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Abstract. In this paper we study Bessel processes in terms of the King-
man convolution method. In particular, we propose a higher dimensional
model of the Kingman convolution algebras. We show that every Bessel pro-
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1. INTRODUCTION, NOTATION AND PRELIMILARIES

This study is inspired by a distinguished part of Bessel processes in financial
mathematics for decades. Indeed, for each n = 1, 2, . . . let

Wt = (W (1)
t ,W

(2)
t , . . . ,W

(n)
t )

be an n-dimensional Brownian motion (BM (n)) and ρt = ‖Wt‖ its radial part.
Consider the following process:

(1.1) βt =
n∑

i=1

t∫
0

W
(i)
s

ρs
dW (i)

s
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which, since 〈β, β〉t = t, stands for a linear Brownian motion, i.e. a BM (1). By
virtue of Revuz and Yor [12], p. 439, we have

(1.2) ρ2
t = ρ2

0 + 2
t∫
0

ρsdβs + nt.

Replacing n by any nonnegative number δ ­ 0, we see that the equation (1.2) leads
to the following interpolation class of stochastic differential equations (SDE):

(1.3) Zt = x + 2
t∫
0

√
|Zs|dβs + δt,

where x ­ 0.
Note that (1.3) is a special case of the Cox–Ingersoll–Ross family of diffusions

[2] and has a unique solution which is strong, nonnegative and adapted with re-
spect to the natural filtration {Ft} of {Wt}. Consequently, in the case when δ ­ 0,
x ­ 0, the absolute sign in (1.3) can be omitted and {Zt} can be modelled as short
term interest rates (cf. Cox et al. [2]).

DEFINITION 1.1 (cf. Revuz and Yor [12], XI). For every δ ­ 0, x ­ 0, the
unique strong solution of the equation (1.3) is called the square of δ-dimensional
Bessel process started at x and is denoted by BESQδ(x). Further, the square root
of BESQδ(x2) is called the Bessel process1 of dimension δ started at x and is
denoted by BESδ(x).

In the sequel, we study the class of processes BESδ(x), δ = 2(s + 1) ­ 1,
via the Kingman convolution method and also use s as a fixed index of the Bessel
process.

Let P denote the class of all probability measures (p.m.’s) on the positive half-
line R+ endowed with the weak convergence, and ∗1,δ, δ ­ 1, denote the Kingman
convolution which was introduced by Kingman [5] in connection with the addi-
tion of independent spherically symmetric random vectors (r.vec.’s) in a Euclidean
space. Namely, for each continuous bounded function f on R+ we write

(1.4)
∞∫
0

f(x)µ ∗1,δ ν(dx)

=
Γ(s + 1)√
πΓ

(
s + 1

2

)
∞∫
0

∞∫
0

1∫
−1

f
(
(x2 +2uxy + y2)1/2

)
(1−u2)s−1/2µ(dx)ν(dy)du,

1 If n is replaced by a negative real number, then the corresponding unique strong solution to
the equation (1.3) exists, and thus the Bessel process of a negative dimension δ can be defined (cf.
Revuz and Yor [12], Exercise 1.33, p. 453).
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where µ, ν ∈ P and δ = 2(s + 1) ­ 1 (cf. Kingman [5] and Urbanik [15]). The
algebra (P, ∗1,δ) is the most important example of Urbanik convolution algebras
(cf. Urbanik [15]). In the language of the Urbanik convolution algebras, the char-
acteristic measure, say σs, of the Kingman convolution has the Rayleigh density

(1.5) dσs(y) =
2(s + 1)s+1

Γ(s + 1)
y2s+1 exp

(− (s + 1)y2
)
dy

with the characteristic exponent κ = 2 and the kernel Λs,

(1.6) Λs(x) = Γ(s + 1)Js(x)/(1/2x)s,

where Js(x) denotes the Bessel function,

(1.7) Js(x) :=
∞∑

k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)
.

It is known (cf. Kingman [5], Theorem 1) that the kernel Λs itself is an ordinary
characteristic function (ch.f.) of a symmetric p.m., say Fs, defined on the interval
[−1, 1]. Thus, if θs denotes a random variable (r.v.) with distribution Fs, then for
each t ∈ R+

Λs(t) = E exp (itθs)

=
1∫
−1

exp (itx)dFs(x).

(1.8)

Suppose that X is a nonnegative r.v. with distribution µ ∈ P and X is inde-
pendent of θs. The radial characteristic function (rad.ch.f.) of µ, denoted by µ̂(t),
is defined by

µ̂(t) = E exp (itXθs)

=
∞∫
0

Λs(tx)µ(dx)

(1.9)

for every t ∈ R+. In particular, the rad.ch.f. of σs is

(1.10) σ̂s(t) = exp
(
− t2

2

)
, t ∈ R+.

It should be noted, since the rad.ch.f. is defined uniquely up to the mapping
x → ax, a > 0, x ∈ R+, that the representation (1.10) may differ from the one
given in Urbanik [15] and Kingman [5] only by a scale parameter.



122 Nguyen Van Thu

2. CARTESIAN PRODUCT OF KINGMAN CONVOLUTIONS

Denote by R+k, k = 1, 2, . . ., the k-dimensional nonnegative cone of Rk and
P(R+k) the class of all p.m.’s on R+k equipped with the weak convergence. In the
sequel, we will denote the multidimensional vectors and distributions and r.vec.’s
by bold letters. For each point z of any set Z let δz denote the Dirac measure (the
unit mass) at the point z. In particular, if x = (x1, x2, . . . , xk) ∈ Rk+, then

(2.1) δx = δx1 × δx2 × . . .× δxk
,

where the sign × denotes the Cartesian product of measures. We put, for x =
(x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) ∈ R+k,

(2.2) δx ©k δy = {δx1 ◦ δy1} × {δx2 ◦ δy2} × . . .× {δxk
◦ δyk

};
for the sake of simplicity, here and somewhere below we denote the Kingman
convolution operation ∗1,δ simply by ◦. Since convex combinations of p.m.’s of
the form (2.1) are dense in P(R+k), the relation (2.2) can be extended to arbitrary
p.m.’s F, G ∈ P(R+k). Namely, we put

(2.3) F©k G =
∫∫
R+k

δx ©k δyF(dx)G(dy).

In the sequel, the binary operation ©k will be called the k-times Cartesian prod-
uct of Kingman convolutions. It is easy to show that the binary operation ©k is
continuous in the weak topology, which together with (1.4) and (2.3) implies the
following theorem.

THEOREM 2.1. The pair
(P(R+k),©k

)
is a commutative topological semi-

group with δ0 as the unit element. Moreover, the operation ©k is distributive with
respect to convex combinations of p.m.’s in P(R+k).

In the sequel, the pair
(P(R+k),©k

)
will be called a k-dimensional King-

man convolution algebra2. For every F ∈ P(R+k) the k-dimensional rad.ch.f.
F̂(t), t = (t1, t2, . . . , tk) ∈ Rk+, is defined by

(2.4) F̂(t) =
∫
R+k

k∏
j=1

Λs(tjxj)F(dx),

where x = (x1, x2, . . . , xk) ∈ R+k.
The k-dimensional Rayleigh distribution, say Σs, is defined by

(2.5) Σs = σs × σs × . . .× σs (k times).

2 Higher dimensional Urbanik convolution algebras can be introduced in the same way as here
for the Kingman convolution case but this subject will be treated systematically elsewhere.



A Kingman convolution approach to Bessel processes 123

Furthermore, for any nonnegative numbers λr, r = 1, 2, . . ., the distribution

(2.6) F = {Tλ1σs} × {Tλ2σs} × . . .× {Tλk
σs}

stands for a k-dimensional Rayleighian distribution. Here and in the sequel, if X
is an r.v. or an r.vec. with distribution µ and λ is a real number, then we denote by
Tλµ the distribution of λX.

By virtue of formulas (1.10) and (2.4)–(2.6) we have the following

THEOREM 2.2. Suppose distributions Σ and F are of the form (2.5) and (2.6).
Then, for any t ∈ R+k,

(2.7) − log Σ̂s(t) =
1
2

k∑

j=1

t2j

and

(2.8) − log F̂(t) =
1
2

k∑

j=1

λ2
j t

2
j .

Let θ, θ1, θ2, . . . , θk be independent identically distributed (i.i.d.) r.v.’s with
common distribution Fs. We set

(2.9) Θs = (θ1, θ2, . . . , θk).

Assume that X = (X1, X2, . . . , Xk) is a k-dimensional r.vec. with distribution F
and X is independent of Θ. We put

(2.10) [Θ,X] = (θ1X1, θ2X2, . . . , θkXk).

Then the following formula is the multidimensional generalization of (1.9) and is
equivalent to (2.4):

(2.11) F̂(t) = E exp(i〈t, [Θ,X]〉),
where X and Θ are assumed to be independent, t = (t1, t2, . . . , tk) ∈ R+k, and
the symbol 〈 , 〉 denotes the inner product in Rk. In fact, we have

E exp
(
i〈(θ1t1, θ2t2, . . . , θktk),X〉

)
=

∫
R+k

E exp
(
i

k∑

j=1

tjxjθj

)
F(dx)

=
∫
R+k

k∏
j=1

Λs(tjxj)F(dx) = F̂(t).

(2.12)

As a consequence of the representation (2.11) we have

COROLLARY 2.1. For each F ∈ P(Rk+) the rad.ch.f. F̂(t) is also an ordi-
nary k-dimensional ch.f., and hence it is uniformly continuous.
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The following lemma will be used in the representation of k-dimensional in-
finitely divisible (ID) p.m.’s.

LEMMA 2.1. (i) For every t ­ 0

(2.13) lim
x→0

1− Λs(tx)
x2

= lim
x→0

1− Eeitxθ

x2
=

t2

2
.

(ii) For any vectors x = (x0, x1, . . . , xk) and t = (t0, t1, . . . , tk) ∈ Rk+1,
k = 1, 2, . . .,

(2.14) lim
ρ→0

1−∏k
r=0 Λs(trxr)

ρ2
=

k∑

r=0

λr(x)t2r,

with ρ = ‖x‖ and λr(x), r = 0, 1, . . . , k, given by

(2.15) λr(x) =





1
2 cos2 φ, r = 0,
1
2(sinφ sinφ1 . . . sinφr−1 cosφr)2, 1 ¬ r ¬ k − 2,
1
2(sinφ sinφ1 . . . sinφk−2 cosψ)2, r = k − 1,
1
2(sinφ sinφ1 . . . sinφk−2 sinψ)2, r = k,

where 0 ¬ ψ, φ, φr ¬ π/2, r = 1, 2, . . . , k − 2, are angles of x appearing in
its polar form.

P r o o f. (i) The equation (1.8) together with the l’Hôpital rule implies that

lim
x→0

1− Λs(tx)
x2

= lim
x→0

1− Eeitθ

x2
=

t2

2
,

which proves (2.13).
(ii) In order to prove (2.14) assume that the points x = (x0, x1, . . . , xk) ∈

Rk+1 are of the polar form

(2.16) xr =





ρ cosφ, r = 0,

ρ sinφ sinφ1 . . . sinφr−1 cosφr, 1 ¬ r ¬ k − 2,

ρ sinφ sinφ1 . . . sinφk−2 cosψ, r = k − 1,

ρ sinφ sinφ1 . . . sinφk−2 sinψ, r = k,

where 0 ¬ ψ, φ, φr ¬ π/2, r = 1, 2, . . . , k − 2. Putting

(2.17) A(Θ, t,Φ) = t0θ0 cosφ +
k−2∑

r=1

trθr sinφ sinφ1 . . . sinφr−1 cosφr

+ tk−1θk−1 sinφ sinφ1 . . . sinφk−2 cosψ + tkθk sinφ sinφ1 . . . sinφk−2 sinψ
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and

(2.18) V (Θ, t,Φ) =
k∑

r=0

trxrθr,

where the θr, r = 0, 1, 2, . . ., are symmetric i.i.d. r.v.’s with distribution σs, Φ =
(ψ, φ, φ1, . . . , φk) and Θ := (θ0, θ1, . . . , θk). By virtue of (2.12) and (2.16) and
applying l’Hôpital rule, we have

lim
ρ→0

1−∏k
r=0 Λs(trxr)

ρ2
= lim

ρ→0

1− E
(
exp

(
i
∑k

r=0
trxrθr

))

ρ2

=
(d2/dρ2)

(
1− E exp

(
iρA(Θ, t,Φ)

))

(d2/dρ2)ρ2

∣∣∣∣
ρ=0

=
1
2
EV 2(Θ, t,Φ) exp

(
iρV (Θ, t,Φ)

)∣∣
ρ=0

.

(2.19)

Since σs has expectation zero and variance one, it follows that

(2.20) EV 2(θ, t, φ) =
k∑

j=1

t2jx
2
j ,

which together with (2.19) implies (2.14). ¥

Proceeding successively, we have the following theorem:

THEOREM 2.3. Every p.m. F ∈ P(R+k) is uniquely determined by its k-
dimensional rad.ch.f. F̂ and the following formula holds:

(2.21) ̂F1 ©k F2(t) = F̂1(t)F̂2(t),

where F1,F2 ∈ P(R+k) and t ∈ R+k.

P r o o f. The formula (2.21) follows from (1.4) and (2.3). Next, using the for-
mulas (2.3) and (2.4) and integrating the function F̂(t1u1, . . . , tkuk) k times with
respect to σs, we get

(2.22)
∫
R+k

F̂(t1u1, . . . , tkuk)σs(du1) . . . σs(duk)

=
∫
R+

. . .
∫
R+

k∏
j=1

Λs(tjxjuj)F(dx)σs(du1) . . . σs(duk)

=
∫
R+k

k∏
j=1

exp(−t2jx
2
j )F(dx),
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which, by the change of variables yj = x2
j , j = 1, . . . , k, and by the uniqueness of

the k-dimensional Laplace transform, implies that F is uniquely determined by the
left-hand side of (2.22). ¥

As a consequence of the formula (2.22) we have the following corollary which
is an analogue of the continuity theorem for multidimensional Laplace transforms.

THEOREM 2.4. Suppose that {Fn} is a sequence of distributions on Rk+ and
{φn} is a sequence of the corresponding rad.ch.f.’s. Then Fn converges weakly to
a distribution F if and only if {φn} converges uniformly on every compact subset
of Rk+ to a rad.ch.f. φ.

For any x ∈ R+k the generalized translation operators (g.t.o.’s) Tx acting on
the Banach space Cb(R+k) of real bounded continuous functions f on R+k are
defined, for each y ∈ R+k, by

(2.23) Txf(y) =
∫
R+k

f(u){δx ©k δy}(du).

In terms of these g.t.o.’s the k-dimensional rad.ch.f. of p.m.’s on R+k can be char-
acterized as follows (see Vólkovich [17] for the proof):

THEOREM 2.5. A real bounded continuous function f on R+k is a (k-dimen-
sional) rad.ch.f. of a p.m. if and only if f(0) = 1 and f is {Tx}-nonnegative definite
in the sense that for any x1,x2, . . . ,xk ∈ Rk and λ1, λ2, . . . , λk ∈ C

(2.24)
k∑

i,j=1

λiλ̄jTxif(xj) ­ 0.

The k-dimensional ID elements with respect to ©k can be defined as follows:

DEFINITION 2.1. A p.m. µ ∈ P(R+k) is called infinitely divisible (ID) if for
every natural m there exists a p.m. µm such that

µ = µm ©k . . .©k µm (m times).

The simplest but most important example of k-dimensional ID distributions
are the k-dimensional Rayleigh distributions. More generally, if F is a k-dimen-
sional Rayleighian distribution, then it is also ID. Let us denote by ID(©k) the
class of all i.d.p.m.’s in

(P(R+k),©k

)
. The following theorem, being a generaliza-

tion of Theorem 7 in Kingman [5], stands for an analogue of the Lévy–Khintchine
representation for rad.ch.f.’s of i.d.p.m.’s in the k-dimensional Kingman con-
volution.

THEOREM 2.6. A p.m. µ ∈ ID(©k) if and only if there exists a σ-finite mea-
sure M (a Lévy measure) on R+k with the property that M({0}) = 0, M is finite
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outside every neighborhood of 0 and

(2.25)
∫
R+k

‖x‖2
1 + ‖x‖2 M(dx) <∞

and, for each t = (t1, . . . , tk) ∈ Rk+,

(2.26) − log µ̂(t) =
∫
R+k

{
1−

k∏
j=1

Λs(tjxj)
}1 + ‖x‖2
‖x‖2 M(dx),

where, at the origin 0, the integrand on the right-hand side of (2.26) is assumed to
be of the form

(2.27)
k∑

j=1

λj(x)t2j = lim
‖x‖→0

{
1−

k∏
j=1

Λs(tjxj)
}1 + ‖x‖2
‖x‖2

for nonnegative λj(x), j = 1, 2, . . . , k, and x ∈ Rk+, given by equations (2.15). In
particular, if M tends to the measure 0, then µ becomes a Rayleighian distribution
with the rad.ch.f.

(2.28) − log µ̂(t) =
1
2

k∑

j=1

λjt
2
j , t ∈ Rk+,

for some nonnegative λj , j = 1, . . . , k.
Moreover, the representation (2.26) is unique.

P r o o f. The proof is carried out in several steps.
(i) If φ is a k-dimensional ID rad.ch.f., then it does not vanish on Rk+.

Indeed, denote by Φk the totality of k-dimensional ID rad.ch.f.’s (of the fixed
index s). Then, we have

(2.29) Φk =
∞⋂

n=1

{φ : φ1/n ∈ Φn},

which, together with (2.12) and (2.21), implies that every k-dimensional ID rad.ch.f.
is a symmetric ordinary ID ch.f. and, consequently, it does not vanish on Rk+.

(ii) Any ν ∈ ID(©k) with rad.ch.f. ν̂ = ψ ∈ Φk can be expressed in the
form (2.26).

Accordingly, for every n there exists ψn ∈ Φk such that ψ = ψn
n . By virtue

of (i), ψ(t) > 0 for each t. Therefore,

(2.30) log ψ(t) = lim
n→∞n{ψn(t)− 1}.
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Let Hn be a p.m. such that

(2.31) ψn(t) =
∫
Rk+

k∏
j=1

Λs(tjxj)Hn(dx), t ∈ Rk+.

Putting

(2.32) Gn(A) = n
∫
A

‖x‖2
1 + ‖x‖2Hn(dx)

and taking into account the equations (2.30) and (2.31) we get

(2.33) − log ψ(t) = lim
n→∞

∫
Rk+

{
1−

k∏
j=1

Λs(tjxj)
}1 + ‖x‖2
‖x‖2 Gn(dx),

which can be rewritten as

(2.34) − log ψ(t) = lim
n→∞

∫
Rk+

{
1−

k∏
j=1

Λs(tjxj)
}
Kn(dx),

where Kn are finite measures vanishing at 0 defined by

Kn(dx) :=
1 + ‖x‖2
‖x‖2 Gn(dx) (n = 1, 2, . . .).

Replacing t in the equation (2.34) by [t,u], t,u ∈ Rk+, and integrating with re-
spect to σs × . . .× σs(du), we obtain

−
∫
Rk+

log ψ([t,u])σs × . . .× σs(du)

=
∫
Rk+

lim
n→∞

∫
Rk+

{
1−

k∏
j=1

Λs(tjujxj)
}
Kn(dx)σs × . . .× σs(du)

= lim
n→∞

∫
Rk+

{
1−

k∏
j=1

exp(−t2jx
2
j )

}
Kn(dx),

which, by changing variables x2
j → uj , j = 1, 2, . . . , k, and applying the continu-

ity theorem for the classical infinitely divisible Laplace transforms onRk+, implies
that there exists a finite measure K vanishing at 0 and a subsequence {Kmr}which
converges to K in the sense that for any bounded continuous function f from Rk+

to R vanishing on a neighborhood of 0 and

lim
r→∞

∫
Rk+

f(x)Kmr(dx) =
∫
Rk+

f(x)K(dx).

This together with (2.33) and (2.14) implies that every ψ is of the form (2.26) for
a Lévy measure M.
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(iii) Now, if M tends to the zero measure, it follows that, at the origin 0,
the integrand on the right-hand side of (2.26) is determined by (2.1), which is a
consequence of Lemma 2.1.

(iv) Conversely, the uniqueness of the formula (2.26) can be proved in the
same way as in the classical case (cf. Sato [13], Theorems 8.1 and 8.7). ¥

3. CONVOLUTION STRUCTURE OF BESSEL PROCESSES

Given a p.m. µ ∈ P and n = 1, 2, . . . we put, for any x ∈ R+, B ∈ B(R+),
where B(R+) denotes the Borel σ-field of R+,

(3.1) Pn(x,E) = δx ◦ µ◦n(E),

where the power is taken in the convolution ◦ sense. Using the rad.ch.f. one can
show that {Pn(x, E)} satisfies the Chapman–Kolmogorov equation, and there-
fore there exists a nonnegative homogeneous Markov sequence, say {Sx

n}, n =
0, 1, 2, . . ., with transition probability {Pn(x,E)}.

In what follows we will discuss the case of Bessel processes which stand for
a continuous counterpart of the above symmetric random walks. Namely, suppose
that µ is ID with respect to the Kingman convolution ◦. We put

(3.2) q(t, x, E) := µ◦t ◦ δx(E)

and take into account the fact that the family {q(t, x, ·)} of distributions satisfies
the Chapman–Kolmogorov equation, and therefore it stands for a transition proba-
bility of a homogeneous strong Markov Feller process, say {Xx

t }, t, x ∈ R+, and,
moreover, {Xx

t } is stochastically continuous and has a cadlag version (cf. Nguyen
[7], Theorem 2.6).

DEFINITION 3.1. A stochastic process {Xx
t } is called a Lévy-type (or ◦-Lévy)

process if
(i) Xx

0 = x with probability 1;
(ii) {Xx

t } is a strong Markov Feller process with transition probability of the
form (3.2);

(iii) {Xx
t } is a stochastically continuous process having cadlag realizations

with probability 1.

It is evident that all Lévy processes are ∗-Lévy ones. The simplest example
of Lévy-type but non-Lévy processes is the absolute value of the linear Brownian
motion. Similarly, the following theorem shows that Bessel processes started from
0 stand for Lévy-type processes induced by the Kingman convolution.

THEOREM 3.1. Let {Bδ
t } denote a Lévy-type process which has transition

probability (3.2) with x = 0 and µ = σs. Then, up to a scale change, {Bδ
t } and

BESδ(0) have the same distribution. Consequently, they are induced by the King-
man convolution.
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P r o o f. Let P δ
x denote the law of BESδ(x), δ ­ 0, x ­ 0, on C(R+,R) (cf.

[12], XI, p. 446) which entails that the density pδ
t (0, y) of the Bessel semigroup is

(3.3) pδ
t (0, y) = 2−st−(s+1)Γ(s + 1)−1y2s+1 exp(−y2/2t).

It should be noted that functions (3.3) are Rayleigh functions of y. In addition, if
t = 2, we get P δ

2 (0, ·) = σs. Next, by (1.10), we have

(3.4) σ̂◦ts (u) = exp
(− tu2/4(s + 1)

)
, u ­ 0.

Our further aim is to prove that, up to a scale change, the rad.ch.f. of σ◦ts is equal to
the rad.ch.f. of P δ

t (0, y). Accordingly, integrating the kernel Λs(uz) with respect
to P δ

t (0, z) we see, by (1.4), (1.6) and (3.3), that the rad.ch.f. of P δ
t (0, y) is given,

for each u ­ 0, by

P̂ δ
t (0, y)(u) =

∞∫
0

Λs(uz)P δ
t (0, z)dz

= 2−st−(s+1)Γ(s + 1)−1
∞∫
0

z2s+1Λs(uz) exp(−z2/2t)dz.

(3.5)

Hence and by virtue of the Weber integral3 for u ­ 0 we have

(3.6) q̂δ
t (0, y)(u)

= {2−st−(s+1)Γ(s + 1)−1}{2−12s+1ts+1Γ(s + 1) exp(−tu2/2)}
= σ̂◦ts (u),

which shows that qδ
t (0) = σ◦ts . ¥

3 From Watson ([18], p. 394) we have, for s ­ −1/2, a ­ 0, p > 0,

∞∫
0

ts+1Js(at) exp(−p2t2)dt = as(2p2)−s−1 exp(−a2/4p2),

which may be written as

∞∫
0

t2s+1Λs(at) exp(−p2t2)dt =
1

2
Γ(s + 1)p−2(s+1) exp

`−a2/(4p2)
´
.
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4. BESSEL PROCESSES AS STATIONARY INDEPENDENT “INCREMENTS” PROCESSES

Suppose that Xj , j = 1, 2, . . ., are nonnegative independent r.v.’s with the cor-
responding distributions FXj , j = 1, 2, . . ., and θ, θ1, θ2, . . . are i.i.d. r.v.’s with the
common distribution Fs and the r.v.’s Xj , j = 1, 2, . . . , θ, θ1, θ2, . . . are indepen-
dent. Following Kingman ([5], formula (10)) we say, for a fixed s > −1/2, that
any one of the equivalent r.v.’s

(4.1) X1 ⊕X2 :=
√

X2
1 + X2

2 + 2X1X2θ1

is a radial sum of the two independent nonnegative r.v.’s X1, X2. By induction, the
radial sum X1 ⊕X2 ⊕ . . .⊕Xk is defined for any finite k = 2, 3, . . . It should be
noted ([5], formula (12)) that the operation ⊕ is associative.

DEFINITION 4.1. Let Bb be the ring of subsets of a non-empty bounded Borel
subsets of R+. A function

(4.2) M : Bb → L+,

where L+ = L+(Ω,F , P ) denotes the class of all nonnegative r.v.’s on the proba-
bility space (Ω,F , P ), is said to be an ◦-scattered random measure if

(i) M(∅) = 0 with probability 1;
(ii) for any A, B ∈ Bb, A ∩ B = ∅; then M(A) and M(B) are independent

and

(4.3) M(A ∪B) d= M(A)⊕M(B);

(iii) for any pairwise disjoint sets A1, A2, . . . ∈ Bb with the union in Bb, the
r.v.’s M(A1),M(A2), . . . are independent and

(4.4) M
( ∞⋃

j=1

Aj

) d=
∞⊕

j=1

M(Aj).

It is well known that if {W (t)}, t ∈ R+, is a Brownian motion process, then
there exists a Gaussian stochastic measure M(A), A ∈ B0, where B0 is the ring
of bounded Borel subsets of R+ with the property that, for every t ­ 0, we have
W (t) = M

(
(0, t]

)
. The same is also true for Bessel processes. Namely, we get

THEOREM 4.1. Let {Bδ
t } denote a Bessel process started at 0. Then there ex-

ists a unique (up to finite-dimensional distributions) ◦-scattered random measure
B(A), A ∈ Bb, with the Lebesgue measure as its control measure such that for
each t ­ s ­ 0 we have

(4.5) B([0, t]) = Bδ
s ⊕B

(
(s, t]

)
.

Moreover, the control measure associated with B is the Lebesgue measure.
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We proceed the proof of the theorem by showing the following lemma.

LEMMA 4.1. Let π := {0 = t0 < t1 < t2 < . . .} be a subdivision of R+.
Then there exist independent r.v.’s X1, X2, . . . such that

(4.6) Xk
d= σ

tk−tk−1
s , k = 0, 1, 2, . . .

Moreover, we have

(4.7) Bδ
tn

d= X1 ⊕X2 ⊕ . . .⊕Xn, n = 2, 3, . . . ,

and

(4.8) B
(
(tn, t(n+r])

) d= σtn+r−tn
s .

P r o o f. Following the idea of Kingman ([5], p. 20) let us take as a sample
space Ω the Cartesian product of countably many intervals R+ with countably
many intervals [−1, 1]. The probability measure is defined on Ω as the product of
the distributions σ

tk−tk−1
s , k = 1, 2, . . ., on each of the first set of R+ together with

the distribution Fs (cf. (1.8)) on each of the second set. If the typical point ω ∈ Ω
has components

(4.9) X1(ω), X2(ω), . . . ; η1(ω), η2(ω), . . . ,

define Sm(ω) inductively by

S0 = 0,(4.10)

Sm+1(ω) = {S2
m(ω) + X2

m+1(ω) + 2ηm(ω)Sm(ω)Xm+1(ω)}1/2.(4.11)

Thus, we have

(4.12) Sm+1 = Sm ⊕Xm+1,

which, by virtue of the associativity of ⊕, implies that for each m = 2, 3, . . .

(4.13) Sm = X1 ⊕X2 ⊕ . . .⊕Xm.

Moreover, since Xk, k = 2, 3, . . ., are independent, it follows that

(4.14) Sm
d= σtm d= B(tm).

Now, since the operation ⊕ is associative (cf. Kingman [5], Theorem 1), one can
show that

(4.15)
Sm+r = Sm ⊕ Sm

r ,

Sm
0 = 0, Sm

r+1X = Sm
r ⊕Xm+r+1.

Note, by (4.14) and (4.15), σtm+r−tm d= Sm
r

d=
(
Xm ⊕ . . . ⊕ Xm+r

)
, which en-

tails (4.6), (4.7) and (4.8). ¥
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P r o o f o f T h e o r e m 4.1. Let B0 denote the class of finite unions of dis-
joint finite intervals (a, b], i.e.

(4.16)
k⋃

j=1

Ij , Ij = (t2j , t2j+1], j = 0, 1, . . . , k = 1, 2, . . .

We put

(4.17) B
( k⋃

j=1

Ij

)
=

k⊕
j=1

B(Ij).

Using the transfinite induction, Lemma 4.1, and the usual extension method of
random interval functions one can get an ◦-random measure B(·) on Bb with the
required properties. ¥

DEFINITION 4.2. For every 0 ¬ a ¬ b the quantity M
(
(a, b]

)
is called the

increment-type of the Bessel processes BESδ(0).

Moreover, from (3.1) and (4.1) we have

THEOREM 4.2. Every Bessel process which starts at 0 has a modification as
a process with stationary and increments-type process.
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