance rules based on the left inverse of FX

(namely, F−1
X ) given by

F−1
X (p) = inf {x : Pr(X ¬ x) = FX(x)  p} for all p ∈ (0, 1]

and F−1
X (0) = lim

p↘0
F−1

X (p). In particular, Muliere and Scarsini [19] have defined

inverse stochastic dominance order as follows: we say that X strictly dominates
Y with respect to n (integer) inverse order stochastic dominance (X >

−n
Y ) if and
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only if

F
(−n)
X (t) =

t∫
0

F
(−n+1)
X (u)du  F

(−n)
Y (t) =

t∫
0

F
(−n+1)
Y (u)du for all t ∈ [0, 1],

where we assume F
(−1)
X = F−1

X . As for integer stochastic orders, even the above
dual stochastic orders can be easily extended in continuous terms. Let us consider
the unique completion of the σ-finite positive measure associated with F−1

X , which
on the half open intervals of the forms [a, b) ⊆ [0, 1] is given by

µX

(
[a, b)

)
= F−1

X (b)− F−1
X (a) =

b∫
a

dF−1
X (p).

Then we can define the α dual functions:

F
(−1)
X (p) = F−1

X (p) for all p ∈ [0, 1],

(2.6) F
(−α)
X (p) =

1
Γ(α)

p∫
0

(p− u)α−1dF−1
X (u) for all p ∈ [0, 1], α 6= 1,

which are continuous for every α > 1 and left continuous for α ¬ 1. Moreover,
the functions F̄

(−1)
X (p) = −F

(−1)
X (p) for all p ∈ [0, 1] and

F̄
(−α)
X (p) =

1
Γ(α)

1∫
p+

(u− p)α−1dF−1
X (u) for all p ∈ [0, 1], α 6= 1,

are continuous for every α > 1, left continuous for α = 1 and right continuous
for α < 1. In particular, when X is a continuous random variable, it follows that
F̄

(−α)
X (p) = F

(−α)
−X (1− p) for all α > 0. Moreover, as a consequence of Lemma 2.1

we obtain

F
(−α)
X (p) =

1
Γ(α− v)

p∫
0

(p− u)α−v−1F
(−v)
X (u)du for all α > v > 0,

F̄
(−α)
X (p) =





1
Γ(α− v)

1∫
p+

(u− p)α−v−1F̄
(−v)
X (u)du

for all α > v  1 or 1 > α > v > 0,

lim
pn↗p

1
Γ(α− v)

1∫
pn

(u− pn)α−v−1 F̄
(−v)
X (u)du

for all α > 1 > v > 0.
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In particular, when α = 2, we obtain the absolute generalized Lorenz curve

F
(−2)
X (p) = LX (p) =

p∫
0

F−1
X (t)dt

(that is formally different from the relative Lorenz curve often used in income
inequality1). Thus the following definition extends the previous dual orders to con-
tinua orders.

DEFINITION 2.3. For every α > 0, we say that X dominates Y with respect
to the α dual (also called inverse) stochastic order (X 

−α
Y ) iff

F
(−α)
X (t)  F

(−α)
Y (t) for all t ∈ [0, 1],

and we say that X strictly dominates Y with respect to the α dual order (X >
−α

Y )

iff
X 
−α

Y and FX 6= FY .

We say that X dominates Y in the sense of the dual α-R-S order (strict) (dual
α-R-S (strict)) if

X 
−α

Y (X >
−α

Y ) and −X 
−α
−Y (−X >

−α
−Y ).

Similarly, we can define the survival order, that is,

X 
sur−α

Y iff F̄
(−α)
X (t) ¬ F̄

(−α)
Y (t)

for every t belonging to [0, 1]. Since for α > 1 we get F̄
(−α)
X (p) = F

(−α)
−X (1− p),

the results obtained for survival dual orders (with α > 1) are equivalent to those
obtained for orders applied to the opposite of the random variables. From this defi-
nition we infer that F

(−v)
X (p) is a reward measure for any p belonging to (0, 1). As

for the α stochastic orders, we can prove similar properties for the dual stochastic
orders. In particular, it is well known that 

1
and 

2
orders are equivalent to the re-

spective 
−1

and 
−2

orders. Therefore, all the implications which are valid for 
1

, 
2

(
b
1

,
b
2

) and 2-(bounded) R-S orders are still valid for the equivalent orders 
−1

, 
−2

and dual 2-R-S orders. However, integer stochastic dominance orders greater than
two are different by the respective dual orders (see, among others, Muliere and
Scarsini [19]). This is logical because the inverse stochastic order is defined only

1 The relative Lorenz curve is given by LX(p)/E(X); see Arnold [1], Ogryczak and Ruszczyn-
ski [23].
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on the support of the random variables (as
b
α

order but differently by 
α

order).

Thus there probably exists a correspondence between
b
α

and dual orders, which

will be the subject of future research.
On the other hand, we observe that inverse stochastic orders previously de-

fined can be extended to unbounded inverse stochastic orders as follows. Suppose
that either |F (−1)

X (0)| < ∞ or |F (−1)
X (1)| < ∞ for X belong to a given class of

random variables Λ. Then we extend F
(−1)
X on the whole real line R assuming

F
(−1)
X (u) = F

(−1)
X (0) for all u ¬ 0 and F

(−1)
X (t) = F

(−1)
X (1) for all t  1. More-

over, we say that X dominates Y with respect to the unbounded α inverse stochas-
tic order (unbounded X 

−α
Y ) iff

F
(−α)
X (u)  F

(−α)
Y (u) for every u ∈ R,

where

F
(−α)
X (u) =

1
Γ (α)

u−∫
−∞

(u− t)α−1dF
(−1)
X (t).

Many of the considerations done for stochastic dominance orders can be repeated
for dual orders, and in the next remark we summarize the main properties of these
orders.

REMARK 2.2. The following implications hold:
(1) Unbounded X 

−α
Y implies X 

−α
Y . In addition, for every β  α, (un-

bounded) X 
−α

Y implies (unbounded) X 
−β

Y, and X dual (unbounded) α-R-S

Y implies X dual (unbounded) β-R-S Y .
(2) X 

−α
Y if and only if cX + t 

−α
cY + t for every t ∈ R, c > 0, α > 0.

X 
−α

Y with α > 1 implies X
(M)
− 

−α
Y

(M)
− for any given M ∈ R.

(3) For every α > 1 and for every X,Y belonging to the set

Λ(α) := {X | |F (−α)
X (x)| <∞ for all x ∈ (0, 1)},

it follows that X 
−α

Y if and only if

1∫
0

φ(x)dF−1
X (x) ¬

1∫
0

φ(x)dF−1
Y (x) for every φ ∈ V α,
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where

V α =
{
φ(x) = −

1∫
x+

(s− x)α−1dτ(s)− k(1− x)α−1 | k  0;

τ is a σ-finite positive measure such that for all X ∈ Λ(α)

the function |s− x|α−1 is dτ(s)× dF−1
X (x) integrable in [0, 1]× [0, 1]

}
.

(4) For every α > 1 and for every X,Y ∈ Λ(α) = {X | |F (−α)
X (x)| < ∞

for all x ∈ R}, it follows that unbounded X 
−α

Y if and only if

+∞∫
−∞

φ(x)dF−1
X (x) ¬

+∞∫
−∞

φ(x)dF−1
Y (x) for every φ ∈ UV α,

where

UV α =
{
φ(x)=−

+∞∫
x+

(s−x)α−1dτ(s) | τ is a σ-finite positive measure such that

for all X ∈ Λ(α) the function |s− x|α−1 is dτ(s)× dF−1
X (x) integrable in R2

}
.

(5) If X 
−α

Y , then for any integer k  α− 1 the inequality

E( min
1¬i¬k

Xi)  E( min
1¬i¬k

Yi)

holds, where Xi, Yi (i = 1, . . . , k) are i.i.d. copies of X and Y, respectively.

P r o o f. While the first three points follow by the previous discussion, impli-
cations (4) and (5) are a logical consequence of the analysis proposed by Muliere
and Scarsini [19]. ¥

From the above discussion it follows that there exist many different ways to
discriminate between the choices available to investors. We distinguish between
orders and their dual/survival orders, bounded and unbounded orders, and risk and
uncertainty orders. Moreover, there exists a strong connection among orderings and
risk/uncertainty measures that will be more thoroughly treated in the next section.

3. NEW MEASURES FOR ORDERINGS AND PROBABILITY FUNCTIONALS

Most of portfolio theory is based on minimizing a distance from a benchmark
or minimizing potential possible losses while maintaining constant some portfolio
characteristics. As observed by Rachev et al. [28], these problems can be reformu-
lated from the point of view of the theory of probability metrics. In particular, we
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are generally interested in probability functionals µ : Λ × Λ → R (where Λ is a
non-empty space of real-valued random variables defined on (Ω,=, P )) satisfying
the following property for any pair of random variables X, Y :

IDENTITY PROPERTY. f(X) = f(Y ) ⇔ µ(X, Y ) = 0, where f(X) identi-
fies some characteristics of the random variable X .

From this property we can distinguish among three main groups of proba-
bility functionals (namely, primary, simple, and compound) depending on cer-
tain modifications of the identity property (see Rachev [27]). Compound prob-
ability functionals identify the random variable almost surely (i.e., for any pair
of random variables X, Y : µ(X,Y ) = 0 ⇔ P (X = Y ) = 1). Simple probabil-
ity functionals identify the distribution (i.e., for any pair of random variables X, Y :
µ(X, Y ) = 0⇔ FX = FY ). Primary probability functionals determine only some
random variable characteristics. Typically, with respect to the portfolio selection
problem, the two probability functionals µ studied are those that identify:

(1) The uncertainty of the random variable in a given absolute moment.
Thus, we can say that some portfolios are equivalent in uncertainty if they

present the same dispersion that can be measured in different ways, see Ortobelli
et al. [26]. For example, we can consider equivalent in uncertainty portfolios with:

• the same distance by a given benchmark Z,

µ(X, Y ) = 0⇔ d(X,Z) = d(Y, Z),

where d measures a distance between the random variable and the benchmark Z;
• the same level of concentration valued with an opportune moment p, i.e.

µ(X,Y ) = 0⇔ E(|X1 −X|p) = E(|Y1 − Y |p),
and where X1 is an independent copy of X and Y1 is an independent copy of Y .

(2) The losses in distributional tail behavior.
Thus, for example we can assume equivalent in losses (risk) two investments

that present
• the same distributional tail

µ(X,Y ) = 0⇔ FX(x) = FY (x) for all x ∈ (−∞, t]

for a given t;
• the same power of the tail valued on the left tails with an opportune moment,

µ(X, Y ) = 0⇔ E
(
(t−X)p

+

)
= E

(
(t− Y )p

+

)

for a given threshold t ∈ R.
Further extensions that describe primary, simple, and compound probability

metrics as tracking error measures can be found in Stoyanov et al. [33] and Orto-
belli et al. [25].
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3.1. FORS orderings. One of the principal problems in economics is the or-
dering of choices in the face of uncertainty. Basically, any observer can deduce
the decision makers’ preferences from their behavior in the market. Starting from
this logical deduction, utility theory classifies the optimal choices of different cat-
egories of market agents (for example, risk-averse, non-satiable, non-satiable risk
averse) under ideal market conditions. In particular, the fundamentals of utility
theory under uncertainty conditions have been developed by von Neumann and
Morgenstern [37]. Several improvements and further advancements of the theory
have been proposed, even in recent years; see, among others, Machina [17], Yaari
[38], Gilboa and Schmeidler [11], and Maccheroni et al. [16]. Roughly speaking,
in utility theory the ordering of uncertain choices begins with the selection of a
finite number of axioms characterizing the preferences of a given class of market
agents.

The second step of the theory involves representing the preferences of market
agents using “utility functionals” that summarize the decision makers’ behavior.
Clearly, there exists a correspondence among the orderings of utility functionals,
the orderings of preferences, and the orderings of random variables. Thus, when
utility functionals are characterized, it is possible to identify the different cate-
gories of market agents. Consequently, we can also identify the optimal choices
for a given class of market agents when we order some utility functionals. In par-
ticular, we define as efficient, for a given category of market operators, all the
admissible choices that cannot be preferred (dominated) by all the agents in the
same category. Moreover, there exists a correspondence between utility function-
als and probability functionals. Therefore, in order to capture the agents’ behavior,
we propose to study orderings among probability functionals which are induced by
orderings among preferences.

According to the definition of probability functionals (see Rachev [27]), we
want to discuss the main relevant properties of a probability functional with respect
to the portfolio selection problem. It is well known that the most important property
that characterizes any probability functional µ associated with a portfolio choice
problem is the consistency with a stochastic order, see Ortobelli et al. [26]. In
terms of probability functionals, the consistency is defined as: X dominates Y
with respect to a given order of preferences � implies µ(X, Z) ¬ µ(Y, Z) for a
fixed arbitrary benchmark Z.

We define a FORS measure induced by order � as any probability functional
µ : Λ × Λ→ R that is consistent with a given order of preferences �. The order
of preferences � could be characterized either with (a) some axioms that iden-
tify the decision makers’ preferences (as in utility theory); or with (b) an order
that identifies the preferences of a particular category of investors characterized by

the parameter α, such as orders >
α

,
b
>
α

, >
−α

, unbounded >
−α

and (dual) α-(bounded)

R-S order. In case (b), we simply call α-FORS order, the order of preference �
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and α-FORS measure induced by the α-FORS order any probability functional
µ : Λ× Λ→ R consistent with the given order of preferences.

Observe that in the definition of consistency, no rule relative to the benchmark
Z is described. As a matter of fact, the benchmark Z is a fixed random variable
that depends on the order of preferences �. Therefore, as a subclass of proba-
bility functionals consistent with an order of preference we can consider all the
risk measures µ : Λ→ R. In particular, the recent literature in financial economics
has highlighted the importance of some particular properties of risk measures; see,
among others, Artzner et al. [2], Frittelli and Rosazza Gianin [10], Föllmer and
Sheid [9], and Ortobelli et al. [26]. We recall that a convex measure µ(X) valued
on a family of random variables X ∈ Λ is:

1. monotone: for every X, Y ∈ Λ, X  Y ⇒ µ(X) ¬ µ(Y );
2. translation invariant2: for all X ∈ Λ and m ∈ R, µ(X + m) = µ(X)−m;
3. convex: for all X, Y ∈ Λ and for all a ∈ [0, 1],

µ
(
aX + (1− a)Y

) ¬ aµ(X) + (1− a)µ(Y ).

If additionally we even consider positive homogeneity,
4. positive homogeneous: for all α  0 and for all X ∈ Λ, µ(αX) = αµ(X),

then, we have a coherent static risk measure.
Thus any coherent risk measure is a FORS measure µ : Λ→ R induced by the

monotonic order, i.e., for all X,Y ∈ Λ, X > Y P -almost surely implies
µ(X) ¬ µ(Y ).

DEFINITION 3.1. We call a convex α-FORS measure any translation invariant,
convex probability functional µ : Λ→ R that is consistent with an α-FORS order.
We call a coherent α-FORS measure any translation invariant, convex, and positive
homogeneous probability functional µ : Λ→ R that is consistent with an α-FORS
order.

Although in many cases convex/coherent risk measures are convex/coherent
FORS measures, this definition better specifies the consistency. For example, for
every α  1 and for every β ∈ (0, 1) the measure

−Γ(α + 1)
βα

F
(−(α+1))
X (β)

is a coherent (α + 1)-FORS measure consistent with 
−(α+1)

order (see Ortobelli

et al. [26]). However, this measure is not necessarily consistent with 
−(γ+1)

when

2 Observe that there exist several alternative definitions of translation invariance property asso-
ciated with financial random variables (see Ortobelli et al. [26]). Since the translation invariance is
often used to value the risk of a random variable, some authors apply the property to the opposite of
the underlying random variable. In this case, the above property becomes: µ(X + m) = µ(X) + m.
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γ > α (i.e., it is not a coherent (γ + 1)-FORS measure). Among the typical FORS
functionals we can consider the following ones:

1. −F
(−α)
X (p) for a fixed benchmark p ∈ (0, 1) (is induced by >

−α
order);

2. F
(α)
X (t) for a fixed benchmark t ∈ R (is induced by >

α
order);

3. ρ̃t,α(X) = E(|t−X|α−1) for a fixed benchmark t ∈ R (is induced by α-
R-S order);

4. ρ̃α(X) = E(|X −X1|α−1) for the benchmark X1 that is an independent
copy of X (is induced by α-(bounded) R-S order).

As for the previous ordering analysis, we deduce that there exist two types of
FORS measures:

• measures of risk (tails, losses) which are induced by the monotonicity order

or by all the orderings of tails such as >
α

,
b
>
α

, >
−α

, that we call FORS risk measures

(that are measures of reward if we multiply the functions by −1);
• measures of uncertainty (concentration, dispersion) which are induced by

orderings of uncertainty such as (dual) α-(bounded) R-S orders, that we call FORS
uncertainty measures.

Similarly we can extend the previous definition to reward measures isotonic
to orderings. To do so we assume that any probability functional µ associated with
a portfolio choice problem satisfies the following property:

(b-bis) (isotonicity) X dominates Y with respect to a risk ordering � implies
µ(X, Z)  µ(Y, Z) for a fixed arbitrary benchmark Z.

Then the probability functional µ is called a FORS reward measure induced
by the risk order �.

Clearly, any consideration done for FORS risk measures can be easily ex-
tended to FORS reward measures. Moreover, all the above examples of FORS
functionals induced from a given ordering of preference � are parametric. How-
ever, under the opportune hypotheses, we can also say the converse. As a matter of
fact, one can develop many other kinds of orderings using the fractional integral in
the following way.

DEFINITION 3.2. Assume ρX : [a, b] → R̄ (with −∞ ¬ a < b ¬ +∞) is
a bounded variation function for every random variable X belonging to a given
class Λ. Furthermore, assume that ρX is a simple probability functional over the
class Λ (i.e., for all X, Y ∈ Λ, ρX = ρY ⇔ FX = FY ) and suppose that, for any
fixed λ ∈ [a, b], ρX (λ) is a FORS risk measure induced by a risk ordering �.
Then, for every α > 0 and for all X, Y ∈ Λ(α), where

Λ(α) =
{
X ∈ Λ |∣∣

b∫
a

|t|α−1 dρX(t)
∣∣ <∞}

,

we say that X dominates Y in the sense of α-FORS risk ordering induced by �
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(in symbols, X FORS�,α
Y ) if and only if

ρX,α(u) ¬ ρY,α(u) for all u ∈ [a, b],

where

ρX,α(u) =





1
Γ (α)

u−∫
a

(u− t)α−1dρX(t) if α > 0, α 6= 1,

ρX(u) if α = 1.

We call the new class of orderings FORS risk orderings induced by �, and we
call ρX a FORS measure associated with the FORS ordering of random variables
belonging to Λ.

In contrast to classic stochastic dominance orders, it could happen that

X FORS�,α
Y with α ∈ (0, 1)

even when the random variables X and Y are bounded and continuous on the
extremes of their support. Similarly, we can define FORS uncertainty orderings.

DEFINITION 3.3. We say that X dominates Y in the sense of α-FORS uncer-
tainty ordering induced by � (we simply write X FORS�,unc α

Y ) if and only if

x∫
a

(x− s)α−1
+ dρ±X(s) ¬

x∫
a

(x− s)α−1
+ dρ±Y (s) for all x ∈ [a, b],

i.e. when
X FORS�,α

Y and −X FORS�,α
−Y.

Given a FORS ordering, then it is possible to define a survival ordering as
follows:

ρ̄X,α(t) =





1
Γ (α)

b∫
t+

(u− t)α−1dρX(u) if α > 0, α 6= 1,

−ρX(t) if α = 1,

ρ̄X,α(t) =





1
Γ(α− v)

b∫
t+

(u− t)α−v−1ρ̄X,v(u)du

for all α > v  1 or 1 > α > v > 0,

lim
tn↗t

1
Γ(α− v)

b∫
t+n

(u− tn)α−v−1 ρ̄X,v(u)du for all α > 1 > v > 0,
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and we say that

X FORS�,sur α
Y iff ρ̄X,α(t) ¬ ρ̄Y,α(t) for every t ∈ [a, b].

However, in this case, we cannot generally say that the results obtained for survival
orders are equivalent to those obtained for orders applied to the opposite of the
random variables. Thus the survival FORS ordering is an alternative to the original
one. Note that if we assume in Definition 3.2 that ρX is a primary (instead of
simple) probability functional induced by �, then the probability functionals

ρX,α(u) =
1

Γ (α)

u−∫
a

(u− t)α−1dρX(t)

defined for α > 1 are again FORS measures induced by �. In addition, if σX is a
FORS probability functional induced by a given FORS ordering FORS�,v

, then σX

is again a FORS measure induced by the order �.
For any FORS risk ordering induced by �, we can easily define an inverse

(dual) ordering if the FORS measure ρX is monotone. In this case, we consider
the left inverse of ρX (i.e., ρ−1

X (x) = inf {u ∈ [a, b] : ρX(u)  x} for any real x
belonging to the value domain of ρX ). However, many of the extensions we have
observed for stochastic dominance order and its dual are still valid for FORS or-
derings as described in the following remark.

REMARK 3.1. The following implications hold for a FORS ordering of a ran-
dom variables class Λ:

(1) For every α > v > 0, X FORS�,v
Y implies X FORS�,α

Y, and we can write

ρX,α(t) =





1
Γ(α− v)

t−∫
a

(t− u)α−v−1ρX,v(u)du

for all α > v  1 or 1 > α > v > 0,

lim
tn↘t

1
Γ(α− v)

tn∫
a

(tn − u)α−v−1ρX,v(u)du for all α > 1 > v > 0.

(2) For any monotone increasing FORS measure ρX associated with a FORS
ordering, the left inverse ρ−1

X is a FORS reward measure and−ρ−1
X is itself a FORS

ordering induced by �.
(3) Suppose |ρX(b)| < ∞, |ρX(a)| < ∞ for every X belonging to Λ. Then

we can extend ρX on all the real line R assuming ρX(u) = ρX(a) for all u ¬ a
and ρX(u) = ρX(b) for all u  b. Moreover, we say that X unbounded FORS�,α

dominates Y iff ρX,α(u) ¬ ρY,α(u) for every u ∈ R, where we define

ρX,α(u) =
1

Γ (α)

u−∫
−∞

(u− t)α−1dρX(t) for all u ∈ R.

If ρX is monotone, then unbounded FORS�,α
order implies FORS�,α

order.
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P r o o f. It follows from the previous definitions and discussions. ¥

In addition, an equivalent formulation of FORS orderings is given by the fol-
lowing corollary that generalizes the representation of orderings using utility func-
tionals.

COROLLARY 3.1. Suppose ρX is a FORS measure associated with a FORS
ordering � on a given class of random variables X belonging to Λ. Then, given
X,Y ∈ Λ(α), X FORS�,α

Y if and only if

b∫
a

φ(u)dρX,1(u) 
b∫
a

φ(u)dρY,1(u)

for every φ belonging to

Wα =
{
φ(x) = −

b∫
x+

(s−x)α−1dτ(s)− k(b−x)α−1 | k  0, k = 0 if b =∞;

τ is a σ-finite positive measure such that for all X ∈ Λ(α)

the function |s− x|α−1 is dτ(s)× dρX(x) integrable in [a, b]× [a, b]
}
.

Moreover, for every 1 ¬ α < v, φv ∈ W v if and only if there exists a function
φα ∈Wα such that

φv(x) =
b∫

x+

(s− x)v−α−1 φα(s)ds.

P r o o f. The proof of this corollary is analogous to the proof given by Muliere
and Scarsini [19], Fishburn [6], [7] and Müller [20] with some little differences. In
particular, observe that if X FORS�,α

Y , then ρX,α(u) ¬ ρY,α(u) for every u be-

longing to [a, b]. Thus,

b∫
a

(b− s)α−1dρX(s) ¬
b∫
a

(b− s)α−1dρY (s)

and
b∫
a

u−∫
a

(u− s)α−1dρX(s)dτ(u) ¬
b∫
a

u−∫
a

(u− s)α−1dρY (s)dτ(u).

From the Fubini–Tonelli theorem, this is equivalent to the inequality

b∫
a

φ(u)dρX(u) 
b∫
a

φ(u)dρY (u),
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where φ(x) = −
∫ b

x+(s− x)α−1dτ(s)− k(b− x)α−1. Conversely, let us consider

ρX,α(u) =
1

Γ(α)

u−∫
a

(u− s)α−1dρX(s) =
b∫
a

φ(u)(s)dρX(s),

where

φ(u)(s) =
(u− s)α−1I[a,u)(s)

Γ(α)
=

b∫
s+

(z − s)α−1dτ(u)(z)

and

τ(u)(y) =
I(u,b](y)
Γ(α)

.

Clearly, for every u ∈ [a, b], −φ(u)(s) ∈Wα, and the inequality

b∫
a

(− φ(u)(s)
)
dρX(s) 

b∫
a

(− φ(u)(s)
)
dρY (s)

implies that for all u ∈ [a, b], ρX,α(u) ¬ ρY,α(u), i.e., X FORS�,α
Y . Moreover, as

a consequence of Lemma 1, for every α < v, we have φv ∈W v if and only if

φv(x) = −
b∫

x+

(s− x)v−1 dτv(s)− k (b− x)v−1

= −
b∫

x+

(s− x)v−α−1

B (v − α, α)
( b∫

s+

(y − s)α−1 dτv(y)− k (b− s)α−1 )
ds

=
b∫

x+

(s− x)v−α−1 φα(s)ds,

where

φα(s) = −
b∫

s+

(y − s)α−1 dτα(y)− k (b− s)α−1

B (v − α, α)
, τα(y) =

τv(y)
B(α, v − α)

,

and φα ∈Wα. ¥

Moreover, as follows from the proposition below, even some of the moments
properties we have verified for the stochastic dominance orders can be replaced for
FORS orderings.

PROPOSITION 3.1. Suppose ρX : [a, b]→ R̄ is a FORS measure associated
with a FORS ordering � for a given class of random variables X belonging to Λ.
Then the following implications hold for any opportune pair of random variables
X and Y belonging to Λ:
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(a) X FORS�,α
Y (α > 1) implies the following relations for any increasing

and invertible function H : supp(X,Y ) → [a, b] such that |H(z)− x|α−1 is
dFZ(z)× dρX(x) integrable for Z equal either to X or to Y :

E
(
ρX,α

(
H(X)

))
=

b∫
a

E
((

H(X)− s
)α−1

+

)
dρX(s)

¬
b∫
a

E
((

H(X)− s
)α−1

+

)
dρY (s) = E

(
ρY,α

(
H(X)

))
,

E
(
ρX,α

(
H(Y )

))
=

b∫
a

E
((

H(Y )− s
)α−1

+

)
dρX(s)

¬
b∫
a

E
((

H(Y )− s
)α−1

+

)
dρY (s) = E

(
ρY,α

(
H(Y )

))
.

In particular, when supp(X, Y ) = [c, d], we can take

H(x) =
x− c

d− c
(b− a) + a.

(b) If X FORS�,surα
Y and X FORS�,α

Y (i.e., ρ̄X,α(u) ¬ ρ̄Y,α(u) and ρX,α(u) ¬
ρY,α(u) for every real u ∈ [a, b]) and

∫ b

a
|s|r dρX(s) =

∫ b

a
|s|r dρY (s) for a given

r > α − 1, then FX = FY ; otherwise it implies
∫ b

a
|s|r dρX(s) <

∫ b

a
|s|r dρY (s)

for every r > α− 1.

P r o o f. Using P
(
X ¬ H−1(t)

)
= P

(
H(X) ¬ t

)
for all t ∈ [a, b] and ap-

plying the Fubini–Tonelli theorem, we get point (a). The proof of point (b) is prac-
tically the same as for point (b) of Proposition 2.3. ¥

The fact that a FORS measure ρX (associated with a FORS ordering) is a
simple probability functional over a given class of random variables qualifies the
FORS ordering itself. Next we propose a further characterization of FORS order-
ings. Suppose |t| < +∞ and let

ρX,α+is(t) =
1

Γ (α + is)

t∫
a

(t− x)α+is−1dρX(x)

be the complex extension of the FORS measure ρX,α(t) (α > 1) associated with a
FORS ordering. Then, as a consequence of Lemma 2.1, for every real α > v  1,
for all X ∈ Λ(α) and s, k ∈ R, we get

ρX,α+is(t) =
1

Γ (α + is)

0∫
t−a

(u)α+is−1dρX(t− u)

=
1

Γ
(
α− v + i(s− k)

)
t∫
a

(t− u)α−v+i(s−k)−1ρX,v+ik(u)du.
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Consequently, for all v ∈ [1, α) the functions

=X,v(p + is) = Γ(p + is)ρX,v+p+is(t) =
∞∫
0

fv(x)xp+is−1dx

are the Mellin transforms of the functions fv(x) := ρX,v(t− x)I[0,t−a](x), defined
for all p ∈ (0, α − v] and for all s ∈ R. Thus, from the properties of the Mellin
transform we get the following inversion formula: for all v ∈ [1, α), for all X ∈
Λ(α), and for all p ∈ (0, α− v],

ρX,v(t− x)I[0,t−a](x) =
1
2π

+∞∫
−∞
=X,v(p + im)x−p−imdm

and, in particular,

ρX(t− x)I[0,t−a](x) =
1
2π

+∞∫
−∞
=X,1(p + im)x−p−imdm for all p ∈ (0, α− 1];

see, among others, Titchmarsh [36], Szmydt and Ziemian [35], and Ortobelli [24].
Observe that the Mellin transform is an analytical function. Then, if we know the
values that the transform =X,v(sn) assumes on a countable complex sequence
{sn}n∈N (sn ∈ C) and even at its accumulation point s (i.e., sn → s), we uni-
vocally determine ρX,v(x) for every x ∈ [a, t]. That is, the α fractional integral
valued at a given point t and for every α ∈ (1, p] represents itself a transform
because hX(u) = Γ(u − 1)ρX,u(t) for all u > 1 is the Mellin transform of
ρX(t− x)I[0,t−a](x) valued on the real line. From this simple observation we get
a systematic way to generate FORS orderings based on the following theorem.

THEOREM 3.1. Suppose |b| < +∞ and ρ
(1)
X : [a, b]→ R is a simple FORS1

measure associated with a simple FORS1 ordering� defined on a class of random
variables Λ. If ρ

(1)
X is a bounded and monotone function, then the probability func-

tional ρ
(2)
X : [1, p1]→ R defined by ρ

(2)
X (u) = ρ

(1)
X,u(b) points out a simple FORS2

measure (induced by �) on the class of random variables Λp1 ,

Λp1 = {X ∈ Λ/p1 > 1 : |ρ(1)
X,p1

(b)| < +∞}.

In addition, ρ
(2)
X is associated with the following new simple FORS2 ordering in-

duced by the previous one � defined for every pair

X, Y ∈ Λp1,(α) =
{
Z ∈ Λp1 :

∣∣
p1∫
1

uα−1dρ
(2)
X (u)

∣∣ <∞}
, α > 0,

as follows:

X FORS2�,α
Y iff ρ

(2)
X,α(u) ¬ ρ

(2)
Y,α(u) for all u ∈ [1, p1].



230 S. Ortobel l i et al.

We call the second level of ordering induced by � the new class of orderings
FORS2.

P r o o f. From the Hölder inequality we know that for every α ∈ (1, p] and
X ∈ Λp = {Z ∈ Λ: |ρ(1)

Z,p(b)| < +∞}, it follows that X ∈ Λα. Thus, the func-

tion ρ
(2)
X (u) = ρ

(1)
X,u(b) is defined for every X ∈ Λp1 and for every u ∈ [1, p1].

Moreover, since

X FORS1
�,1

Y implies X FORS1�,u
Y for any u ∈ [1, p1],

we infer that

X FORS1
�,1

Y implies ρ
(2)
X (u) = ρ

(1)
X,u(b) ¬ ρ

(1)
Y,u(b) = ρ

(2)
Y (u).

Therefore ρ
(2)
X (u) is a FORS2 measure induced by� on the class Λp1 for any fixed

u ∈ [1, p1]. In addition, if for almost any u ∈ [1, p1] we have ρ
(2)
X (u) = ρ

(2)
Y (u),

then ρ
(1)
X,u(b) = ρ

(1)
Y,u(b). Thus, by applying the inverse Mellin transform, we get

ρ
(1)
X (t) = ρ

(1)
Y (t) for every t ∈ [a, b]. This implies FX = FY , i.e., ρ

(2)
X is a simple

probability functional on the class Λp1 . Thus, using Definition 3.2 we prove the
theorem. ¥

Thus, given a FORS1 ordering, we can define a second level of ordering
FORS2 and the definition can be extended recursively. As a matter of fact, we
can easily get a k-th level of FORSk ordering ρ

(k)
X : [1, pk] → R with ρ

(k)
X (u) =

ρ
(k−1)
X,u (pk−1) on the class of random variables

Λpk
= {X ∈ Λpk−1

| pk > 1: |ρ(k−1)
X,pk

(pk−1)| < +∞},

where p0 = b. An immediate consequence of the proposed analysis is given by the
following corollary.

COROLLARY 3.2. Under the assumption of Theorem 3.1, for every m > k
and α  1 the ordering X FORSk

�,1
Y implies X FORSm�,α

Y. In particular, if σX

is a FORSk probability functional induced by the k-th level of a FORS ordering
FORSk�,v

(v  1), then σX is also a FORS measure induced by order �.

Thus, it follows from Corollary 3.2 that the new orders are finer than the gener-
ating one. This could permit us to characterize better the investors’ choices under
uncertainty. However, several new questions arise by the introduction of k-level
orderings. For example, it could be interesting to analyze the relations/differences
existing among functionals ρ

(k)
X,α and ρ

(s)
X,β for s 6= k and/or α, β > 1, α 6= β, in
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order to understand their impact on investors’ preferences. We also believe that
some of the “moments” properties verified by Fishburn [8] and O’Brien [22] can
be extended to FORS type orderings. However, because of space constraints, we
cannot be exhaustive in our analysis and further analysis of these issues will be the
subject of a future paper.

3.2. Examples of FORS measures and orderings. Typical examples of FORS
orderings are the classical stochastic orders and their duals that are induced by
the first stochastic dominance order. Consider the following examples of FORS
measures and orderings.

Moment FORS measures. For any fixed real t,

ρX (λ) = Γ(λ + 1)F (λ+1)
X (t) = E

(
(t−X)λ

+

)

is a primary probability functional over the class of p-integrable random variables
Λ = Lp = {X | E (|X|p) < +∞}. In addition, ρX (λ) defined for every λ  m

and a given m < p is a FORS measure induced by
b
>

m+1
. Then for every α  1 the

measure

mρX,α(u) =
1

Γ(α)

u∫
m

(u− s)α−1dρX(s) for all u  m

with m < p is a FORS measure induced by
b
>

m+1
that identifies the distribution of

the tail (i.e., mρX,α(u) = mρY,α(u) for all u  m for a given α  1 iff FX(x) =
FY (x) for all x ¬ t). This is a logical consequence of the inverse Mellin trans-
form applied to the moment curve of the positive random variable (t−X)+ that
univocally determines the distribution of the tail.

Weak moment FORS orderings. Let us consider the class of random variables
bounded from above and p-integrable: Λ = {Z ∈ Lp | Z ¬ b < +∞}. Then for
every m < p we can consider mρX(λ) = E

(
(b−X)λ )

for all λ  m, which is

a FORS measure induced by the m + 1 stochastic dominance order
b
>

m+1
, that is

also a simple probability functional over the class Λ. Thus for every m  0 the
following probability functional:

mρX,α(u) =
1

Γ(α)

u∫
m

(u− s)α−1dmρX(s) for all u  m,

identifies a FORS ordering induced by the order �≡ b
>

m+1
. That is, for every pair of

random variables X and Y in the class Λ:

X FORS�,α
Y if and only if mρX,α(u) ¬ mρY,α(u) for all u  m.
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Similar analysis can be done with random variables bounded from below.
Thus for random variables Λ̃ = {Z | −∞ < a ¬ Z ¬ b < +∞} bounded from
below and above we can express moment FORS orderings induced by the order
�≡ >

m+1
assuming that for all Z ∈ Λ̃ we have Z ¬ b and −Z ¬ −a. Thus if for all

λ  m we have mρX(λ) = E
(
(b−X)λ )

, then mρ−X(λ) = E
(
(X − a)λ )

. Con-
sequently, for every pair of random variables X and Y belonging to Λ̃, we can say
that X dominates Y in the sense of α-moment FORS uncertainty ordering induced
by the risk ordering �≡ >

m+1
when X FORS�,α

Y and −X FORS�,α
−Y .

4. CONCLUDING REMARKS

This paper unifies the classical theory of stochastic dominance and investor
preferences with the recent literature on risk measures applied to the portfolio se-
lection choice problem faced by investors. First we distinguish between primary,
simple, and compound probability functionals. In addition, we propose new order-
ings and measures for risk and reward.

Many new problems arise from this analysis. First, since some of the “mo-
ments” properties indicated by O’Brien [22] can be extended to FORS-type orders,
we can better specify the optimization portfolio problem by taking into account the
investor’s attitude toward risk. Therefore, if we create an ordering induced by an
order of preferences, we need to propose optimization models that are based on
consistent probability functionals. Second, we need to understand how to value the
impact of different probability functionals. In particular, in order to determine the
best opportunity from the perspective of different market agents, we have to com-
pare the effect of several portfolio strategies. In that case, we need to consider the
theoretical characteristics of the different statistics and their asymptotic behavior.
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