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Abstract. This paper is devoted to ARMA models with time-
dependent coefficients, including well-known periodic ARMA models. We
provide state-space representations and Kalman-type recursions to derive a
Wold–Cramér decomposition for the least squares residuals. This decom-
position turns out to be very convenient for further developments related to
parameter least squares estimation. Some examples are proposed to illus-
trate the main purpose of these state-space forms.
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1. INTRODUCTION

In time series analysis, mounting evidences have been proposed to emphasize
that empirical models in many fields such as economics, climatology or engineer-
ing are characterized by non-stationarity and parameter instability. Various meth-
ods have been devised in order to take non-stationarity into account: they mainly
consist of differencing or filtering the original series with the purpose of turning
it into a new set of data exhibiting no apparent deviation from stationarity. How-
ever, such methods allow for very restricted types of non-stationarities only. They
essentially result in seasonal autoregressive integrated moving average (SARIMA)
models, which consist in fitting an autoregressive moving average (ARMA) model
to the differenced series. This implies that the same ARMA model applies whatever
the ‘season’ under consideration. Nevertheless, when considering, for instance,
economic daily variables depending on weekdays and on weekends (motorway
traffic being an example), it seems natural to hope for different dynamics (and so
different forecasting formulae).

∗ The author would like to thank Christian Francq for inspiration and the referee for a careful
reading of the manuscript.
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This observation has sparked off an explosion of interest in time series mod-
els with time-varying parameters. One notable class of such models is the time-
varying ARMA models class, in which parameters can move discretely, for exam-
ple, between a given number of regimes. In particular, this wide class includes the
well-documented periodic ARMA time series models, extensively studied in the
statistical literature in the last decade (see e.g. Adams and Goodwin [1], Ander-
son et al. [2], Basawa and Lund [4], Miamee and Talebi [15], Gautier [12]) and
whose parameters switch according to a fixed periodic calendar. More generally,
Dahlhaus [8], Azrak and Mélard [3] and Bibi and Francq [5] have dealt with the
problem of estimating the whole class of ARMA models with time-dependent co-
efficients, via quasi-likelihood or least squares techniques.

The main purpose of this paper is therefore to provide easy mathematical
methods to investigate further the large sample properties of least squares esti-
mators of general time-varying ARMA models. Since the least squares procedure
consists of the minimization of weighted sums of squares of prediction errors (see
Godambe and Heyde [13] for a general reference), these methods are based on a
state-space representation of the model under study and on a Wold–Cramér de-
composition for the residuals. One distinctive feature of this paper is to explore
the state-space framework as a statistical tool to address the issue of estimating
ARMA models in the presence of time-dependent coefficients. Note however that
it is far beyond the scope of this paper to study the asymptotic behaviour of the
least squares estimates (to consider this question, see Francq and Gautier [10]).

The remainder of the paper is organized as follows. Section 2 describes the
time-varying ARMA model under consideration. Section 3 provides a state-space
representation and Kalman-type recursions for the model to obtain a pure time-
varying MA representation for the residuals in closed form. In Section 4, the coef-
ficients of the Wold–Cramér decomposition are derived in simple examples. Con-
cluding remarks are gathered in Section 5.

The following notation will be used throughout the paper. The square identity
matrix of order m is denoted by I(m). We denote by 0(m) the 0-vector of size m. Let
N = {0, 1, 2, . . . }. For seek of simplicity, we indicate the size of any multivariate
element into brackets under its notation, e.g. M(m×n) denotes the matrix M with
m rows and n columns. By M ′ we mean the transpose of any matrix M . We finally
denote by ui the i-th vector of the canonical basis of Rp+q.

2. MODEL AND PRELIMINARIES

Consider a time series (Xt)t=1,2,... exhibiting changes in regime at known
dates. We suppose that there exists a finite number d of regimes which alternate
themselves either in a constant periodicity or at irregular time intervals. Denote by
st the regime corresponding to the index t, so that st = k when the time series is
in the k-th regime at time t, for k ∈ {1, . . . , d}. The sequence (st) is assumed to
be known as a real-valued sequence of observed changes in regime. The dynamics
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of Xt in each regime can be described by an ARMA(p, q) equation,

(2.1) Xt −m(st) +
p∑

i=1

ai(st) {Xt−i −m(st−i)} = εt +
q∑

i=1

bi(st)εt−i

for all t  1, where p, q are minimal orders so that (2.1) is identifiable. Note that,
under the additional assumptions made below, m(st) can be interpreted as the ex-
pectation of Xt. The process (εt) is a white noise, namely a sequence of uncorre-
lated random variables with mean 0 and variance 1. The parameter of interest in
Model (2.1) is denoted by

θ = {m(1), . . . ,m(d), a1(1), . . . , ap(d), b1(1), . . . , bq(d)}′

and belongs to an open subset Θ of R(p+q+1)d.
The recursive relation (2.1) requires starting values that we specify as

Xt −m(st) = εt = 0 for t = 1−max{p, q}, . . . , 0.

The best one-step predictor in the mean-square sense, that we denote by X̂t(θ) =
Eθ(Xt|Xt−1, . . . , X1), can be computed recursively by

(2.2)





X̂t(θ) = m(st) for t = 1−max(p, q), . . . , 0,

X̂k(θ) = m(sk)−
∑p

i=1
ai(sk) {Xk−i −m(sk−i)}

+
∑q

i=1
bi(sk){Xk−i − X̂k−i(θ)} for k = 1, . . . , t.

The true value of the parameter θ is denoted by θ0. So we write

θ0 = {m0(1), . . . , m0(d), a01(1), . . . , a0p(d), b01(1), . . . , b0q(d)}′ .

The prediction errors are finally defined by

(2.3) et(θ) = Xt − X̂t(θ).

Conditions ensuring consistency and asymptotic normality of least squares
and quasi-generalized least squares estimators of Model (2.1) subject to stationary
and ergodic changes in regime have been given in Francq and Gautier [10]. In the
afore-mentioned paper, it has been shown that the residuals (2.3) can be expressed
in the following Wold–Cramér decomposition for non-stationary processes (see
Cramér [7]):

(2.4) et(θ) =
t−1∑

i=0

ψt,i(θ, θ0)εt−i + ct(θ, θ0).
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For example, in the time-varying AR(1) case, we have (see Subsection 4.1)

ψt,i(θ, θ0) = (−1)i {a01(st)− a1(st)}
i−2∏
j=0

a01(st−1−j),

ct(θ, θ0) = {m0(st)−m(st)}+ a1(st) {m0(st−1)−m(st−1)}.

Recall that, given the observations X1, . . . , Xn, a least squares estimator of the
parameter θ0 in Model (2.1) is obtained by solving

θ̂n = arg min
θ∈Θ∗

n−1
n∑

t=1

e2
t (θ),

where Θ∗ is a compact subset of Θ which contains θ0 (see Cochrane and Orcutt
[6]). Accordingly, relation (2.4) turns out to be very convenient to study the large
sample properties of the least squares estimators of Model (2.1).

3. MAIN RESULTS

State-space representations and the associated Kalman recursions have had a
profound impact on time series analysis and many related areas. The techniques
were originally developed in connection with the control of linear systems (see
Hannan and Deistler [14]). Many time series models can be formulated as special
cases of the general state-space models. The Kalman recursions, which play a key
role in the estimation of state-space models, provide a unified approach to predic-
tion and estimation for all processes that can be given in a state-space form. In
this section, a state-space representation of Model (2.1) and Kalman-type recur-
sions are therefore derived. Next we apply them to obtain the time-varying MA
representation (2.4) in closed form.

3.1. State-space representation. Let us introduce the following vectors:

Xt
(p+q)×1

= Xt(θ) =




Xt −m(st)
Xt−1 −m(st−1)

...
Xt−p+1 −m(st−p+1)

εt

εt−1
...

εt−q+1




, εt
(p+q)×1

=




εt

0
...
0
εt

0
...
0




,
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and the following square matrix:

Φt(θ)
(p+q)×(p+q)

=




−a1(st) −a2(st) · · · −ap(st) b1(st) b2(st) · · · bq(st)
1 0 · · · 0 0 · · · · · · 0

0
. . . . . .

...
...

...
...

. . . 1 0 0 · · · · · · 0
0 · · · 0 0 0 · · · · · · 0
0 · · · 0 0 1 0 · · · 0
...

...
...

. . . . . . . . .
...

0 · · · 0 0 · · · 0 1 0




whose (p + 1, p)-entry equals zero. We have implicitly assumed that p  1 and
q  1, without loss of generality because the ai(·)’s and bi(·)’s can be equal to
zero. The following result is then straightforward.

PROPOSITION 3.1. Consider Model (2.1) and the above-mentioned notation
Xt, εt and Φt(θ). We have the following state-space form:

(3.1) Xt = εt + Φt(θ)Xt−1, t = 1, 2, . . . ,

where X0 = 0(p+q).

3.2. Wold–Cramér decomposition for the residuals. We now concentrate on
the way to obtain the Wold–Cramér representation (2.4) for the prediction errors
of least squares estimation, via Kalman-type recursions. Consider the following
square matrices:

J
(p+q)×(p+q)

=




0 0 0 · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0 · · · · · · 0
−1 0 · · · 0 0 · · · · · · 0

0 0 · · · 0 0 1
...

...
...

...
...

...
. . . . . . 0

0 0 · · · 0 0 · · · 0 1
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where the −1 value is on the (p + 1)-st line, and

K
(p+q)×(p+q)

=




1 0 · · · · · · · · · · · · · · · 0
0 0 · · · · · · · · · · · · · · · 0
...

...
...

0 0 · · · · · · · · · · · · · · · 0
1 0 · · · · · · · · · · · · · · · 0
0 0 · · · · · · · · · · · · · · · 0
...

...
...

0 0 · · · · · · · · · · · · · · · 0




,

where both 1’s are respectively on the first and (p + 1)-st lines. The main result is
now presented.

PROPOSITION 3.2. Consider Model (2.1) and let the least squares residuals
be defined by (2.3). Equation (2.4) holds with ψt,0(θ, θ0) = 1,

(3.2) ψt,i(θ, θ0) = u′p+1

[ i∑

k=0

{ k−1∏
j=0

JΦt−j(θ)
}
K

{ i−k−1∏
j=0

Φt−k−j(θ0)
}]

Ku1

for i = 1, . . . , t− 1, and

(3.3) ct(θ, θ0) =
t−1∑

i=0

u′p+1

{ i−1∏
j=0

JΦt−j(θ)
}
Ku1 {m0(st−i)−m(st−i)}.

P r o o f. First, one can write (2.2) as

(3.4)
X̂t|t−1 = Φt(θ)X̂t−1|t−1,

X̂t|t = JX̂t|t−1 + xt, t = 1, 2, . . . ,

where X̂0|0 = 0(p+q),

X̂t|t−1
(p+q)×1

=




X̂t −m(st)
Xt−1 −m(st−1)

...
Xt−p+1 −m(st−p+1)

0
et−1(θ)

...
et−q+1(θ)




, X̂t|t
(p+q)×1

=




Xt −m(st)
Xt−1 −m(st−1)

...
Xt−p+1 −m(st−p+1)

et(θ)
et−1(θ)

...
et−q+1(θ)




,
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and

xt
(p+q)×1

=




Xt −m(st)
0
...
0

Xt −m(st)
0
...
0




.

From (3.4), we obtain

(3.5) X̂t|t = xt + JΦt(θ)X̂t−1|t−1 = xt +
t−1∑

k=1

{ k−1∏
j=0

JΦt−j(θ)
}
xt−k.

Since

Xt(θ0) = εt +
t−1∑

k=1

{ k−1∏
j=0

Φt−j(θ0)
}
εt−k

and
xt = KXt = KXt(θ0) + K {Xt −Xt(θ0)},

we obtain from (3.5)

X̂t|t =
t−1∑

i=0

i∑

k=0

{ k−1∏
j=0

JΦt−j(θ)
}
K

{ i−k−1∏
j=0

Φt−k−j(θ0)
}
εt−i

+
t−1∑

i=0

{ i−1∏
j=0

JΦt−j(θ)
}
K

{
Xt−i(θ)−Xt−i(θ0)

}
,

(3.6)

where
∏k−1

j=0 JΦt−j(θ) = I(p+q) when k = 0 and
∏i−k−1

j=0 Φt−k−j(θ0) = I(p+q)

when k = i. Note that

K {Xt(θ)−Xt(θ0)} =




m0(st)−m(st)
0
...
0

m0(st)−m(st)
0
...
0




.

Finally, the proof is completed when taking the (p + 1)-st component of X̂t|t given
by (3.6). ¥
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REMARK 3.1. It is worth mentioning that equations (3.2)–(3.3) show that the
coefficient ψt,i(θ, θ0) only depends on a finite number of past values of the regimes,
more precisely on st, . . . , st−i+1, whereas the intercept ct(θ, θ0) generally depends
on all the past values of the regimes. Note also that et(θ0) = εt, ct(θ0, θ0) = 0 and
ψt,i(θ0, θ0) = 0 for all i  1.

4. EXAMPLES

In this section, we show that the expressions of the ψt,i(θ, θ0)’s and ct(θ, θ0)’s
given by (3.2) and (3.3), respectively, can be simplified in particular cases.

4.1. AR(1) model. First consider the simple example of Model (2.1) with
(p, q) = (1, 0). The vectorial representations are however used for p = q = 1. We
have (3.1) with

Φt(θ) =
( −a1(st) 0

0 0

)
, Xt =

(
Xt −m(st)

εt

)
, εt =

(
εt

εt

)
,

and (3.4)–(3.6) with

J =
(

0 0
−1 0

)
, xt =

(
Xt −m(st)
Xt −m(st)

)
, K =

(
1 0
1 0

)
.

Note that
k−1∏
j=0

JΦt−j(θ) = 0 for k  2.

Therefore, we obtain (3.2) with

ψt,1(θ, θ0) = u′2 {KΦt(θ0) + JΦt(θ)K}Ku1 = −a01(st) + a1(st),

ψt,i(θ, θ0) = u′2

[
1∑

k=0

{ k−1∏
j=0

JΦt−j(θ)
}
K

( ∏i−k−1
j=0 −a01(st−k−j) 0

0 0

)]
Ku1

= (−1)i
i−1∏
j=0

a01(st−j) + (−1)i−1a1(st)
i−2∏
j=0

a01(st−1−j)

= (−1)i {a01(st)− a1(st)}
i−2∏
j=0

a01(st−1−j)

for i  1 with usual conventions. Moreover, we have the intercept

ct(θ, θ0) = u′2Ku1 {m0(st)−m(st)}+ u′2JΦt(θ)Ku1 {m0(st−1)−m(st−1)}
= {m0(st)−m(st)}+ a1(st) {m0(st−1)−m(st−1)}.
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4.2. MA(1) model. Now, we consider the MA(1) case, i.e. Model (2.1) with
(p, q) = (0, 1). Using the notation of the AR(1) case, equations (3.1)–(3.6) hold
with

Φt(θ) =
(

0 b1(st)
0 0

)
.

Note that
∏i−k−1

j=0 Φt−k−j(θ0) = 0 for k ¬ i− 2. Therefore we have (2.4) with

ψt,i(θ, θ0) = u′2
[{ i−1∏

j=0

JΦt−j(θ)
}
K +

{ i−2∏
j=0

JΦt−j(θ)
}
KΦt−i+1(θ0)

]
Ku1

= u′2

[
(−1)i

(
0 0
0

∏i−1
j=0 b1(st−j)

)
K

+(−1)i−1

(
0 0
0

∏i−2
j=0 b1(st−j)

)
KΦt−i+1(θ0)

]
Ku1

= (−1)i
i−1∏
j=0

b1(st−j) + (−1)i−1
i−2∏
j=0

b1(st−j)b01(st−i+1)

= (−1)i
i−2∏
j=0

b1(st−j) {b1(st−i+1)− b01(st−i+1)}

for i  1. The intercept is equal to

ct(θ, θ0) =
t−1∑

i=0

(−1)iu′2

(
0 0
0

∏i−1
j=0 b1(st−j)

)
Ku1 {m0(st−i)−m(st−i)}

=
t−1∑

i=0

(−1)i
{ i−1∏

j=0

b1(st−j)
} {m0(st−i)−m(st−i)}.

4.3. ARMA(1,1) model. Now, consider an ARMA(1,1) model, i.e. Model (2.1)
with (p, q) = (1, 1). Maintaining our notation, equations (3.1)–(3.6) hold with

Φt(θ) =
( −a1(st) b1(st)

0 0

)
.

Note that

k−1∏
j=0

JΦt−j(θ)

=

(
0 0

(−1)k−1
{∏k−2

j=0 b1(st−j)
}
a1(st−k+1) (−1)k

∏k−1
j=0 b1(st−j)

)

for k  1, and
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i−k−1∏
j=0

Φt−k−j(θ0) =

(
(−1)i−k

∏i−k−1
j=0 a01(st−k−j) (−1)i−k−1

{∏i−k−2
j=0 a01(st−k−j)

}
b01(st−i+1)

0 0

)

for k ¬ i− 1. Therefore, we obtain (2.4) with

ψt,i(θ, θ0) = (−1)i−1
{ i−2∏

j=0

a01(st−j)
} {b01(st−i+1)− a01(st−i+1)}

+
i−1∑

k=1

(−1)i
{ k−2∏

j=0

b1(st−j)
} {a1(st−k+1)− b1(st−k+1)}

× { i−k−2∏
j=0

a01(st−k−j)
} {b01(st−i+1)− a01(st−i+1)}

+ (−1)i−1
{ i−2∏

j=0

b1(st−j)
} {a1(st−i+1)− b1(st−i+1)}

=
i−1∑

k=1

(−1)i
{ k−2∏

j=0

b1(st−j)
} {a1(st−k+1)− a01(st−k+1)}

× { i−k−2∏
j=0

a01(st−k−j)
} {b01(st−i+1)− a01(st−i+1)}

+ (−1)i−1
{ i−2∏

j=0

b1(st−j)
} {a1(st−i+1)− b1(st−i+1)

+ b01(st−i+1)− a01(st−i+1)}
for i  1. In this example, the intercept equals

ct(θ, θ0) = u′2Ku1 {m0(st)−m(st)}

+
t−1∑

i=1

u′2
{ i−1∏

j=0

JΦt−j(θ)
}
Ku1 {m0(st−i)−m(st−i)}

= m0(st)−m(st) + {a1(st)− b1(st)} {m0(st−1)−m(st−1)}

+
t−1∑

i=2

(−1)i−1
{ i−2∏

j=0

b1(st−j)
} {a1(st−i+1)− b1(st−i+1)}

× {m0(st−i)−m(st−i)}.
4.4. AR(2) model. Finally, let us have a look at Model (2.1) with (p, q) =

(2, 0). In this case, equations (3.1)–(3.6) hold with

Φt(θ) =



−a1(st) −a2(st) 0

1 0 0
0 0 0


,
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Xt =




Xt −m(st)
Xt−1 −m(st−1)

εt


, εt =




εt

0
εt


,

and

J =




0 0 0
0 1 0
−1 0 0


, xt =




Xt −m(st)
0

Xt −m(st)


, K =




1 0 0
0 0 0
1 0 0


.

Now,
k−1∏
j=0

JΦt−j(θ) = 0 when k  3.

So we have (2.4) with

ψt,i(θ, θ0) = u′3
[ 2∑

k=0

{ k−1∏
j=0

JΦt−j(θ)
}
K

{ i−k−1∏
j=0

Φt−k−j(θ0)
}]

Ku1

= u′3 {KΦt(θ0)Φt−1(θ0) + JΦt(θ)KΦt−1(θ0)

+JΦt(θ)JΦt−1(θ)K}
i−3∏
j=0

Φt−2−j(θ0)Ku1.

Here, the intercept is

ct(θ, θ0) = u′3Ku1 {m0(st)−m(st)}+ u′3JΦt(θ)Ku1 {m0(st−1)−m(st−1)}
+ u′3JΦt(θ)JΦt−1(θ)Ku1 {m0(st−2)−m(st−2)}

= m0(st)−m(st) + a1(st) {m0(st−1)−m(st−1)}
+ a2(st) {m0(st−2)−m(st−2)}.

5. CONCLUDING REMARKS

This paper can be appreciated as a preliminary technical step before the least
squares estimation of general time-varying ARMA models. We have investigated
the state-space framework of such non-stationary time series models to obtain a
convenient representation for the prediction errors. We have provided a simple
methodology that allows to derive the coefficients of the Wold–Cramér decompo-
sition for the residuals which play a crucial role in the least squares minimization
procedure. Of course, one can investigate this question using a straightforward uni-
variate approach but this way seems rather tedious. The method presented in the
paper is conversely based on the multivariate area and represents an appealing al-
ternative to univariate calculations.
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