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Abstract. Let A =
`
A(t)

´
t0

be a subordinator. Given a compact set
K ⊂ [0,∞) we prove two-sided estimates for the covering numbers of the
random set {A(t) : t ∈ K} which depend on the Laplace exponent Φ of
A and on the covering numbers of K. This extends former results in the
case K = [0, 1]. Using this we find the behavior of the small deviation prob-
abilities for subordinated processes

`
WH

`
A(t)

´´
t∈K

, where WH is a frac-
tional Brownian motion with Hurst index 0 < H < 1. The results are valid
in the quenched as well as in the annealed case. In particular, those ques-
tions are investigated for Gamma processes. Here some surprising new phe-
nomena appear. As application of the general results we find the behavior of
log P (supt∈K |Zα(t)| < ε) as ε→ 0 for the α-stable Lévy motion Zα. For
example, if K is a self-similar set with Hausdorff dimension D > 0, then
this behavior is of order −ε−αD in complete accordance with the Gaussian
case α = 2.
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1. INTRODUCTION

Let A =
(
A(t)

)
t0

be some subordinator in the sense of [4] and [5], i.e., A

is a non-decreasing Lévy process. Paths of subordinators are very irregular and,
consequently, the random sets {A(t) : t  0} are in general “small” subsets of
the real line. There exists a very precise description of the size of those sets. To
formulate this result we need the following notation.

Given a subset E ⊂ R and a number δ > 0 the covering number N(E, δ) is
defined by

N(E, δ) := inf
{
n  1 : ∃ I1, . . . , In such that E ⊆

n⋃
j=1

Ij

}
,

where the Ij ⊂ R are intervals of length |Ij | ¬ δ. Furthermore, if A is a subordi-
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nator, its Laplace exponent Φ is the function from [0,∞) to [0,∞) defined by the
equation

E e−x A(t) = e−t Φ(x), 0 ¬ t, x <∞.

Then the above-mentioned result about the size of the range of a subordinator
A is as follows (cf. [13], Corollary 3.2):

THEOREM 1.1. Suppose that

(1.1) lim inf
x→∞

Φ(x)
log x

> 0.

Then for almost all paths of A it follows that

(1.2)
1
8

Φ(δ−1) ¬ N
(
A([0, 1]), δ

) ¬ 40Φ(δ−1)

provided that 0 < δ < δ0 for some (random) δ0 > 0.

Because of N([0, 1], δ) ≈ δ−1 the estimates in (1.2) may also be written as

(1.3) N
(
A([0, 1]), δ

) ≈ N

(
[0, 1],

1
Φ(δ−1)

)

for almost all paths of A. This relates directly the size of [0, 1] to that of A([0, 1]).
Here and in the sequel we write f ≈ g for two functions f and g provided there are
c1, c2 > 0 such that c1f(x) ¬ g(x) ¬ c2f(x) for all x where f and g are defined.

One may ask now whether or not relation (1.3) depends on the special structure
of [0, 1] or if it is true even for more general compact sets K ⊂ [0,∞). Surpris-
ingly, it turns out that (1.3) is valid in this much more general setting. For that
purpose condition (1.1) has to be adapted suitably. We suppose now that there is
some β > 0 such that

(1.4) lim inf
x→∞

N
(
K, 1/Φ(x)

)

(log x)β
:= Cβ(K, Φ) > 0.

Condition (1.4) excludes compact sets K being too small and Laplace exponents
Φ which increase too slowly.

One of our main results is the following general version of Theorem 1.1:

THEOREM 1.2. Let K be a compact subset in [0,∞) and let A be a subor-
dinator with Laplace exponent Φ such that (1.4) holds for some β > 0. Then for
almost all paths of A there is a random δ0 such that for 0 < δ < δ0 it follows that

(1.5)
1
14

N

(
K,

2
Φ(δ−1)

)
¬ N

(
A(K), δ

) ¬ 100N

(
K,

1
2Φ(δ−1)

)
.
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In particular, if there is a c0 > 0 such that

(1.6) N(K, δ) ¬ c0 ·N(K, 2 δ),

then for almost all paths of A the condition

c1 ·N
(

K,
1

Φ(δ−1)

)
¬ N

(
A(K), δ

) ¬ c2 ·N
(

K,
1

Φ(δ−1)

)

holds whenever 0 < δ < δ0 for some random δ0 > 0.

The basic idea for the proof of Theorem 1.2 is similar to that of Theorem 1.1.
New difficulties appear in the proof of the right-hand estimate of (1.5) because the
technique of stopping times has to be modified in the case of arbitrary compact
sets K in [0,∞). The basic new ingredient is to cover K by suitable intervals
and to define stopping times on each of these intervals separately (cf. the proof
of Proposition 2.1). Also the left-hand estimate in (1.5) requires new techniques.
Here two stopping times, depending on the set K, have to be used (cf. the proof of
Proposition 2.2). Additional problems appear since we do no longer know that the
covering numbers of K behave regularly as for K = [0, 1], i.e., whether or not K
satisfies (1.6).

Subordinators play an important role as random time change. More precisely,
given a stochastic process X =

(
X(t)

)
t0

and a subordinator A which is indepen-
dent of X , a new process Y is defined by

Y (t) := X
(
A(t)

)
, 0 ¬ t <∞.

The investigation of the subordinated process Y can be carried out in two direc-
tions: either one investigates Y for each fixed path of A (quenched case) or one may
look for Y as a process modeled over (Ω,P) := (ΩA × ΩX ,PA × PX) (annealed
case). Here we assume that X is defined on (ΩX ,PX) and A on (ΩA,PA).

Our objective is to investigate subordinated processes when X is a fractional
Brownian motion

(
WH(t)

)
t0

and A is an arbitrary subordinator. Recall that for
0 < H < 1 the process WH is a centered Gaussian process with a.s. continuous
paths satisfying

E WH(t)WH(s) =
1
2
(|t|2H + |s|2H − |t− s|2H), t, s  0.

We investigate the process
(
WH

(
A(t)

))
t0

for fixed paths of A and as a process

modeled over (ΩA × ΩW ,PA × PW ). Here and in the sequel we use the notation
(ΩW ,PW ) instead of (ΩWH

,PWH
) and we write P = PA × PW .

We shall prove that under some natural regularity assumptions about the com-
pact set K and about A it follows that for almost all paths of A (cf. Theorem 3.3
below for the exact formulation)

logPW

{
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
} ≈ −N

(
K,

1
Φ(ε−1/H)

)
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as well as

logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
≈ −N

(
K,

1
Φ(ε−1/H)

)

as ε→ 0.
Let Γb be a Gamma distribution with parameter b > 0, i.e.,

(1.7) Γb([0, t]) =
1

Γ(b)

t∫
0

xb−1e−xdx

for all t  0. A subordinator A is said to be a Gamma process provided that A(1)
is Γb-distributed for a certain b > 0, and hence Φ(x) = b log(1 + x). In this case
the above-mentioned general small deviation result for WH

(
A(t)

)
t∈K

(cf. Theo-
rem 3.3 below) does not apply. Nevertheless, by refined methods also for Gamma
processes A we find the behavior of

(1.8) logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)

as ε → 0 in the quenched as well as in the annealed case. For example, if K =
[0, 1], then the asymptotic behavior of (1.8) is −|log ε|2 in the quenched case and
−|log ε| in the annealed one. This result is very surprising and, to our knowledge,
it is the first example where the quenched and annealed cases behave differently.

For 0 < α < 2 the α-stable Lévy motion
(
Zα(t)

)
t0

is a Lévy process with
symmetric α-stable increments. It is well known (cf. [14]) that Zα may be repre-
sented as

Zα(t) = W
(
Aα/2(t)

)
, 0 ¬ t <∞,

where W = W1/2 is the Wiener process and Aα/2 is an α/2-stable subordinator
independent of W , i.e., its Laplace exponent is given by Φ(x) = c xα/2 with a
suitable constant c > 0. Thus our results apply directly to this case and lead to
small deviation results for Zα indexed by compact sets. For example, the following
is an immediate consequence of Theorems 4.2 and 4.3 below and the fact that
N(K, δ) ≈ δ−D for self-similar sets with Hausdorff dimension D > 0 (see [6],
Theorem 1).

PROPOSITION 1.1. Let K ⊂ [0,∞) be a self-similar compact set satisfying
the open set condition (cf. [6], p. 700, for the definition). If D > 0 is its Hausdorff
dimension, then

logP
(
sup
t∈K
|Zα(t)| < ε

) ≈ −ε−αD

as ε→ 0.
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In the Gaussian case, i.e. for α = 2, this was proved (even for fractional pro-
cesses) in [12] and [9], while for the N -parameter fractional Brownian motion
those questions were investigated in [10] for compact sets in RN .

The organization of the paper is as follows. In Section 2 we show that with
high probability the covering numbers N

(
A(K), δ

)
are near to N

(
K, 1/Φ(δ−1)

)
.

This is the key to prove Theorem 1.2. Section 3 is devoted to the announced small
deviation results for processes subordinated to fractional Brownian motions. Ba-
sic ingredients are the relation between fractional motions and Riemann–Liouville
processes, a conditional Anderson inequality and Talagrand’s small deviation re-
sult. Finally, in Section 4 we present examples and applications. Of special interest
are here Gamma processes. Since their Laplace exponents increase only of loga-
rithmic order, new phenomena appear for processes subordinated by Gamma pro-
cesses. For example, the quenched case behaves differently as the annealed one.
Furthermore, in this section we prove the announced small deviation result for sta-
ble Lévy motions indexed by compact “small” sets.

Let us finally mention that throughout the paper c and C (with or without
subscript) denote some positive constants which may be different even if they have
the same subscript.

Acknowledgements. The authors are very grateful to Zhan Shi from Paris VI
for fruitful discussions and remarks about the subject of the paper. Furthermore,
we thank Frank Aurzada, TU Berlin, for his comments and his basic idea to prove
Proposition 3.2. Finally, our special thanks go to Mikhail A. Lifshits from St. Pe-
tersburg State University for his very careful reading of the manuscript, for his
numerous useful remarks and his help to correct an error in the previous version of
the proof of Proposition 2.2.

2. COVERING NUMBERS OF THE RANGE OF SUBORDINATORS

Let A =
(
A(t)

)
t0

be a subordinator and let [a, b] be some finite interval in
[0,∞). Given δ > 0 we define stopping times Tk = Tk(δ) as follows: T0 := a and

(2.1) Tk := inf {t > Tk−1 : A(t)−A(Tk−1) > δ}.

Note that by the strong Markov property of A the random variables ηk := Tk −
Tk−1 are i.i.d.

LEMMA 2.1. For k  1 and δ > 0 the following inclusions hold a.s.:

(2.2) {Tk−1 < b} ⊆ {
N

(
A([a, b], δ)

)  k
} ⊆ {Tk−1 ¬ b}.

P r o o f. Suppose first that Tk−1 < b. Then we choose an arbitrary point in
(Tk−1, b] and denote it by tk−1. Consequently, by construction of the Tj this im-
plies A(tk−1) − A(Tk−2) > δ. Since A has a.s. right continuous paths, there is a
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point tk−2 > Tk−2 such that A(tk−1)−A(tk−2) > δ. This construction is contin-
ued until we get some t1 > T1 with A(t2)− A(t1) > δ. Finally, set t0 := a. Thus
there exist at least k points t0 < . . . < tk−1 in [a, b] with A(tj)−A(tj−1) > δ for
1 ¬ j ¬ k − 1. Of course, this implies N

(
A([a, b]), δ

)  k.
To prove the right inclusion suppose that Tk−1 > b. Then this implies

(2.3) A([a, b]) ⊆
k−1⋃
j=1

[A(Tj−1), A(Tj − 0)],

where, as usual, A(Tj − 0) denotes the left-hand limit of A at Tj . By construction
of the Tj we have A(Tj − 0) − A(Tj−1) ¬ δ. Hence the inclusion (2.3) implies
N

(
A([a, b]), δ

) ¬ k − 1, which, of course, proves the right-hand side in (2.2). ¥

To state the next result, let us introduce the following notation. Fix δ > 0. We
define the random variable η by

(2.4) η := inf {t > 0: A(t) > δ}.

It should be noted that η
d= Tk − Tk−1 whenever k  1, where T0 < T1 < . . .

were defined in (2.1) (for the same δ > 0). Furthermore, recall that Φ denotes the
Laplace exponent of the subordinator A.

LEMMA 2.2. With the previous notation we have

(2.5) E exp
(−2Φ(δ−1)η

) ¬ 7/8

and

(2.6) E exp
(
Φ(δ−1)η/2

) ¬ 1 + e ¬ e4/3.

P r o o f. Estimate (2.5) was obtained in [13] during the proof of Lemma 3.1.
Although (2.6) was proved there as well, we repeat the first step since its proof
in [13] contains a small incorrectness.

For any λ > 0 it follows that

(2.7) E eλη =
∞∫
0

P(eλη > x)dx = 1 + λ
∞∫
0

eλs P(η > s)ds.

Applying this with λ := Φ(δ−1)/2, during the proof of Lemma 3.1 in [13], p. 277,
it was shown that λ times the integral on the right-hand side of (2.7) is less than or
equal to e . Thus (2.6) follows by (2.7). ¥

For later purposes we need the following easy property of Laplace exponents.
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LEMMA 2.3. Let Φ be the Laplace exponent of some subordinator A. Then
for each c > 0 it follows that

min {c, 1} Φ(x) ¬ Φ(c x) ¬ max {c, 1} Φ(x), x  0.

P r o o f. Suppose first c  1. Then the left-hand inequality follows by the
monotonicity of Φ. To prove the right-hand estimate let us note that by Jensen’s
inequality

e−c Φ(x) = (e−Φ(x))c = (E e−x A(1))c ¬ E e−c x A(1) = e−Φ(c x).

If 0 < c < 1, we apply the above estimate with c−1 and c x. This completes the
proof. ¥

The next proposition shows that with large probability the covering numbers
of A(K) are bounded by suitable covering numbers of K.

PROPOSITION 2.1. There is a universal c > 0 (for example, one may choose
c = 1/16) such that for each subordinator A on [0,∞), for each δ > 0 and each
compact set K ⊂ [0,∞) it follows that

(2.8)

P
(

N
(
A(K), δ

)  100N

(
K,

1
Φ(δ−1)

))
¬ exp

(
−c N

(
K,

1
Φ(δ−1)

))
.

P r o o f. For given ε > 0 we cover K by n = n(ε) disjoint intervals Ij =
[aj , aj + ε), where n ¬ 2N(K, ε). If δ > 0, then for each j ¬ n we define stop-
ping times T j

i as in (2.1), i.e., T j
0 = aj and if i > 1, then

T j
i := inf{t > T j

i−1 : A(t)−A(T j
i−1) > δ}.

Let
mj := max{k  0 : T j

k < aj + ε}.
First note that by the strong Markov property of A the random integers m1, . . . , mn

are independent and identically distributed. Furthermore, since

A(Ij) ⊆
mj+1⋃
i=1

[A(T j
i−1), A(T j

i − 0)],

the set A(Ij) can be covered by at most mj + 1 intervals of length less than or
equal to δ. Consequently, by the choice of the Ij we have

(2.9) N
(
A(K), δ

) ¬
n∑

j=1

(1 + mj) = n +
n∑

j=1

mj .

To proceed we need more information about the random numbers mj . Thus fix
j  1 for a moment and set ηi := T j

i − T j
i−1. Note that the ηi are independent and
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distributed as η defined by (2.4). From the definition of the mj we derive that for
any ν ∈ N

P(mj  ν) = P
( ν∑

k=1

ηk < ε
)
.

The exponential Chebychev inequality implies for any λ > 0 that

P(mj  ν) ¬ eλε E exp
(−λ(η1 + . . . + ην)

)
= eλε(E e−λη)ν .

Set λ := 2Φ(δ−1). Then we are in the situation of (2.5) and conclude

(2.10) P(mj  ν) ¬ (7/8)ν exp
(
2Φ(δ−1)ε

) ¬ exp
(
2 εΦ(δ−1)− ν/8

)
.

Observe that until now all considerations were valid for any pair ε > 0 and δ > 0.
Now we choose ε depending on δ by setting ε := 1/Φ(δ−1). Then estimate (2.10)
leads to

(2.11) P(mj  ν) ¬ e2−ν/8.

Since mj is an integer, estimate (2.11) also holds for real numbers ν > 0. By
standard methods (2.11) yields

(2.12) E exp(ρmj) ¬ 1 + e2 8ρ

1− 8ρ
<∞

provided that 0 < ρ < 1/8. Next we apply (2.9) for n = n(ε) with ε = ε(δ) as
chosen above. Then we get

P
(
N

(
A(K), δ

)  50n
)
¬ P

( n∑

j=1

mj  49n
)
;

hence an application of the exponential Chebychev inequality leads to

P
(
N

(
A(K), δ

)  50n
)
¬ e−49λn E exp

(
λ(m1 + . . . + mn)

)

for any λ > 0. Setting λ := 1/16, by (2.12) this implies

(2.13) P
(
N

(
A(K), δ

)  50n
)
¬ e−49n/16 (1 + e2)n ¬ e−n/16,

and because of N(K, ε) ¬ n ¬ 2N(K, ε) and ε = 1/Φ(δ−1), inequality (2.8) is a
direct consequence of (2.13). ¥

Our next aim is to prove that with large probability the covering numbers of
A(K) are also bounded from below by suitable covering numbers of K.
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PROPOSITION 2.2. There is a universal constant c > 0 such that the follow-
ing holds. For each subordinator A =

(
A(t)

)
t0

, each compact set K ⊂ [0,∞)
and each δ > 0 we have

P
(

N
(
A(K), δ

) ¬ 1
14

N

(
K,

1
Φ(δ−1)

))
¬ exp

(
−cN

(
K,

1
Φ(δ−1)

))
.

For example, c may be chosen as 1/42.

P r o o f. Given δ > 0 we define two sequences T0, T1, . . . and τ0, τ1, . . . of
stopping times as follows. Set T0 := 0 and τ0 := inf {t  T0 : t ∈ K}. Suppose
that for some k  1 the random times Tk−1 and τk−1 have been already defined.
Then we set

Tk := inf {s > τk−1 : A(s)−A(τk−1) > δ}
and

τk := inf {t  Tk : t ∈ K}
provided that there exists at least one element t ∈ K such that t  Tk. Otherwise
put τk := Tk. By the strong Markov property of A the random variables ηk :=
Tk − τk−1 are independent and distributed as η in (2.4). Next we define a random
integer m  1 by

m := inf {k  1 : K ⊆ [0, Tk]}.
Then we get τ0, . . . , τm−1 ∈ K and, furthermore,

(2.14) K ⊆
m⋃

k=1

[τk−1, Tk].

Moreover, since for all k  0 we have

A(τk+2)−A(τk)  2δ > δ,

by τk ∈ K for 0 ¬ k ¬ m− 1, it follows that

(2.15) m ¬ 2N
(
A(K), δ

)
.

Let ε > 0 be given. Then we find n := N(K, ε) elements t1, . . . , tn in K satisfying
| ti − tj |  ε/2 whenever 1 ¬ i, j ¬ n and i 6= j. Since the ti belong to K, from
(2.14) we derive

(2.16)
n⋃

i=1

[ti, ti + ε/2) ⊆
m⋃

k=1

[τk−1, Tk + ε/2).

By the choice of the ti the left-hand intervals in (2.16) are disjoint. Thus comparing
the lengths of the sets in (2.16) leads to

nε

2
¬

m∑

k=1

(Tk − τk−1) +
mε

2
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or, equivalently, to

(2.17)
ε

2
[n−m] ¬

m∑

k=1

(Tk − τk−1).

Suppose now that N
(
A(K), δ

) ¬ ν for some integer ν  1. By (2.15) this implies
m ¬ 2ν; hence by (2.17) it follows that

ε

2
[n− 2ν] ¬

2ν∑

k=1

(Tk − τk−1) =
2ν∑

k=1

ηk,

where, as above, ηk = Tk − τk−1. Consequently, from this we derive

(2.18) P
(
N

(
A(K), δ

) ¬ ν
)
¬ P( 2ν∑

k=1

ηk  a
)

with

(2.19) a :=
ε

2
[N(K, ε)− 2ν],

recalling that n = N(K, ε). For each λ > 0 the exponential Chebyshev inequality
implies

P
( 2ν∑

k=1

ηk  a
) ¬ e−λa E exp

(
λ

2ν∑

k=1

ηk

)
= e−λa (E eλη)2ν .

Next set λ := Φ(δ−1)/2 and apply (2.6). Consequently,

P
( 2ν∑

k=1

ηk  a
) ¬ exp

(−a Φ(δ−1)/2 + 8ν/3
)
;

thus by (2.18) and (2.19) the preceding estimate yields

(2.20) P
(
N

(
A(K), δ

) ¬ ν
)
¬ exp

(
− ε

4
[N(K, ε)− 2ν] Φ(δ−1) + 8ν/3

)
.

Since N
(
A(K), δ

)
is an integer, it is not difficult to see that (2.20) not only holds

for ν ∈ N, but also if ν > 0 is any real number. Hence, we may choose

ε :=
1

Φ(δ−1)
and ν := N(K, ε)/14,

which finally leads to

P
(

N
(
A(K), δ

) ¬ 1
14

N

(
K,

1
Φ(δ−1)

))
¬ exp

(
−cN

(
K,

1
Φ(δ−1)

))
,

as asserted. Easy calculations imply that c may be taken as 1/42. ¥
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Now we are in position to prove Theorem 1.2.

P r o o f o f T h e o r e m 1.2. Set δj := 2−j . Whenever c > 0, by (1.4) it fol-
lows that

∞∑

j=1

exp
(
− cN

(
K,

1
Φ(δ−1

j )

))
¬
∞∑

j=1

exp(−c′ jβ) <∞

because of β > 0. Hence, in view of Propositions 2.1 and 2.2 the Borel–Cantelli
lemma applies and for almost all paths of A there is a j0  1 such that

(2.21)
1
14

N

(
K,

1
Φ(δ−1

j )

)
¬ N

(
A(K), δj

) ¬ 100N

(
K,

1
Φ(δ−1

j )

)

provided that j  j0. Fix such a path of A and take a δ > 0 with δj+1 ¬ δ ¬ δj

for some j  j0. Using the right-hand estimate of (2.21) with δj+1 gives

N
(
A(K), δ

) ¬ N
(
A(K), δj+1

) ¬ 100N

(
K,

1
Φ(δ−1

j+1)

)

¬ 100N

(
K,

1
Φ(2/δ)

)
¬ 100N

(
K,

1
2Φ(δ−1)

)
,

(2.22)

where we used δ/2 ¬ δj+1 and Lemma 2.3.
Similarly, the left-hand side of (2.21) implies

N
(
A(K), δ

)  N
(
A(K), δj

)  1
14

N

(
K,

1
Φ(δ−1

j )

)
 1

14
N

(
K,

2
Φ(δ−1)

)

as asserted. This completes the proof. ¥

EXAMPLE 2.1. First we want to show by an example that even if K = [0, 1],
Theorem 1.2 applies to cases not covered by Theorem 1.1. Let A be the subordi-
nator with Laplace exponent

Φ(x) = log(1 + x)α

for some α ∈ (0, 1). Note that Φ is indeed a Laplace exponent because it is the
composition of the two completely monotone functions log(1 + x) and xα with
0 < α < 1. The corresponding subordinator is a Gamma process with α-stable
subordination. Let K be some self-similar set satisfying the open set condition and
with Hausdorff dimension 0 < D ¬ 1. Then a result of Lalley (cf. [6]) asserts that
N(K, δ) ≈ δ−D; hence condition (1.4) holds with β := α D. Thus, Theorem 1.2
applies and shows that almost surely

N
(
A(K), δ

) ≈ |log δ|αD.

Observe that even for K = [0, 1], hence D = 1, condition (1.1) is violated.
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EXAMPLE 2.2. We want to investigate now the superposition of two inde-
pendent subordinators. The first example has been already of this type. But here
we investigate the general situation. Let A1, A2 be two such subordinators with
Laplace exponents Φ1 and Φ2, respectively. Define A3 by

A3(t) := A2

(
A1(t)

)
, t  0.

Of course, A3 is a subordinator as well and its Laplace exponent equals

Φ3(x) = Φ1

(
Φ2(x)

)
, x  0.

We want to show now that a direct application of Theorem 1.2 to A3 and K =
[0, 1] leads exactly to the same estimates for N

(
A3([0, 1]), δ

)
(with slightly better

constants) as an iterative application.
Assuming

(2.23) lim inf
x→∞

Φ3(x)
(log x)β3

> 0

for some β3 > 0, from Theorem 1.2 (with K = [0, 1]) we derive

(2.24) c1 Φ3(δ−1) ¬ N
(
A3([0, 1]), δ

) ¬ c2 Φ3(δ−1).

On the other hand, if

(2.25) lim inf
x→∞

Φ1(x)
(log x)β1

> 0

for some β1 > 0, then Theorem 1.2 applies to A1 and [0, 1] and implies that a.s.

(2.26) c1 Φ1(δ−1) ¬ N
(
A1([0, 1]), δ

) ¬ c2 Φ1(δ−1).

In order to apply Theorem 1.2 to A2 and to K = A1([0, 1]) condition (1.4) has
to be satisfied for some β2 > 0. In view of (2.26) this holds if and only if (2.23)
is valid with β2 = β3. Thus, under the assumption (2.23) the direct and the itera-
tive application of Theorem 1.2 lead to the same estimates for N

(
A3([0, 1]), δ

)
as

stated in (2.24). Observe that by supx1 Φ2(x)/x < ∞ condition (2.23) implies
(2.25) with β1 = β3.

3. SMALL DEVIATIONS OF SUBORDINATED PROCESSES

3.1. Upper estimates

LEMMA 3.1. If 0 < H < 1, then there is a constant cH > 0 such that for all
ε > 0 and all real numbers 0 = t0 < t1 < . . . < tn we have

P
(

sup
1¬j¬n

|WH(tj)| < ε
) ¬

n∏
j=1

P
(|ξ| < cH (tj − tj−1)−H ε

)

with ξ distributed according toN (0, 1).
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P r o o f. For H > 0 let RH be the Riemann–Liouville process defined by

RH(t) :=
t∫
0

(t− x)H −1/2dW (x), 0 ¬ t <∞.

If 0 < H < 1, then with

κH :=
(

1
2H

+
∞∫
0

(
(1 + x)H−1/2 − xH−1/2

)2
dx

)1/2

we have (cf. [8])
WH = κ−1

H RH + ∆H ,

where ∆H is a centered Gaussian process independent of RH . Hence, by Ander-
son’s inequality (cf. [1]), it follows that

P
(

sup
1¬j¬n

|WH(tj)| < ε
) ¬ P( sup

1¬j¬n
|RH(tj)| < κH ε

)

= P
(

sup
1¬j¬n

∣∣
tj∫
0

(tj − x)H−1/2dW (x)
∣∣ < κH ε

)
.

Next we apply the conditional Anderson inequality as in [11] or [8] and see that
the last probability is less than

(3.1) P
(

sup
1¬j¬n

∣∣
tj∫

tj−1

(tj − x)H−1/2dW (x)
∣∣ < κH ε

)
.

Set

σj :=
tj∫

tj−1

(tj − x)H−1/2dW (x).

Then the σj are independent centered normal random variables with variance

E |σj |2 =
tj∫

tj−1

(tj − x)2H−1dx =
1

2H
(tj − tj−1)2H .

Consequently, (3.1) coincides with

n∏
j=1

P
(|ξ| < κH (2H)1/2 (tj − tj−1)−H ε

)

proving our assertion with cH := κH (2H)1/2. ¥

As a consequence of Lemma 3.1 we obtain the following useful estimate:
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PROPOSITION 3.1. There is a constant c0 > 0 only depending on H such that
for all compact sets K ⊂ [0,∞) and for all ε > 0 we have

(3.2) P
(
sup
t∈K
|WH(t)| < ε

) ¬ exp
(−N(K, c0 ε1/H) + 1

)
.

P r o o f. Let δ > 0 be given and set n := N(K, δ). Then there are points
t̃j ∈ K with 0 ¬ t̃1 < t̃2 < . . . < t̃n and with t̃j − t̃j−1  δ/2 for 2 ¬ j ¬ n. Set
t0 := 0, t1 := t̃2 until tn−1 := t̃n. In this way we obtain n points 0 = t0 < t1 <
. . . < tn−1 with t1, . . . , tn−1 ∈ K satisfying tj − tj−1  δ/2 for 1 ¬ j ¬ n− 1.
We apply now Lemma 3.1 to t1, . . . , tn−1 and conclude

(3.3) P
(
sup
t∈K
|WH(t)| < ε

)

¬ P( sup
1¬j¬n−1

|WH(tj)| < ε
)

¬
n−1∏
j=1

P
(|ξ| < cH (tj − tj−1)−H ε

) ¬ P(|ξ| < cH 2H δ−H ε)n−1.

Next we choose a constant c1 > 0 for which

P(|ξ| < c1) ¬ e−1

and with this c1 we define δ > 0 by δ := 2 c
1/H
H c

−1/H
1 ε1/H . Consequently, by

(3.3) this implies

P
(
sup
t∈K
|WH(t)| < ε

) ¬ P(|ξ| < c1)n−1

¬ exp
(−(n− 1)

)
= exp

(−N(K, c0 ε1/H) + 1
)

with c0 := 2 c
1/H
H c

−1/H
1 . This completes the proof. ¥

REMARK 3.1. Estimate (3.2) is very useful in the case N(K, δ)  c δ−α for
some α > 0. But if, for example, N(K, δ) ≈ |log δ|β , then (3.2) turns out to be too
weak for our purposes. Here we need the following modified version of Proposi-
tion 3.1.

PROPOSITION 3.2. For all compact sets K ⊂ [0,∞) it follows that

logP
(
sup
t∈K
|WH(t)| < ε

) ¬ −c[N(K, ε1/(1+H))− 1] |log ε|

provided that 0 < ε < εH . Here c > 0 and εH > 0 only depend on H .
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P r o o f. We start with estimate (3.3) where we now set δ := ε1/(1+H). Then
we get

δ−H ε = δ = ε1/(1+H);

hence (3.3) yields (recall that in (3.3) we have n = N(K, δ))

(3.4) logP
(
sup
t∈K
|WH(t)| < ε

) ¬ [N(K, δ)− 1] logP(|ξ| < cH 2H δ).

Observe that P(|ξ| ¬ x) ¬ x whenever 0 < x < ∞. Consequently, (3.4) is less
than

[N(K, δ)− 1]{log(cH 2H)− |log δ|} ¬ −c [N(K, ε1/(1+H))− 1] |log ε|

provided that ε < εH for a suitable εH > 0. This completes the proof. ¥

REMARK 3.2. Suppose that N(K, δ) ≈ |log δ|β for a certain β > 0. Then
Proposition 3.2 implies

logP
(
sup
t∈K
|WH(t)| < ε

) ¬ −c |log ε|β+1,

while Proposition 3.1 only gives |log ε|β . On the other hand, if N(K, δ) ≈ δ−α

for some α > 0, then Proposition 3.1 leads to the right order while Proposition 3.2
does not. Thus one may ask for a general estimate of the small deviation probability
of WH , which applies in all suitable cases of compact sets.

Before proceeding further let us recall that the subordinator A is defined on the
probability space (ΩA,PA) while the fractional Brownian motion WH is defined
on (ΩW ,PW ) and that P := PA × PW .

THEOREM 3.1. (a) Suppose (1.4) holds for K and Φ. Then for almost all
paths of the subordinator A there is a (random) ε0 such that for 0 < ε < ε0 it
follows that

logPW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ −c1 N

(
K,

c2

Φ(ε−1/H)

)
,

where c1 and c2 only depend on H and on Cβ(K, Φ) in (1.4).
(b) For each ε > 0 it follows that

(3.5) logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ −c3 N

(
K,

1
Φ(c−1

0 ε−1/H)

)
+ 2,

where c3 > 0 is universal. For example, c3 may be chosen as 1/42 and c0 is the
constant appearing in (3.2).
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P r o o f. Let us start with the proof of (a). Then assume that (1.4) holds true.
Thus Theorem 1.2 applies to almost all paths of A. Taken such a path there is a δ0

(depending on the chosen path) such that (1.5) holds for all 0 < δ < δ0. For ε > 0
we apply Proposition 3.1 to the set A(K) and obtain

(3.6) logPW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)

= logPW

(
sup

s∈A(K)

|WH(s)| < ε
)

¬ −N
(
A(K), c0 ε1/H

)
+ 1 ¬ − 1

14
N

(
K,

2
Φ(c−1

0 ε−1/H)

)
+ 1

provided that c0 ε1/H < δ0. Here c0 > 0 is the constant in Proposition 3.1. Note
that (1.4) implies N(K, δ) →∞ as δ → 0. From this and Lemma 2.3 we derive
the existence of constants c1, c2 > 0 (depending on H and on Cβ(K, Φ)) such that
(3.6) can be estimated by

−c1 N

(
K,

c2

Φ(ε−1/H)

)
.

This completes the proof of part (a).
To verify (b) we start with (3.2) and apply it to each fixed path of A. Then

we get

(3.7) PW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ exp

(
−N

(
A(K), c0 ε1/H

)
+ 1

)

for all paths of A. We integrate now (3.7) over all paths, i.e., over ΩA with respect
to PA, and obtain (recall that P = PA × PW )

(3.8) P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ e

∫
ΩA

exp
(
−N

(
A(K), c0 ε1/H

))
dPA.

To shorten the notation set δ := c0 ε1/H . Then the right-hand integral in (3.8)
equals

1∫
0

PA

(
exp

{−N
(
A(K), δ

)}  t
)
dt =

∞∫
0

e−s PA

(
N

(
A(K), δ

) ¬ s
)
ds.

Set s0 := 1
14 N

(
K, 1/Φ(δ−1)

)
and split the last integral as

s0∫
0

e−s PA

(
N

(
A(K), δ

) ¬ s
)
ds +

∞∫
s0

e−s PA

(
N

(
A(K), δ

) ¬ s
)
ds.

By the choice of s0 and by Proposition 2.2 the first integral can be estimated by

PA

(
N

(
A(K), δ

) ¬ s0

)
¬ exp

(
− 1

42
N

(
K,

1
Φ(δ−1)

))
.
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The second integral is less than

∞∫
s0

e−sds = exp(−s0) = exp
(
− 1

14
N

(
K,

1
Φ(δ−1)

))
.

Summing up, we obtain

P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)

¬ e
[
exp

(
− 1

42
N

(
K,

1
Φ(δ−1)

))
+ exp

(
− 1

14
N

(
K,

1
Φ(δ−1)

))]

¬ exp
(
−c3 N

(
K,

1
Φ(δ−1)

)
+ 2

)
,

where we may take c3 = 1/42. Finally, to complete the proof recall that δ :=
c0 ε1/H . ¥

REMARK 3.3. Note that some additional term has to appear on the right-hand
side of (3.5). For example, take K = {0}. Then the left-hand side equals 0 for all
ε > 0 while, without an additional term, the right-hand side would be −c3. Recall
that we do not assume (1.4) for the validity of part (b) in Theorem 3.1; thus the
case K = {0} is not excluded.

3.2. Lower estimates. Our next aim is to prove lower estimates for the small
deviation probability of subordinated processes over compact sets. We treat here
the regular case which rests on Talagrand’s small deviation estimate for Gaussian
processes (cf. [7] or [15]).

Let ψ be a non-decreasing continuous function from (0,∞) to (0,∞) satisfy-
ing the condition

(3.9) C1 ψ(x) ¬ ψ(2x) ¬ C2 ψ(x), x  x0,

for a certain x0 > 0 and with constants 1 < C1 ¬ C2 <∞. Observe that the left-
hand estimate in (3.9) excludes functions ψ behaving like a power of log x as
x→∞.

THEOREM 3.2. Suppose that the compact set K and the Laplace exponent Φ
of A satisfy (1.4) and

(3.10) N

(
K,

1
Φ(x)

)
¬ ψ(x)

for some ψ with property (3.9). Then this implies the following:
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(a) For almost all paths of A it follows that

(3.11) logPW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
 −c ψ(ε−1/H)

for ε < ε0 (random).
(b) The inequality

(3.12) logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
 −c ψ(ε−1/H)

holds provided 0 < ε < ε0 for some fixed ε0 > 0.
The constant c > 0 only depends on H ∈ (0, 1) and on C1 and C2 in (3.9).

P r o o f. First note that we may assume 0 ∈ K. Otherwise we add zero and
increase the covering numbers of K by at most 1. Take now a path of A such that
(2.22) holds for small δ > 0. Consequently, by (3.10) we get

(3.13) N
(
A(K), δ

) ¬ 100N

(
K,

1
Φ(2/δ)

)
¬ 100ψ(2/δ).

Next recall that the Dudley distance dH(t, s) :=
(
E |WH(t)−WH(s)|2)1/2 equals

|t− s|H ; hence, defining the covering numbers N(E, δ, dH) by using the radius of
the covering intervals (our definition is taken with respect to the diameter), by
(3.13) it follows that

N
(
A(K), δ, dH

)
= N

(
A(K), (2δ)1/H

) ¬ 100ψ(21−1/Hδ−1/H) ¬ 100ψ(δ−1/H)

provided δ > 0 is small enough. Set ψ̃(δ) := 100ψ(δ−1/H). In view of (3.9) this
function ψ̃ satisfies the assumptions of Talagrand’s theorem in [7], p. 257, and we
obtain

logPW

(
sup

s1,s2∈A(K)
|WH(s1)−WH(s2)| < ε

)  −ψ̃(ε) = −c ψ(ε−1/H)

for small ε > 0. Since we assumed 0 ∈ K, hence also 0 ∈ A(K), inequality (3.11)
follows directly from the last estimate.

To verify (3.12) observe that (3.11) may be rewritten as

lim inf
ε→0

exp
(
c ψ(ε−1/H)

) · PW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
 1

almost surely. Consequently, integrating the last estimate with respect to PA we
obtain

∫
ΩA

[
lim inf

ε→0
exp

(
c ψ(ε−1/H)

) · PW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)]

dPA  1.
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Hence by Fatou’s lemma we arrive at

lim inf
ε→0

exp
(
c ψ(ε−1/H)

) ∫
ΩA

PW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
dPA  1.

This completes the proof of (3.12) since

∫
ΩA

PW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
dPA = P

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
. ¥

Combining Theorems 3.1 and 3.2 gives the following

THEOREM 3.3. Suppose that the compact set K and the subordinator A with
Laplace exponent Φ satisfy

(3.14) N

(
K,

1
Φ(x)

)
≈ ψ(x)

for some continuous non-decreasing function ψ with property (3.9). Then this im-
plies for almost all paths of A that

logPW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
≈ −ψ(ε−1/H)

and, moreover, that

logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
≈ −ψ(ε−1/H).

P r o o f. We only mention that (3.9) and (3.14) imply (1.4). Hence the asser-
tion follows directly from Theorems 3.1 and 3.2. ¥

4. EXAMPLES AND APPLICATIONS

4.1. Gamma processes. In this subsection we suppose that A is a Gamma
process, i.e., A is a subordinator such that for a certain b > 0 the random variable
A(1) is Γb-distributed as defined in (1.7). Then the Laplace exponent of A equals

(4.1) Φ(x) = b log(1 + x), 0 ¬ x <∞.

Furthermore, in this subsection we restrict ourselves to compact sets K in [0,∞)
with

(4.2) N(K, δ) ≈ δ−a

for a certain a ∈ (0, 1]. This simplifies the considerations and covers the most in-
teresting cases as, for example, self-similar sets K. Clearly, (4.1) and (4.2) imply

(4.3) N

(
K,

1
Φ(x)

)
≈ (log x)a.
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Thus property (1.4) is satisfied and Theorem 1.2 implies that for almost all paths
of A we have

(4.4) N
(
A(K), δ

) ≈ |log δ|a

as δ → 0.
Our next objective is to investigate the behavior of the expression

(4.5) logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)

in that situation. It should be mentioned that even for K = [0, 1] the behavior of
(4.5) does not follow from Theorem 2.1 in [13]. The crucial point is that the func-
tion ψ(x) := (log x)a does not satisfy the condition (3.9) with some C1 > 1, so
Talagrand’s small deviation result does not apply in that case. This was erroneously
not mentioned in the proof of (4.2) in [13], p. 279.

THEOREM 4.1. Let A be some Gamma process with A(1) distributed accord-
ing to Γb for some b > 0 and let K be a compact set in [0,∞) with N(K, δ) ≈ δ−a

for some a ∈ (0, 1]. Then for all H ∈ (0, 1) and almost all paths of A we have

logPW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
≈ −|log ε|a+1.

Moreover, in the annealed case we have the following general result:
Let K ⊂ [0,∞) be a compact set with K 6= {0}. Then

(4.6) logP
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
≈ −|log ε|.

P r o o f. First note that neither Theorem 3.1 nor Theorem 3.2 can be used here
directly. As already mentioned, condition (3.9) does not hold in our situation. Thus
the latter theorem does not apply. Moreover, Theorem 3.1 does not lead to the right
order.

U p p e r b o u n d s i n t h e q u e n c h e d c a s e. Fix a path of A satisfying
(1.5) for δ < δ0 and apply Proposition 3.2 to A(K). Using (4.4) it follows that

logPW

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ −c1

[
N

(
A(K), ε1/(1+H)

)− 1
]|log ε|

¬ −c2[log(ε−1/(1+H))a − 1]|log ε|
¬ −c3 |log ε|a+1

provided that ε < ε0. This gives the desired upper estimate in the quenched case.
L o w e r b o u n d s i n t h e q u e n c h e d c a s e. Because of (4.3) there is a

c0 > 0 such that for x  x0 the function ψ(x) := c0 (log x)a fulfils the inequality

N

(
K,

1
Φ(x)

)
¬ ψ(x).
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Then ψ satisfies the right-hand estimate in (3.9). Take a path of A for which (1.5)
holds. As in the proof of Theorem 3.2, we get

N
(
A(K), δ, dH

) ¬ 100ψ(δ−1/H) ¬ c |log δ|a

for small δ > 0. Thus we are exactly in the situation of Comment 2 in [3] and
obtain

logP
(

sup
s∈A(K)

|WH(s)| < ε
)  −c′ |log ε|a+1,

as asserted. This completes the proof of this case.
We turn now to the proof of the lower estimate in (4.6). To this end it suf-

fices to treat the case K = [0, 1]. Recall that WH is self-similar and A is a Lévy
process. Because of A(K) ⊆ [0, A(1)], by P = PA × PW the H-self-similarity of
WH implies

P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
 P

(
sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε , A(1) ¬ ε1/H
)

 P( sup
0¬s¬ε1/H

|WH(s)| < ε , A(1) ¬ ε1/H
)

= P
(

sup
0¬s¬1

|WH(s)| < 1 , A(1) ¬ ε1/H
)

= PW

(
sup

0¬s¬1
|WH(s)| < 1

)
PA

(
A(1) ¬ ε1/H

)
.

(4.7)

If ε ¬ 1, then we get

P
(
A(1) ¬ ε1/H

)
=

1
Γ(b)

ε1/H∫
0

xb−1e−x dx  e−1 εb/H

Γ(b + 1)

and from (4.7) we derive

P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
 cH,b εb/H

with
cH,b := e−1P

(
sup

0¬s¬1
|WH(s)| < 1

)
Γ(b + 1)−1.

This completes the proof of the lower estimate.
In order to prove the upper estimate in (4.6) we may assume K = {1}. Recall

that by assumption at least one element in K is different from zero. This implies

(4.8) P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)

= P(ζH |ξ| < ε),
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where ζ is Γb-distributed and independent of ξ, which is as before N (0, 1). The
right-hand side of (4.8) equals

√
2
π

∞∫
0

P(ζH < ε/x) exp(−x2/2)dx.

Take δ > 0 and split the last integral into two integrals:
∫ δ

0
and

∫∞
δ

. The first
integral can be estimated by δ. To estimate the second integral we use

P
(
ζ < (ε/x)1/H

) ¬ P(ζ < (ε/δ)1/H
) ¬ εb/H

Γ(b + 1) δb/H
.

Summing up, we arrive at

P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ δ +

εb/H

Γ(b + 1) δb/H
.

Finally, setting δ := εb/(b+H) gives

P
(

sup
t∈K

∣∣WH

(
A(t)

)∣∣ < ε
)
¬ c εb/(b+H)

for some c > 0. This completes the proof of the upper estimate. ¥

4.2. Stable Lévy motion. A subordinator Aγ is said to be γ-stable, 0<γ <1,
provided its Laplace exponent equals Φ(x) = c0 xγ for some c0 > 0. Thus, if
K ⊂ [0,∞) is a compact set with

lim inf
δ→0

N(K, δ)
|log δ|β > 0

for some β > 0, then the condition (1.4) is satisfied and Theorem 1.2 applies.
Hence, in that case for almost all paths of Aγ we have

1
14

N

(
K,

2 δγ

c0

)
¬ N

(
Aγ(K), δ

) ¬ 100N

(
K,

δγ

2 c0

)

for 0 < δ < δ0. Here c0 > 0 is the constant in the Laplace exponent of Aγ .
For 0 < α < 2 let Zα =

(
Zα(t)

)
t0

be an α-stable Lévy motion. We assume
that Zα is normalized, i.e., E exp

(
i Zα(1)x

)
= exp(−|x|α) for x ∈ R. As well

known (cf. [14]) the process Zα may be represented as

(4.9) Zα(t) = W
(
Aα/2(t)

)
, 0 ¬ t <∞,

where, as before, W is a Wiener process independent of the α/2-stable subordina-
tor Aα/2. Thus our results apply in that case and lead to the following
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THEOREM 4.2. For 0 < α < 2 let Zα be an α-stable Lévy motion and let
K ⊂ [0,∞) be an arbitrary compact set. Then it follows that

logP
(
sup
t∈K
|Zα(t)| < ε

) ¬ −c1 N(K, c2 ε−α) + 2,

where c1 > 0 is a universal constant and c2 > 0 only depends on α.

P r o o f. By the representation (4.9) this is a direct consequence of Theo-
rem 3.1 (b). Recall that Φ(x) = c0 xα/2 and that H = 1/2. ¥

The corresponding lower estimates for the small deviation probability of Zα

over compact sets follow either from Theorem 3.2 or from recent results in [2]
and [3]. For example, Theorem 3.2 implies the following

THEOREM 4.3. Let K ⊂ [0,∞) be a compact set such that

N(K, δ) ¬ ϕ(δ)

for some non-increasing continuous function ϕ satisfying

(4.10) C1 ϕ(δ) ¬ ϕ(2 δ) ¬ C2 ϕ(δ)

with some 1 < C1 ¬ C2 <∞. Then this implies

(4.11) logP
(
sup
t∈K
|Zα(t)| < ε

)  −c ϕ(εα).

REMARK 4.1. The restriction C1 > 1 in (4.10) can be eliminated. But then in
(4.11) the function ϕ has to be replaced by a modified function ϕ̄. We refer to [3]
for more details.
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