PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 29, Fasc. 2 (2009), pp. 321–336

ASYMPTOTIC BEHAVIOR OF ULTIMATELY CONTRACTIVE ITERATED RANDOM LIPSCHITZ FUNCTIONS

Gerold Alsmeyer Gerd Hölker

Abstract: Let $(F_n)_{n\geq 0}$ be a random sequence of i.i.d. global Lipschitz functions on a complete separable metric space (\mathbb{X},d) with Lipschitz constants L_1,L_2,\ldots For $n\geq 0$, denote by $M_n^x=F_n\circ\ldots\circ F_1(x)$ and $\hat{M}_n^x=F_1\circ\ldots\circ F_n(x)$ the associated sequences of forward and backward iterations, respectively. If $\mathbb{E}\log^+L_1<0$ (mean contraction) and $\mathbb{E}\log^+d\left(F_1(x_0),x_0\right)$ is finite for some $x_0\in\mathbb{X}$, then it is known (see [9]) that, for each $x\in\mathbb{X}$, the Markov chain M_n^x converges weakly to its unique stationary distribution π , while \hat{M}_n^x is a.s. convergent to a random variable $\hat{M}_{\mathbb{B}}$ which does not depend on x and has distribution π . In [2], renewal theoretic methods have been successfully employed to provide convergence rate results for \hat{M}_n^x , which then also lead to corresponding assertions for M_n^x via $M_n^x\stackrel{d}{=}\hat{M}_n^x$ for all n and x, where n means equality in law. Here our purpose is to demonstrate how these methods are extended to the more general situation where only ultimate contraction, i.e. an a.s. negative Lyapunov exponent $\lim_{n\to \mathbb{B}} n^{-1} \log l(F_n\circ\ldots\circ F_1)$ is assumed (here l(F) denotes the Lipschitz constant of F). This not only leads to an extension of the results from [2] but in fact also to improvements of the obtained convergence rate.

2000 AMS Mathematics Subject Classification: Primary: 60J05; Secondary: 60K05, 60G17.

Keywords and phrases: Random Lipschitz function, ultimately contractive, forward iterations, backward iterations, stationary distribution, Prokhorov metric, level γ ladder epochs, Lyapunov exponent.

THE FULL TEXT IS AVAILABLE HERE