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Abstract. Limit theorems are presented for the rescaled occupation
time fluctuation process of a critical finite variance branching particle sys-
tem inRd with symmetric α-stable motion starting off from either a standard
Poisson random field or the equilibrium distribution for critical d = 2α and
large d > 2α dimensions. The limit processes are generalised Wiener pro-
cesses. The obtained convergence is in space-time and finite-dimensional
distributions sense. Under the additional assumption on the branching law
we obtain functional convergence.
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1. INTRODUCTION

The basic object of our investigation is a branching particle system. It consists
of particles evolving independently in Rd according to a spherically symmetric
α-stable Lévy process (called a standard α-stable process), 0 < α ¬ 2. The sys-
tem starts off at time 0 from a random point measure M . The lifetime of a particle
is an exponential random variable with parameter V . After that time the particle
splits according to the law determined by a generating function F . We always as-
sume that the branching is critical, i.e., F ′(0) = 1. Each of the new-born particles
undertakes the α-stable movement independently of the others, and so on. The
evolution of the system is described by (and in fact can be identified with) the em-
pirical (measure-valued) process N , where Nt(A) denotes the number of particles
in the set A ⊂ Rd at time t. We define the rescaled occupation time fluctuation
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process by

(1.1) XT (t) =
1

FT

Tt∫
0

(Ns − ENs) ds, t  0,

where T is a scaling parameter which accelerates time (T → +∞) and FT is a
proper deterministic norming. XT is a signed-measure-valued process but it is con-
venient to regard it as a process in the tempered distributions space S′(Rd). The
objectives are to find suitable FT such that XT converges in law as T → +∞ to a
non-trivial limit and to identify this limit. This problem, or its modifications (e.g.
its superprocess or discrete versions), has been studied in several papers ([2], [3],
[11], [12], the list is not complete). The papers [2] and [3] are of special inter-
est since they cope with a discrete space model similar to ours. In particular, the
above papers study the fluctuations of the occupation time at the origin for a critical
branching random walk on the d-dimensional lattice, d  3, also in the equilibrium
case. The convergence results drawn by our work are analogous to [2], [3].

Typically, the initial configuration M was a Poisson measure, in most cases a
homogeneous one, i.e. with the intensity measure λ being the Lebesgue measure,
and the branching law was either binary or of a special form, belonging to the
domain of attraction of a (1 + β) stable distribution (0 < β ¬ 1). We consider
a general branching law with finite variance and the initial measure M is either
Poisson homogeneous or is the equilibrium measure of the system. In what follows,
we will use superscripts Poiss (e.g., NPoiss) or eq (e.g., Xeq

T ) to indicate which
model we are dealing with.

It is known [10] that an equilibrium measure M eq of our branching system
exists provided that d > α. In [12] the case of intermediate dimensions α < d <
2α was considered. It was shown that the limits (in the sense of the convergence
in law in C

(
[0, τ ], S′(Rd)

)
, τ > 0) of XPoiss

T and Xeq
T are different; they have the

form Kλξ, where K is a constant and ξ is a real Gaussian process which in the
Poisson case is a sub-fractional Brownian motion, while in the equilibrium case
it is a fractional Brownian motion (see [5] for the definition and properties of the
sub-fractional motion).

This paper may be regarded as an extension of [9]. While both papers consider
the case of critical (d = 2α) and large (d > 2α) dimensions, the presented work
considers more general branching law and also studies an equilibrium-starting sys-
tem. It turns out that now the limits of XPoiss and Xeq coincide, for d = 2α the
limit is Kλβ, where β is the standard Brownian motion, and if d > 2α, then the
limit is an S′(Rd)-valued Wiener process. Moreover, these limits are, up to a con-
stant, the same as those obtained in [9] for the Poisson system with binary branch-
ing. The proof method is based on the so-called space-time approach, similar to
that employed in [9], though with some extra technical difficulties. For the sake
of brevity we omit most of the calculations. Terms resulting for an equilibrium-
starting system were generally more cumbersome (especially for the critical di-
mension d = 2α) and required more careful analysis. Examples of such terms are
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given in Section 3.2. The finiteness of integrals was proved by using some deli-
cate estimates employing e.g. Young’s inequality. Additionally, in Section 3.3 we
developed subtle inequalities using e.g. l’Hôpital’s rule. The number of terms aris-
ing in the proof of tightness (Section 3.1.3) was also a considerable difficulty (see
Remark 3.1).

2. RESULTS

As mentioned in the Introduction our state space is the space S′(Rd) of tem-
pered distributions, dual to the space S(Rd) of smooth rapidly decreasing func-
tions. Duality in the appropriate spaces is denoted by 〈·, ·〉. Three kinds of conver-
gence are used. Firstly, the convergence of finite-dimensional distributions, denoted
by⇒f . For a continuous S′(Rd)-valued process X = (Xt)t0 and any τ > 0 one
can define an S ′(Rd+1)-valued random variable

(2.1) 〈X̃, Φ〉 =
τ∫
0

〈Xs, Φ(·, s)〉 ds, Φ ∈ S(Rd+1).

If for any τ > 0 it follows that X̃n → X̃ in distribution, then we say that the
convergence in the space-time sense holds and denote this fact by⇒i. Finally, we
consider the functional weak convergence denoted by Xn ⇒c X . It holds if for any
τ > 0 processes Xn =

(
Xn(t)

)
t∈[0,τ ]

converge to X =
(
X(t)

)
t∈[0,τ ]

weakly in

C
(
[0, τ ],S ′(Rd)

)
. It is known that⇒i and⇒f do not imply each other, but either

of them together with tightness implies⇒c (see [4]). Conversely,⇒c implies both
⇒i and⇒f .

Consider a branching particle system described in the Introduction. Let us put
(recall that F is the generating function of the branching law)

(2.2) m = F ′′(1).

We start with the large dimension case.

THEOREM 2.1. Assume that d > 2α and let FT = T 1/2. Assume that the ini-
tial configuration of the system is given either by a Poisson homogeneous measure
or by the equilibrium measure and let XT be defined by (1.1), i.e. XT = XPoiss

T
or XT = Xeq

T . Then:
(1) XT ⇒f X and XT ⇒i X as T → +∞, where X is a centered S ′-valued

Gaussian process with the covariance function

Cov (〈Xs, ϕ1〉 , 〈Xt, ϕ2〉) = (s ∧ t)
1
2π

∫
Rd

(
2
|z|α +

V m

2|z|2α

)
ϕ̂1(z)ϕ̂2(z)dz,

where ϕ1, ϕ2 ∈ S
(
Rd

)
.
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(2) If, additionally, the branching law has finite fourth moment, then

XT ⇒c X as T → +∞.

For the critical dimension we have the following theorem:

THEOREM 2.2. Assume that d = 2α and let FT = (T log T )1/2. Assume that
the initial configuration of the system is given either by a Poisson homogeneous
measure or by the equilibrium measure and let XT be defined by (1.1), i.e. XT =
XPoiss

T or XT = Xeq
T . Then:

(1) XT ⇒f X and XT ⇒i X as T → +∞, where

X =
(

mV

2

)1/2

Cdλβ, Cd =
(

2d−2πd/2dΓ
(

d

2

))−1/2

,

and β is a standard Brownian motion.
(2) If, additionally, the branching law has finite fourth moment, then

XT ⇒c X as T → +∞.

REMARK 2.1. (a) It is unclear if the assumption of the existence of the fourth
moment is necessary for the functional convergence to hold. One can see that only
the second moment influences the result. In the proof below the assumption is only
used in the proof of tightness of the family XT (see also Remark 3.1).

(b) The limit process X in Theorem 2.1 is an S′(Rd)-valued homogeneous
Wiener process.

3. PROOFS

3.1. General scheme.

3.1.1. Space-time convergence. We present a general scheme which will be
used in the proofs of both theorems. It is similar to the one employed in [12]
and [9]. Many parts of the proofs are the same for NPoiss (the system starting
from a Poisson field) and N eq (the system starting from the equilibrium distribu-
tion), so we will omit superscripts when a formula holds for both of them. Let XT

be the occupation time fluctuation process defined by (1.1). Firstly we establish the
convergence in the space-time sense. Let us consider X̃T defined according to (2.1)
(τ = 1). We will show the convergence of the Laplace transforms

(3.1) lim
T→+∞

Eexp(−〈X̃T , Φ〉) = Eexp(−〈X̃, Φ〉), Φ ∈ S(Rd+1), Φ  0,

where X is the corresponding limit process. This will imply the weak convergence
of X̃T since the limit processes are Gaussian ones (see the detailed explanation
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in [8]). The purpose of the rest of this section is to gather facts used to calculate the
Laplace transforms and to show the convergence (3.1). To make the proof shorter
we will consider Φ of the special form:

Φ(x, t) = ϕ(x)ψ(t), ϕ ∈ S(Rd), ψ ∈ S(R+), ϕ  0, ψ  0.

We also put

(3.2) ϕT =
1

FT
ϕ, χ(t) =

1∫
t

ψ(s)ds, χT (t) = χ

(
t

T

)
.

We write

(3.3) Ψ(x, t) = ϕ(x)χ(t),

(3.4) ΨT (x, t) = ϕT (x)χT (t);

note that Ψ and ΨT are positive functions. For a generating function F we define

(3.5) G (s) = F (1− s)− 1 + s.

We will need the following properties of G (we omit straightforward proofs):

FACT 3.1. 1. G (0) = F (1)− 1 = 0.
2. G′ (0) = −F ′ (1) + 1 = 0.
3. G′′ (0) = F ′′ (1) < +∞.
4. G (v) = (m/2)v2 + g (v) v2, where the parameter m is defined by (2.2)

and limv→0 g (v) = 0.
5. G′′′(0) < +∞ and GIV(0) < +∞ if the law determined by F has finite

fourth moment.

Let us recall the classical Young’s inequality

(3.6) ‖f ∗ g‖p ¬ ‖f‖q1
‖g‖q2

,

which holds when 1/p = 1/q1 + 1/q2 − 1, q1, q2  1.
Now we introduce an important function used throughout the rest of the paper:

(3.7) vΨ (x, r, t) = 1− E exp
{−

t∫
0

〈Nx
s , Ψ(·, r + s)〉 ds

}
,

where Nx
s denotes the empirical measure of the particle system with the initial

condition Nx
0 = δx. The function vΨ satisfies the equation

vΨ (x, r, t) =
t∫
0

Tt−s

[
Ψ(·, r + t− s)

(
1− vΨ (·, r + t− s, s)

)

− V G
(
vΨ (·, r + t− s, s)

)]
(x) ds.

(3.8)
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The equation can be proved by using the Feynman–Kac formula in the same way
as Lemma 3.4 in [12]. We also define

(3.9) nΨ (x, r, t) =
t∫
0

Tt−sΨ (·, r + t− s) (x) ds.

Since we consider only positive Ψ, so (3.7) and (3.8) yield

(3.10) 0 ¬ vT (x, r, t) ¬ nT (x, r, t),

where, for simplicity of the notation, we write

(3.11) vT (x, r, t) := vΨT
(x, r, t),

(3.12) nT (x, r, t) := nΨT
(x, r, t),

(3.13) vT (x) := vT (x, 0, T ),

(3.14) nT (x) := nT (x, 0, T ),

when no confusion can arise.

FACT 3.2. It follows that nT (x, T − s, s) → 0 uniformly in x ∈ Rd, s ∈
[0, T ] , as T → +∞.

The proof is the same as that of Fact 3.7 in [12].
We also introduce a function VT which is defined by

(3.15) VT (x, l) = 1− Eexp
(〈Nx

l , ln(1− vT )〉)

and fulfills the equation

(3.16) VT (x, l) = TlvT (x)− V
l∫
0

Tl−sG
(
VT (·, s)) (x) ds.

It satisfies (details can be found in [12], Section 3.2.2)

(3.17) 0 ¬ VT (x, l) ¬ TlvT (x) for all x ∈ Rd, l  0.

Now we can write the Laplace transforms (see [12], Sections 3.1.2 and 3.2.2 for
calculations)

(3.18) Eexp(−〈X̃Poiss
T , Φ〉) = exp

(
A(T )

)
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and

(3.19) Eexp(−〈X̃eq
T , Φ〉) = exp

(
A(T ) + B(T )

)
,

where

A (T ) =
∫
Rd

T∫
0

ΨT (x, T − s) vT (x, T − s, s) + V G
(
vT (x, T − s, s)

)
dsdx,

(3.20)

B (T ) = V
+∞∫
0

∫
Rd

G
(
VT (x, t)

)
dxdt.(3.21)

We consider the following decomposition of A(T ):

(3.22) A(T ) = exp
{
V

(
I1 (T ) + I2 (T )

)
+ I3 (T )

}
,

where

I1 (T ) =
T∫
0

∫
Rd

m

2
( s∫

0

TuΨT (·, T + u− s) (x) du
)2

dxds,(3.23)

I2 (T ) =
T∫
0

∫
Rd

[
G

(
vT (x, T−s, s)

)−m

2
( s∫

0

TuΨT (·, T + u− s) (x) du
)2

]
dxds,

(3.24)

I3 (T ) =
T∫
0

∫
Rd

ΨT (x, T − s) vT (x, T − s, s) dxds.(3.25)

We claim that in the case of large dimensions (d > 2α) we have

I1(T )→ m

2(2π)d

1∫
0

1∫
0

(r ∧ r′)ψ(r)ψ(r′)drdr′
∫
Rd

|ϕ̂(z)|2
|z|2α

dz,(3.26)

I2(T )→ 0,(3.27)

I3(T )→ 1
(2π)d

1∫
0

1∫
0

(r ∧ r′)ψ(r)ψ(r′)drdr′
∫
Rd

|ϕ̂(z)|2
|z|α dz.(3.28)

Using the decomposition (3.22) we obtain the limit of A(T ) and, consequently, the
one for the Laplace transform (3.18). This establishes the space-time convergence
of the Poisson-starting system XPoiss

T considered in (1) of Theorem 2.1. Anal-
ogously, in the critical case (d = 2α), we obtain the corresponding convergence
considered in (1) of Theorem 2.2 once we show

(3.29) I1(T )→ m

2
C2

d

1∫
0

1∫
0

(r ∧ r′)ψ(r)ψ(r′)
(∫
Rd

ϕ(x)dx
)2
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and

(3.30) I2(T ), I3(T )→ 0.

The limits (3.26)–(3.30) will be obtained in Sections 3.2 and 3.3.
Now we proceed to the case of the equilibrium-starting system Xeq

T . In both
Theorems 2.1 and 2.2 the limits are the same as in the XPoiss

T case. It follows
immediately from (3.19) that it will be proved when we show

B(T )→ 0.

Let us first observe an elementary fact that the uniform convergence VT (·, ·)→ 0
as T → +∞ holds. It is a direct consequence of Fact 3.2 and the combination of
inequalities (3.17) and (3.10). This together with Fact 3.1 yields

(3.31) B(T ) ¬ c
+∞∫
0

∫
Rd

(TtnT (x)
)2

dxdt.

Let us denote the right-hand side of (3.31) by B1(T ). Now we need to obtain

(3.32) lim
T→+∞

B1(T ) = 0,

which is put off to Sections 3.2 and 3.3.

3.1.2. Finite dimensional convergence. A similar method, based on the Laplace
transform, can be applied to prove the finite distributions convergence. Indeed, for
a sequence 0 ¬ t1 ¬ t2 ¬ . . . ¬ tn ¬ τ and functions ϕ1, ϕ2, . . . , ϕn ∈ S(Rd),
ϕi  0, we write the Laplace transform

(3.33) Eexp
( n∑

i=1

〈XT (ti), ϕi〉
)
.

The main observation is that, formally,

n∑

i=1

〈XT (ti), ϕi〉 = 〈X̃T , Φ〉

if Φ =
∑n

i=1 ϕiδti (which corresponds to Ψ(x, s) =
∑n

i=1 ϕi(x)1[0,ti](s), recall
the definition (3.3)).

It turns out that the Laplace transforms (3.18), (3.19) and formulae (3.8),
(3.16) are still valid for Φ and Ψ. The proof for the Poisson-starting system is a
simpler version of the one presented below and is left to the reader. We employ an
approximation argument. Consider Φn → Φ, where Φn ∈ S(Rd+1), and addition-
ally assume that the sequence (Φn)n is chosen such that Ψn(x, t) =

∫ 1

t
Φn(x, s)ds

is nondecreasing: Ψn ¬ Ψn+1. To keep the proof short we adhere to the following
notation: symbols with (without) the superscript n will denote functions defined
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for Φn and Ψn (respectively, Φ and Ψ) (e.g. vn := vΨn given by (3.8)). T is fixed,
and hence is omitted where possible.

The first assertion is that V (x, l) satisfies the equation (3.16). The definition
(3.15) implies that V n(x, l) → V (x, l) (pointwise), which follows immediately
from vn → v (left to the reader), the inequality 0 ¬ v ¬ 1 and the dominated
convergence theorem. By assumption Φn ∈ S(Rd+1) and V n satisfies the equation
(3.16). Passing to the limit n→ +∞ and employing the dominated convergence
theorem to the right-hand side of the equation complete the proof.

Now we turn to the Laplace transform (3.19). It is obvious that

lim
n
Eexp(−〈X̃eq

T ,Φn〉) = Eexp(−〈X̃eq
T , Φ〉).

One can see that formula (3.19) for Φ will be justified if only An → A, Bn → B.
Proving the first one is left to the reader. It is straightforward to check that Φn ¬
Φn+1 implies Vn ¬ Vn+1 and that G is nondecreasing. A standard application of
the monotone convergence theorem completes the proof. The finite distributions
convergence is thus established. Indeed, the above argumentation allows the calcu-
lations from Section 3.1.1 to be repeated for Φ =

∑n
i=1 ϕiδti , which implies the

convergence of the Laplace transform (3.33) and, consequently, the finite dimen-
sional convergence in (1) of Theorems 2.1 and 2.2.

3.1.3. Functional convergence. In this subsection we present a general scheme
of the proof of the functional convergence. The assertion follows immediately from
the part (1) of Theorem 2.1 (Theorem 2.2) if we prove that {XT , T > 2} is tight
in C

(
[0, 1],S ′(Rd)

)
(with no loss of generality we consider τ = 1). Generally,

we follow the lines of the proof of tightness in Theorem 2.2 in [9]. However, in
our case new technical difficulties arise because of a more general branching law.
Some estimates are more cumbersome and some extra terms appear. Moreover, we
establish tightness for Xeq

T which was not investigated in [9]. This requires even
more intricate computations than in the Poisson case. By the Mitoma theorem (see
[13]) it suffices to show tightness of the real processes 〈XT , ϕ〉 for all ϕ ∈ S(Rd).
This can be done by using the following criterion ([1], Theorem 12.3):

(3.34) E
(〈XT (t), ϕ〉 , 〈XT (s), ϕ〉)4 ¬ C(t− s)2.

Let (ψn)n be a sequence in S(R), and put χn(u) =
∫ 1

u
ψn(s)ds. It is an easy

exercise to show that the sequence (ψn)n can be chosen in such a way that

ψn → δt − δs,

(3.35) 0 ¬ χn ¬ 1[s,t].

A detailed construction can be found in [9].
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Let us put Φn = ϕ⊗ ψn. We have

lim
n→+∞ 〈XT , Φn〉 = 〈XT (t), ϕ〉 − 〈XT (s), ϕ〉;

thus by Fatou’s lemma and the definition of ψn we will obtain (3.34) if we prove
(C is a constant independent of n and T ) that

E〈X̃T , Φn〉4 ¬ C(t− s)2.

From now on we fix an arbitrary n and define Φ := Φn and χ := χn. By properties
of the Laplace transform we have

E〈X̃T ,Φ〉4 =
d4

dθ4

∣∣∣∣
θ=0

Eexp(−θ〈X̃T ,Φ〉).

Hence the proof of tightness will be completed if we show

(3.36)
d4

dθ4

∣∣∣∣
θ=0

Eexp(−θ〈X̃T ,Φ〉) ¬ C(t− s)2.

The rest of the section is devoted to calculate the fourth derivative of the
Laplace transforms (3.18) and (3.19). Here and subsequently A(θ, T ) and B(θ, T )
will denote (3.20) and (3.21) taken for Ψθ,T = θϕT ⊗ χT (ϕT and χT are defined
in (3.2)), i.e.,

A(θ, T )=
∫
Rd

T∫
0

θϕT (x)χT (T−s)vΨθ,T
(x, T−s, s)+ V G

(
vΨθ,T

(x, T−s, s)
)
dsdx,

B (θ, T ) = V
+∞∫
0

∫
Rd

G
(
VΨθ,T

(x, t)
)
dxdt.

REMARK 3.1. This is the point where we need the existence of the fourth
moment of the branching law. Note that in the case of the binary branching law
(the model investigated in [9]) the fourth moment is obviously finite. The formu-
lae derived below are consistent, but more complicated than the ones considered
in [9]. This makes the computation here significantly longer and, moreover, some
new technical difficulties arise especially in the case of critical dimensions. New
arguments and estimations were required to cope with them.

A trivial verification shows that A(0, T ) = 0, A′(0, T ) = 0, B(0, T ) = 0,
B′(0, T ) = 0. Hence

d4

dθ4

∣∣∣∣
θ=0

exp
(
A(θ, T )

)
= AIV(0, T ) + A′′(0, T )2,
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d4

dθ4

∣∣∣∣
θ=0

exp
(
A(θ, T ) + B(θ, T )

)

= AIV(0, T ) + BIV(0, T ) +
(
A′′(0, T ) + B′′(0, T )

)2
.

Now taking into account (3.36), to prove tightness, it suffices to show that

(3.37) A′′(0, T ) ¬ C(t− s), B′′(0, T ) ¬ C(t− s),

(3.38) AIV(0, T ) ¬ C(t− s)2, BIV(0, T ) ¬ C(t− s)2.

It will be convenient to put

v(θ) = v(θ)(x, T − u, u) = vΨθ,T
(x, T − u, u),

V (θ) = V (θ)(x, t) = VΨθ,T
(x, T − u, u),

k = G′′′(0), l = GIV(0).

Using the properties from Fact 3.1 we obtain

A′′(0, T ) = 2
T∫
0

∫
Rd

ϕT (x)χT (T − u)v′(0)dxdu + V m
T∫
0

∫
Rd

(
v′(0)

)2
dxdu

AIV(0, T ) = 4
T∫
0

∫
Rd

ϕT (x)χT (T − u)v′′′(0)dxdu + V l
T∫
0

∫
Rd

(
v′(0)

)4
dxdu

+ 6V k
T∫
0

∫
Rd

(
v′(0)

)2
v′′(0)dxdu + 3V m

T∫
0

∫
Rd

(
v′′(0)

)2
dxdu

+ 4V m
T∫
0

∫
Rd

v′(0)v′′′(0)dxdu.

Similarly,

B′′(0, T ) = V m
T∫
0

∫
Rd

(
V ′(0)

)2
dsdx,

BIV(0, T ) = V l
+∞∫
0

∫
Rd

(
V ′(0)

)4
dxds + 6V k

+∞∫
0

∫
Rd

V ′′(0)
(
V ′(0)

)2
dxds

+ 3V m
+∞∫
0

∫
Rd

(
V ′′(0)

)2
dxds + 4V l

+∞∫
0

∫
Rd

V ′(0)V ′′′(0)dxds.

(3.39)
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Derivatives of v(θ) and V (θ) at θ = 0 are given by

(3.40) v′(0)(x, T − u, u) =
u∫
0

Tu−s[ϕT (·)χT (T − s)](x)ds,

v′′(0)(x, T − u, u) = −2
u∫
0

Tu−s[ϕT (·)χT (T − s)v′(0)(·, T − s, s)](x)ds

−mV
u∫
0

Tu−s

[(
v′(0)(·, T − s, s)

)2](x)ds,

v′′′(0)(x, T − u, u) = −3
u∫
0

Tu−s[ϕT (·)χT (T − s)v′′(0)(·, T − s, s)](x)ds

− kV
u∫
0

Tu−s

[(
v′(0)(·, T − s, s)

)3](x)ds

− 3mV
u∫
0

Tu−s[v′(0)(·, T − s, s)v′′(0)(·, T − s, s)](x)ds,

V ′(0)(x, s) = Tsv′(0)(x, 0, T ),

V ′′(0)(x, s) = Tsv′′(0)(x, 0, T )− V m
s∫
0

Tt−u

((
V ′(0)(·, u)

)2
)

du,(3.41)

V IV(0)(x, s) =

TsvIV(0)(x, 0, T )−V
s∫
0

Tt−u

(
3mV ′(0)(·, u)V ′′(0)(·, u)+k

(
V ′′′(0)(·, u)

)3
)
du.

3.2. Proof of Theorem 2.1. We follow the scheme described in Section 3.1.1
for the large dimensions case. I1 does not depend on F , so (3.26) can be obtained
in the same way as (3.15) in [9].

We will turn now to (3.27) which is a little more intricate. Combining (3.24)
and the decomposition of G from Fact 3.1 we obtain

(3.42) I2(T ) =
m

2
I21 (T ) + I22 (T ),

where
(3.43)

I21 (T ) =
T∫
0

∫
Rd

vT (x, T − s, s)2 − ( s∫
0

TuΨT (·, T + u− s) (x) du
)2

dxds,

(3.44) I22 (T ) =
T∫
0

∫
Rd

g
(
vT (x, T − s, s)

)
vT (x, T − s, s)2 dxds.
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We have the following inequalities (proofs are straightforward and can be found in
[12], Section 3.1.3):

(3.45) 0 ¬ nT (x, T − s, s)− vT (x, T − s, s)

¬ C
s∫
0

Ts−u[ΨT (·, T − u) nT (·, T − u, u) + nT (·, T − u, u)2] (x) du,

(3.46) nT (x, T − s, s) + vT (x, T − s, s) ¬ 2nT (x, T − s, s).

By (3.43) we have

0 ¬ −I21(T ) ¬
T∫
0

∫
Rd

(
nT (x, T − s, s)− vT (x, T − s, s)

)(
nT (x, T − s, s)+ vT (x, T − s, s)

)
dsdx.

Using (3.45), (3.46) and (3.9) we obtain

−I21(T ) ¬ C
(
I211(T ) + I212(T )

)
,

where

I211(T ) =
T∫
0

∫
Rd

( s∫
0

Ts−u [ΨT (·, T − u) nT (·, T − u, u)] (x) du
)

× ( s∫
0

Ts−uΨT (·, T − u) (x)du
)
dxds,

I212(T ) =
T∫
0

∫
Rd

( s∫
0

Ts−u[nT (·, T − u, u)2] (x) du
)

× ( s∫
0

Ts−uΨT (·, T − u) (x)du
)
dxds.

One can see that I211 and I212 coincide with J1 and J2 from [9] (see (3.20) and
(3.21)). Hence by the proof therein we get

lim
T→+∞

I21(T ) = 0.

Next we show that I22 → 0. Indeed, applying Facts 3.1 and 3.2 and the inequality
(3.10) we see that for all ε > 0 there exists T0 such that for all T > T0

0 ¬ I22(T ) ¬ εI1(T ),

which clearly implies I22 → 0.
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Finally we obtain (3.28). I3(T ) can be split in the same way as (3.24) in [9].
The only difference is that

I ′′′3 (T ) =
T∫
0

∫
Rd

ϕT (x)χT (T − u)
u∫
0

Tu−sG
(
vΨT

(·, T − s, s)
)
(x)dsdxdu,

but G(v) is comparable with v2, so the rest of the proof goes along the same lines
(see (3.27) in [9]).

Now we turn to the equilibrium case. As observed before, it suffices to prove
(3.32). Using the Fourier transforms we get

B1(T ) = C
∫
Rd

1
|z|α

(
n̂T (z)

)2
dz

It is not hard to see that

|n̂T (z)| ¬ CT 1−β/α

FT

|ϕ̂ (z)|
|z|β , β ∈ [0, α].

Hence we obtain

|B1(T )| ¬ C
T 2(1−β/α)

F 2
T

∫
Rd

|ϕ̂(z)|2
|z|α

1
|z|2β

dz.

We take β such that 1
2α < β but α + 2β < d (it can be done because 2α < d). The

first condition gives us

T 2(1−β/α)

F 2
T

→ 0 as T → +∞,

and the second ensures that the integral is finite. This completes the proof of (3.32)
and, consequently, part (1) of Theorem 2.1.

Now we proceed to part (2). Firstly, we follow the scheme from Section 3.1.3.
The proof will be completed when we show inequalities (3.37) and (3.38). It can be
done by applying the expressions derived in Section 3.1.3 repeatedly. This results
in many terms which have to be estimated separately. As an example consider
(3.39). Take only its third term, then substitute V ′′(0, T ) in it utilizing only the
second term of (3.41), and finally eliminate v′(0, T ) using (3.40). In this way we
obtain

R =
∫
Rd

+∞∫
0

( l∫
0

Tl−s1

[[Ts1

( T∫
0

TT−s3 [ϕT (·)χT (T − s3)]ds3

)2]]
ds1

)2

dldx.

Other terms can be derived analogously. They can be estimated in a similar way to
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that in [9] though some new difficulties arise and the number of terms is substan-
tially bigger. To obtain estimates we need the following inequalities:

(3.47)
1∫
u

exp
(−T (r − u)|z|α)

χ(r)dr ¬ t− s, 0 ¬ u ¬ 1,

(3.48)
1∫
0

1∫
u

exp
(−T (r − u)|z|α)

χ(r)drdu ¬ t− s

T |z|α ,

(3.49)
u∫
0

exp
(−T (u− s)|z|α)

du ¬ 1− exp (−T |z|α)
T |z|α ,

which are easily proved using the inequality (3.35).
Now, to illustrate techniques required in estimations, we will carry out the

proof for the term R which is perhaps the most impressive one. Firstly, we apply
the Fubini theorem multiple times in order to separate the “time part” and the
“space part”:

R =
+∞∫
0

l∫
0

T∫
0

T∫
0

l∫
0

T∫
0

T∫
0

χT (T − s3)χT (T − s4)χT (T − s5)

× χT (T − s6) S ds6ds5ds2ds4ds3ds1dl,

where

S =
∫
Rd

Tl−s1

[
Ts1

[TT−s3 [ϕT (·)] ]Ts1

[TT−s4 [ϕT (·)] ]
]

× Tl−s2

[
Ts2

[TT−s5 [ϕT (·)] ]Ts2

[TT−s6 [ϕT (·)] ]
]
dx.

Applying the Plancharel formula and the definition (3.2) we get

S = T−2
∫
R3d

exp
(−(l − s1)|z|α− s1|z1|α− (T − s3)|z1|α− s1|z − z1|α− s2|z2|α

)

× exp
(−(T − s4)|z − z1|α − (l − s2)|z|α − (T − s5)|z2|α − s2|z − z2|α

)

× exp
(−(T − s6)|z − z2|α

)
ϕ̂(z1)ϕ̂(z − z1)ϕ̂(z2)ϕ̂(z − z2)dz2dz1dz.

The Fubini theorem yields

R = T−2
∫
R3d

ϕ̂(z1)ϕ̂(z − z1)ϕ̂(z2)ϕ̂(z − z2)

×
+∞∫
0

l∫
0

T∫
0

T∫
0

l∫
0

T∫
0

T∫
0

Ads6ds5ds2ds4ds3ds1dldz2dz1dz,
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where

A = exp
(−(l − s1)|z|α− s1|z1|α− (T − s3)|z1|α− s1|z − z1|α− (l − s2)|z|α

)

× exp
(−(T − s4)|z − z1|α− (T − s5)|z2|α− s2|z − z2|α− (T − s6)|z − z2|α

)

× exp (s2|z2|α) χT (T − s3)χT (T − s4)χT (T − s5)χT (T − s6).

A subsequent application of inequalities (3.47), (3.49) to integrals with respect to
s6, s5, s4, s3 gives
(3.50)

R ¬ (t− s)2
∫
R3d

ϕ̂(z1)ϕ̂(z − z1)ϕ̂(z2)ϕ̂(z − z2)
1
|z2|α

1
|z1|α S(z, z1, z2)dz2dz1dz,

where

(3.51) S(z, z1, z2) =
+∞∫
0

l∫
0

l∫
0

exp
(−(l − s1)|z|α − s1|z1|α − s1|z − z1|α

)

× exp
(−(l − s2)|z|α − s2|z2|α − s2|z − z2|α

)
ds2ds1dl.

A trivial verification shows that

S(z, z1, z2) = S1(z, z1, z2) + S2(z, z1, z2),

where

S1(z, z1, z2)

=
(
2 |z|α (|z1|α + |z − z1|α + |z|α)(|z1|α + |z − z1|α + |z2|α + |z − z2|α)

)−1
,

S2(z, z1, z2)

=
(
2 |z|α (|z2|α + |z − z2|α + |z|α)(|z1|α + |z − z1|α + |z2|α + |z − z2|α)

)−1
.

Using the above considerations we write the right-hand side of (3.50) as R1 + R2,
where R1, R2 have an obvious meaning. It is easy to see that

R1 = (t− s)2
∫
R3d

ϕ̂(z1)ϕ̂(z − z1)
|z1|α |z − z1|α/2

ϕ̂(z2)ϕ̂(z − z2)
|z2|α |z − z2|α

1
2|z|(3/2)α

dz1dz2dz.

Notice that the function f(x) = ϕ̂(x)/|x|α is square-integrable. The integral with
respect to z2 is equal to (f ∗ f)(z). By Young’s inequality (3.6) it is easy to see
that it is bounded (take q1 = q2 = 2). Hence

R1 ¬ c1(t− s)2
∫
Rd

h(z)
2|z|3/2α

dz,
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where

h(z) =
∫
Rd

ϕ̂(z1)ϕ̂(z − z1)
|z1|α|z − z1|α/2

dz1 =
(

ϕ̂(·)
|·|α ∗

ϕ̂(·)
|·|α/2

)
(z).

We may apply Young’s inequality (3.6) in two ways. Firstly, taking q1 = 2/3 and
q2 = 3 proves that h is bounded; secondly, taking q1 = q2 = 1 shows that h is
integrable. Hence

R1 ¬ c2(t− s)2.

The proof for R2 goes along the same lines.

3.3. Proof of Theorem 2.2. As the proof for the critical dimensions in the
Poisson-starting system case is similar to the one in Section 3.2, we present only a
sketch of the proof. Once again we follow the scheme described in Section 3.1.1.
The convergence (3.29) can be obtained in the same way as (3.31) in [9]. To prove
the convergence (3.30) of I2(T ) one can follow the proof for the large dimension
case and estimate the arising terms I211 and I212 in a manner presented in [9] for
J1 and J2 in the critical case. The limit for the I3 is trivial.

Now we turn to the equilibrium case. We need to show (3.32). We have

B1(T ) =
+∞∫
0

∫
Rd

(Tt
T∫
0

TT−s1ϕT (x)χT (T − s1)ds1

)

× (Tt
T∫
0

TT−s2ϕT (x)χT (T − s2)ds2

)
dxdt

=
+∞∫
0

T∫
0

T∫
0

χT (T − s1)χT (T − s2)
∫
Rd

Tt+T−s1ϕT (x)Tt+T−s2ϕT (x)dxds1ds2dt.

Applying the Fourier transform we obtain

B1(T ) =
1

(2π)d

+∞∫
0

T∫
0

T∫
0

χT (T − s1)χT (T − s2)

×
∫
Rd

exp
(
(t + T − s1)|z|α + (t + T − s2)|z|α

)|ϕ̂T (z)|2dzds1ds2dt.

Integrating with respect to t yields

(3.52) B1(T ) = c1
AT

F 2
T

,

where

AT =
∫
Rd

|ϕ̂(z)|2
|z|α

(T∫
0

exp (s|z|α) ds
)2

dz.
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The derivative of AT with respect to T is given by

A′T = 2
∫
Rd

|ϕ̂(z)|2
|z|α exp (−T |z|α)

1− exp (−T |z|α)
|z|α dz.

In the critical case α = d/2, so substituting T 2/dz = z′ we obtain

A′T = 2
∫
Rd

|ϕ̂(z′/T 2/d)|2
|z′|α exp(−|z′|α)

1− exp (−|z′|α)
|z′|α dz.

The term
(
1− exp (−|z′|α)

)
/|z′|α is bounded and

(
exp (−|z′|α)

)
/|z′|α is inte-

grable, and hence there exists a constant c2 such that

A′T ¬ c2.

We obtain the limit of B1(T ) using l’Hôpital’s rule (F 2
T = T log T ):

lim
T

B1(T ) = c1 lim
T

A′T
(F 2

T )′
¬ lim

T

c3

log T + 1
= 0.

This completes the proof of part (1). To show part (2) we follow, similarly
to the proof of Theorem 2.1, the scheme from Section 3.1.3. In the same way
we evaluate the terms arising from (3.37) and (3.38). Although the techniques of
estimating them are similar to the ones presented in [9] we deal with more terms.
To shorten the notation we introduce

(3.53) Ex(x) = 1− exp(−x).

We need the following estimates:

(3.54)
1

log T

∫
Rd

f(z)
|z|2α

Ex(T |z|α)dz ¬ c(f)

for f bounded and integrable;

(3.55)
1

log T

∫
Rd

ϕ̂(z − z1)
|z − z1|α Ex(T |z − z1|α)

Ex(T |z1|α)
|z1|α dz1 ¬ c(ϕ)

for ϕ rapidly decreasing;

(3.56)
1

log T

∫
Rd

ϕ̂(z − z1)
|z − z1|α Ex(T |z − z1|α)

ϕ̂(z1)
|z1|α Ex(−T |z1|α)dz1 ¬ f(z)

where f is integrable and bounded.
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Inequalities (3.54) and (3.55) follow easily from l’Hôpital’s rule. To show
(3.56) it suffices to observe that boundedness is a direct consequence of (3.55).
The fact that f ∈ L1 follows from Young’s inequality applied to

∫
Rd

ϕ̂(z − z1)
|z − z1|α

ϕ̂(z1)
|z1|α dz1.

Finally, to illustrate problems arising in the critical dimension case, we show
one example. Let us take the fourth term in BIV(0) (see (3.39))

+∞∫
0

∫
Rd

V ′′′(0)(x, l)V ′(0)(x, l)dxdl.

One of the terms resulting from its evaluation is

R =
∫
Rd

+∞∫
0

Tl
[ T∫

0

TT−s1

[
v′(0)(x, s1)

s1∫
0

Ts1−s2 [v
′(0)(x, s2)v′(x, s2)]ds2

]
ds1

]

× Tl[v′(0)(x, T )](x)dldx.

We substitute v′(0) and change the order of integration:

R =
+∞∫
0

T∫
0

s1∫
0

s1∫
0

s2∫
0

s2∫
0

T∫
0

χT (T − s5)χT (T − s3)

× χT (T − s4)χT (T − s6)Sds6ds4ds3ds2ds5ds1dl,

where

S =
∫
Rd

Tl
{
TT−s1

[
Ts1−s5 [ϕT (·)] Ts1−s2

[Ts2−s3 [ϕT (·)] Ts2−s4 [ϕT (·)] ]
]}

× Tl
[TT−s6 [ϕT (·)] ]dx.

Applying the Fourier transform we obtain

S =
∫
R3d

exp
(−l|z|α − (T − s1)|z|α − (s1 − s5)|z1|α − (s1 − s2)|z − z1|α

)

× exp
(−(s2 − s3)|z2|α−l|z|α−(s2−s4)|z−z1 − z2|α − (T − s6)|z|α

)

× ϕ̂(z1)ϕ̂(z2)ϕ̂(z − z1 − z2)ϕ̂(z)dz2dz1dz.

Once again we change the order of integration:

(3.57) R = T−2 log T−2
∫
R3d

ϕ̂(z1)ϕ̂(z2)ϕ̂(z − z1 − z2)ϕ̂(z)Qdz2dz1dz,
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where

Q =
+∞∫
0

T∫
0

s1∫
0

s1∫
0

s2∫
0

s2∫
0

T∫
0

exp
(−2l|z|α − (T − s1)|z|α − (s1 − s5)|z1|α

)

× exp
(−(T − s6)|z|α

)

− (s1 − s2)|z − z1|α − (s2 − s3)|z2|α − (s2 − s4)|z − z1 − z2|α

× χT (T − s5)χT (T − s3)χT (T − s4)χT (T − s6)ds6ds4ds3ds2ds5ds1dl.

Applying the inequality (3.47) to the integral with respect s6 we get

Q ¬ c1T (t− s)
+∞∫
0

T∫
0

s1∫
0

s1∫
0

s2∫
0

s2∫
0

exp
(−2l|z|α − (T − s1)|z|α − (s1 − s5)|z1|α

)

× exp
(−(s1 − s2)|z − z1|α − (s2 − s3)|z2|α − (s2 − s4)|z − z1 − z2|α

)

× χT (T − s5)χT (T − s3)χT (T − s4)ds4ds3ds2ds5ds1dl.

Next we utilise (3.49) to eliminate the integral with respect to s5:

Q ¬ c2T (t− s)
Ex(T |z1|α)
|z1|α

+∞∫
0

T∫
0

s1∫
0

s2∫
0

s2∫
0

exp
(−2l|z|α − (T − s1)|z|α

)

× exp
(−(s1 − s2)|z − z1|α − (s2 − s3)|z2|α − (s2 − s4)|z − z1 − z2|α

)

× χT (T − s3)χT (T − s4)ds4ds3ds2ds1dl.

Once again we use (3.47) this time to the integral with respect to s4:

Q ¬ c3(t− s)2T 2 Ex(T |z1|α)
|z1|α

+∞∫
0

T∫
0

s1∫
0

s2∫
0

exp
(−2l|z|α − (T − s1)|z|α

)

× exp
(−(s1 − s2)|z − z1|α − (s2 − s3)|z2|α

)
χT (T − s3)ds3ds2ds1dl.

Finally we apply (3.49) to the integrals with respect to s3, s2, s1 consequently and
integrate with respect to l:

Q ¬ c4(t− s)2T 2 Ex(T |z1|α)
|z1|α

1
|z2|α

Ex(T |z − z1|α)
|z − z1|α

Ex(T |z|α)
|z|2α

.
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We return to (3.57) and we obtain

R ¬ c5(t− s)2 log T−2
∫
R3d

ϕ̂(z1)ϕ̂(z2)ϕ̂(z − z1 − z2)ϕ̂(z)

× 1
|z1|α [1− exp(−T |z1|α)]

1
|z2|α

1
|z − z1|α [1− exp(−T |z − z1|α)]

× 1
|z|2α

[1− exp(−T |z|α)] dz2dz1dz.

The integral with respect to z2 is bounded:

R¬c6(t− s)2 log T−2
∫
R2d

ϕ̂(z1)
|z1|α Ex(T |z1|α)

Ex(T |z − z1|α)
|z − z1|α

ϕ̂(z)
|z|2α

Ex(T |z|α)dz1dz.

Using the inequality (3.55) we obtain

R ¬ c7(t− s)2 log T−1
∫
Rd

ϕ̂(z)
|z|2α

Ex(T |z|α)dz.

We complete the proof by applying (3.54) and arriving at

R ¬ c8(t− s)2.
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