PROBABILITY

A FAMILY OF GENERALIZED GAMMA CONVOLUTED VARIABLES

BY
B. ROYNETTE (Vandoeuvre les Nancy),
P. VALLOIS (Vandoeuvre les Nancy) and M. YOR (Paris)

Abstract. This paper consists of three parts: in the first part, we describe a family of generalized gamma convoluted (abbreviated as GGC) variables. In the second part, we use this description to prove that several r.v.'s, related to the length of excursions away from 0 for a recurrent linear diffusion on \mathbb{R}_{+}, are GGC. Finally, in the third part, we apply our results to the case of Bessel processes with dimension $d=2(1-\alpha)$, where $0<d<2$ or $0<\alpha<1$.

2000 AMS Mathematics Subject Classification: 60J25, 60G51, $60 \mathrm{E} 07,60 \mathrm{E} 05$.

Key words and phrases: GGC variables, lengths of excursions, Bessel processes.

1. NOTATION AND INTRODUCTION

1.1. Let $l: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$denote a Borel function such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{l(z)}{z} d z<\infty \tag{1.1}
\end{equation*}
$$

Without loss of generality, we assume that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{l(z)}{z} d z=1 \tag{1.2}
\end{equation*}
$$

With l we associate an r.v. Y on \mathbb{R}_{+}whose probability density f_{Y} is given by

$$
\begin{equation*}
f_{Y}(u)=\int_{0}^{\infty} e^{-u z} l(z) d z \quad(u \geqslant 0) \tag{1.3}
\end{equation*}
$$

Indeed, due to (1.2), we get

$$
\begin{equation*}
\int_{0}^{\infty} f_{Y}(u) d u=\int_{0}^{\infty} d u \int_{0}^{\infty} e^{-u z} l(z) d z=\int_{0}^{\infty} \frac{l(z)}{z} d z=1 \tag{1.4}
\end{equation*}
$$

To emphasize the relation between Y and l, we shall (sometimes) write Y_{l}.

We denote by $\varphi_{l} \equiv \varphi_{Y_{l}}$ the Laplace transform of Y_{l} :

$$
\begin{align*}
\varphi_{l}(\lambda)=\varphi_{Y_{l}}(\lambda) & =E\left(e^{-\lambda Y_{l}}\right)=\int_{0}^{\infty} e^{-\lambda u} f_{Y_{l}}(u) d u \tag{1.5}\\
& =\int_{0}^{\infty} \frac{l(z)}{\lambda+z} d z
\end{align*}
$$

Thus, since $f_{Y_{l}}$ is the Laplace transform of l, φ_{l} is the Stieltjes transform of l.
1.2. A reminder about GGC variables. Let μ denote a positive σ-finite measure on \mathbb{R}_{+}. We recall (see Bondesson [3]) that a positive r.v. Y is a GGC variable with Thorin measure μ if

$$
\begin{equation*}
E\left(e^{-\lambda Y}\right)=\exp \left\{-\int_{0}^{\infty}\left(1-e^{-\lambda x}\right)\left(\int_{0}^{\infty} e^{-x z} \mu(d z)\right) \frac{d x}{x}\right\} \quad(\lambda \geqslant 0) \tag{1.6}
\end{equation*}
$$

Such an r.v. is self-decomposable, hence infinitely divisible.
The GGC r.v.'s Y whose Thorin measure μ has a finite total mass, equal to m, are characterized by (see [6])

$$
\begin{equation*}
E\left(e^{-\lambda Y}\right)=\exp \left\{-m \int_{0}^{\infty}\left(1-e^{-\lambda x}\right) E\left(e^{-x G}\right) \frac{d x}{x}\right\} \tag{1.7}
\end{equation*}
$$

where G is an \mathbb{R}_{+}-valued r.v. such that $E\left(\log ^{+}(1 / G)\right)<\infty$. Such an r.v. is a gamma- m mixture, i.e. it satisfies ${ }^{1}$:

$$
\begin{equation*}
Y \stackrel{(\text { law })}{=} \gamma_{m} \cdot Z \tag{1.8}
\end{equation*}
$$

where γ_{m} is a gamma variable with parameter m, independent of the \mathbb{R}_{+}-valued variable Z. We note that any r.v. which is a gamma- m mixture is also a gamma- m^{\prime} mixture for any $m^{\prime}>m$, since we have the identity

$$
\begin{equation*}
\gamma_{m} \stackrel{(\text { law })}{=} \gamma_{m^{\prime}} \cdot \beta_{m, m^{\prime}-m} \tag{1.9}
\end{equation*}
$$

where $\gamma_{m^{\prime}}$ is a gamma variable with parameter m^{\prime} and $\beta_{m, m^{\prime}-m}$ is a beta variable with parameters $\left(m, m^{\prime}-m\right)$ independent of $\gamma_{m^{\prime}}$.

We also recall (see [3], p. 51) that the parameter m of a GGC r.v. Y, with Thorin measure with total mass m, may be obtained from the formula

$$
\begin{equation*}
m=\sup \left\{\delta \geqslant 0 ; \lim _{u \downarrow 0_{+}} \frac{f_{Y}(u)}{u^{\delta-1}}=0\right\} \tag{1.10}
\end{equation*}
$$

[^0]
2. A FAMILY OF GGC VARIABLES

The aim of this part is to present a sufficient condition on l which implies that the associated variable Y_{l} is GGC.

Definition 1. A function l which satisfies (1.1) belongs to the class \mathcal{C} if there exist $a \geqslant 0, b>a, \sigma \geqslant 0$ and $\theta: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup(+\infty)$ a Borel, decreasing function, which is identically equal to $+\infty$ on $[0, a[$, such that

$$
\begin{equation*}
l(z)=\exp \left\{\sigma+\int_{b}^{z} \frac{\theta(y)}{y} d y\right\} \tag{2.1}
\end{equation*}
$$

Of course, if (2.1) is satisfied with $a>0$, then the function l is identically 0 on $[0, a[$. On the other hand, if l is identically 0 on $[0, a[$ and differentiable on $] a, \infty[$, then l belongs to the class \mathcal{C} if and only if the function

$$
\begin{equation*}
y \rightarrow y(\log l)^{\prime}(y):=\theta(y) \tag{2.2}
\end{equation*}
$$

is decreasing on $[a, \infty[$.
The following properties are elementary:
(2.3) If $l \in \mathcal{C}$, then, for every $u>0, x \rightarrow l(u x) \in \mathcal{C}$.
(2.4) If $l_{1}, l_{2} \in \mathcal{C}$, then $l_{1} \cdot l_{2} \in \mathcal{C}$.
(2.5) For every α real, $x \rightarrow x^{\alpha}$ satisfies (2.1) but not (1.1).
(2.6) For every $k<0$ and $\gamma \geqslant 0, x \rightarrow(x+\gamma)^{k} \in \mathcal{C}$.

THEOREM 2. Assume that l satisfies (1.2) and belongs to \mathcal{C}, and let Y_{l} denote the r.v. associated with l. Then: Y_{l} is a GGC r.v. whose Thorin measure μ has total mass m smaller than or equal to 1 . In other terms, there exists an r.v. G taking values in $\overline{\mathbb{R}}_{+}$and satisfying $E\left(\log ^{+}(1 / G)\right)<\infty$ and $m \leqslant 1$ such that

$$
\begin{equation*}
E\left(e^{-\lambda Y_{l}}\right)=\exp \left\{-m \int_{0}^{\infty}\left(1-e^{-\lambda x}\right) E\left(e^{-x G}\right) \frac{d x}{x}\right\} \quad(\lambda \geqslant 0) \tag{2.7}
\end{equation*}
$$

Proof. Our proof consists of three parts.

1. It suffices to show that Y_{l} is GGC since, if so, then the total mass m of its Thorin measure equals, by (1.3) and (1.10):

$$
m=\sup \left\{\delta \geqslant 0 ; \lim _{u \downarrow 0_{+}} \frac{1}{u^{\delta-1}} \int_{0}^{\infty} e^{-u z} l(z) d z=0\right\}
$$

and, of course, $m \leqslant 1$ since, for $\delta=1$:

$$
\frac{1}{u^{\delta-1}} \int_{0}^{\infty} e^{-u z} l(z) d z=\int_{0}^{\infty} e^{-u z} l(z) d z \underset{u \downarrow 0_{+}}{\longrightarrow} \int_{0}^{\infty} l(z) d z>0 .
$$

2. To show that Y_{l} is GGC, we shall use the following characterization (see [3], Theorem 6.1.1, p. 90) of these r.v.'s:
Y is GGC if and only if its Laplace transform φ_{Y} is hyperbolically completely monotone, that is, it satisfies: for every $u>0$, the function H_{u}, defined by

$$
\begin{equation*}
H_{u}(w)=\varphi_{Y}(u v) \cdot \varphi_{Y}\left(\frac{u}{v}\right), \quad \text { where } w=v+\frac{1}{v} \tag{2.8}
\end{equation*}
$$

is a completely monotone function, i.e., it is the Laplace transform of a positive measure carried by \mathbb{R}_{+}.

In our framework, this criterion becomes: for every $u>0, H_{u}$ is completely monotone with, by (1.5),

$$
\begin{equation*}
H_{u}(w)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{l(x) l(y)}{(x+u v)(y+u / v)} d x d y \quad(w=v+1 / v) \tag{2.9}
\end{equation*}
$$

and so

$$
\begin{equation*}
H_{u}(w)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{l(u x) l(u y)}{(x+v)(y+1 / v)} d x d y \tag{2.10}
\end{equation*}
$$

(after the change of variables $x=u x^{\prime}, y=u y^{\prime}$).
Our aim is to show that the hypothesis $l \in \mathcal{C}$ implies that H_{u} is completely monotone, and since $x \rightarrow l(u x)$ belongs to \mathcal{C} if $l \in \mathcal{C}$ (by (2.3)), it suffices to see that the function H defined by

$$
\begin{equation*}
H(w):=\int_{0}^{\infty} \int_{0}^{\infty} \frac{l(x) l(y)}{(x+v)(y+1 / v)} d x d y \quad(w=v+1 / v) \tag{2.11}
\end{equation*}
$$

is completely monotone.
3. We show now that H, defined by (2.11), is completely monotone.
(i) We write

$$
\begin{align*}
H(w) & =\int_{0}^{\infty} \int_{0}^{\infty} \frac{l(x) l(y)}{(x+v)(y+1 / v)} d x d y \tag{2.12}\\
& =\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y)\left[\frac{1}{(x+v)(y+1 / v)}+\frac{1}{(x+1 / v)(y+v)}\right] d x d y
\end{align*}
$$

(by symmetry). Hence

$$
\begin{aligned}
H(w)=\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y)\left[\frac{x^{2}-1}{x y-1} \cdot \frac{1}{x^{2}+}\right. & x w+1
\end{aligned} \quad \begin{aligned}
& \left.+\frac{y^{2}-1}{x y-1} \cdot \frac{1}{y^{2}+y w+1}\right] d x d y
\end{aligned}
$$

(after reducing both reciprocals to the same denominator and decomposing into simple elements). Consequently,

$$
\begin{aligned}
& H(w)=\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y) d x d y \\
& \times\left[\frac{x^{2}-1}{x y-1} \int_{0}^{\infty} \exp \left(-b\left(x^{2}+x w+1\right)\right) d b+\frac{y^{2}-1}{x y-1} \int_{0}^{\infty} \exp \left(-b\left(y^{2}+y w+1\right)\right) d b\right] \\
& =\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y) d x d y\left[\frac{x^{2}-1}{x y-1} \cdot \frac{1}{x} \int_{0}^{\infty} \exp (-b w-b(x+1 / x)) d b\right. \\
& \left.+\int_{0}^{\infty} \frac{y^{2}-1}{x y-1} \frac{1}{y} \exp (-b w-b(y+1 / y)) d b\right]
\end{aligned}
$$

(after making the change of variables $b x=b^{\prime}, b y=b^{\prime}$). Therefore

$$
\begin{equation*}
H(w)=\int_{0}^{\infty} e^{-b w} d b\left[\int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y) \frac{x^{2}-1}{(x y-1) x} \exp (-b(x+1 / x)) d x d y\right] \tag{2.13}
\end{equation*}
$$

after interverting the orders of integration.
We note that the preceding computation is a little formal: we have transformed an absolutely convergent integral into an integral which is no longer absolutely convergent; however, this does not matter for our purpose, as we shall soon gather the different terms in another way.
(ii) Thus, we need to show, by (2.13), that, for every $b \geqslant 0$:

$$
\begin{equation*}
I_{b}:=\int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y) \frac{x^{2}-1}{(x y-1) x} \exp (-b(x+1 / x)) d x d y \geqslant 0 \tag{2.14}
\end{equation*}
$$

- Let us show (2.14). For this purpose, we define the four domains (Fig. 1)

$$
\begin{array}{ll}
\mathcal{N}_{1}=\left\{0<x \leqslant 1, y>\frac{1}{x}\right\}, & \mathcal{N}_{2}=\left\{x \geqslant 1, y<\frac{1}{x}\right\} \\
\mathcal{P}_{1}=\left\{x \geqslant 1, y>\frac{1}{x}\right\}, & \mathcal{P}_{2}=\left\{0<x \leqslant 1, y<\frac{1}{x}\right\}
\end{array}
$$

Let us define

$$
\begin{equation*}
\psi(x, y):=l(x) l(y) \frac{x^{2}-1}{(x y-1) x} \exp (-b(x+1 / x)) \tag{2.15}
\end{equation*}
$$

It is clear that ψ is negative on \mathcal{N}_{1} and \mathcal{N}_{2} and positive on \mathcal{P}_{1} and \mathcal{P}_{2}. We note

$$
\begin{aligned}
N_{i} & :=\iint_{\mathcal{N}_{i}}|\psi(x, y)| d x d y \quad(i=1,2) \\
P_{i} & :=\iint_{\mathcal{P}_{i}} \psi(x, y) d x d y \quad(i=1,2)
\end{aligned}
$$

Figure 1

- To prove (2.14) it suffices to see that $N_{i} \leqslant P_{i}(i=1,2)$. To compute N_{1} and $P_{2}\left(\mathcal{N}_{1}, \mathcal{P}_{2} \subset\left\{(x, y) \in \mathbb{R}_{+}^{2} ; x \leqslant 1\right\}\right)$, we make the change of variables for $x \in] 0,1], t \geqslant 2$:

$$
x=\frac{t-\sqrt{t^{2}-4}}{2}
$$

so we have

$$
\frac{1}{x}=\frac{t+\sqrt{t^{2}-4}}{2}, \quad x+\frac{1}{x}=t, \quad \frac{x^{2}-1}{x^{2}} d x=d t .
$$

We obtain

$$
\begin{align*}
N_{1} & =\int_{2}^{\infty} d t \int_{\left(t+\sqrt{t^{2}-4}\right) / 2}^{\infty} d y l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l(y) \frac{e^{-b t}}{y-\left(t+\sqrt{t^{2}-4}\right) / 2} \tag{2.16}\\
& =\int_{2}^{\infty} d t \int_{0}^{\infty} d z l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)(1+z)\right) \frac{e^{-b t}}{z}
\end{align*}
$$

(after making the change of variable $y=(1+z)\left(\left(t+\sqrt{t^{2}-4}\right) / 2\right)$) and

$$
\begin{equation*}
P_{2}=\int_{2}^{\infty} d t \int_{0}^{1} d z l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)(1-z)\right) \frac{e^{-b t}}{z} . \tag{2.17}
\end{equation*}
$$

To compute N_{2} and $P_{1}\left(\mathcal{N}_{2}, \mathcal{P}_{1} \subset\left\{(x, y) \in \mathbb{R}_{+}^{2} ; x \geqslant 1\right\}\right)$ for $x \geqslant 1, t \geqslant 2$ we make the change of variable:

$$
x=\frac{t+\sqrt{t^{2}-4}}{2}
$$

so we have

$$
\frac{1}{x}=\frac{t-\sqrt{t^{2}-4}}{2}, \quad x+\frac{1}{x}=t, \quad \frac{x^{2}-1}{x^{2}} d x=d t
$$

We obtain

$$
\begin{align*}
& N_{2}=\int_{2}^{\infty} d t \int_{0}^{1} d z l\left(\frac{t+\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t-\sqrt{t^{2}-4}}{2}\right)(1-z)\right) \frac{e^{-b t}}{z}, \tag{2.18}\\
& P_{1}=\int_{2}^{\infty} d t \int_{0}^{\infty} d z l\left(\frac{t+\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t-\sqrt{t^{2}-4}}{2}\right)(1+z)\right) \frac{e^{-b t}}{z} . \tag{2.19}
\end{align*}
$$

We shall now use the hypothesis that l belongs to \mathcal{C} to show that

$$
P_{1} \geqslant N_{1} \quad \text { and } \quad P_{2} \geqslant N_{2},
$$

which will complete the proof of our theorem.

- Comparing (2.19) and (2.16), it suffices to prove that $P_{1} \geqslant N_{1}$ to show that

$$
\begin{aligned}
& \left(\frac{t+\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t-\sqrt{t^{2}-4}}{2}\right)(1+z)\right) \\
& \geqslant l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)(1+z)\right),
\end{aligned}
$$

i.e.

$$
\begin{equation*}
l\left(\frac{1}{x}\right) l(c x) \geqslant l(x) l\left(\frac{c}{x}\right) \quad \text { with } x \leqslant 1 \text { and } c \geqslant 1 . \tag{2.20}
\end{equation*}
$$

If $a \geqslant 1$ (a being featured in the definition of \mathcal{C}), the relation (2.20) is trivially satisfied since $l(x)=0$ for $x \leqslant a($ and $x \leqslant 1)$.

We now examine the case $0 \leqslant a<1$.
If $x \leqslant a$, the relation (2.20) is again trivially satisfied. Thus, let us assume that $1 \geqslant x \geqslant a$. The relation (2.20) is equivalent to

$$
\log l\left(\frac{1}{x}\right)-\log l(x) \geqslant \log l\left(\frac{c}{x}\right)-\log (c x)
$$

or also to

$$
\begin{equation*}
\int_{x}^{1 / x} \frac{\theta(y)}{y} d y-\int_{c x}^{c / x} \frac{\theta(y)}{y} d y \geqslant 0 \tag{2.21}
\end{equation*}
$$

(since $\log l(x)=\sigma+\int_{b}^{x}(\theta(y) / y) d y$ by (2.1)). Thus, (2.21) is equivalent to

$$
\begin{equation*}
\int_{x}^{1 / x} \frac{\theta(y)}{y} d y-c \int_{x}^{1 / x} \frac{\theta(c y)}{c y} d y=\int_{x}^{1 / x} \frac{\theta(y)-\theta(c y)}{y} d y \geqslant 0 \tag{2.22}
\end{equation*}
$$

which is satisfied since θ is decreasing (and $c \geqslant 1$). We have shown that $P_{1} \geqslant N_{1}$.

We now show that $P_{2} \geqslant N_{2}$.
This time, using (2.17) and (2.18) it suffices to show that

$$
\begin{aligned}
& l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l\left(\frac{t+\sqrt{t^{2}-4}}{2}(1-z)\right) \\
& \geqslant l\left(\frac{t+\sqrt{t^{2}-4}}{2}\right) l\left(\frac{t-\sqrt{t^{2}-4}}{2}(1-z)\right)
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
l(x) l\left(\frac{c}{x}\right) \geqslant l\left(\frac{1}{x}\right) l(c x) \quad \text { with } x \leqslant 1 \text { and } c \leqslant 1 . \tag{2.23}
\end{equation*}
$$

The relation (2.23) is trivial for $x \leqslant a$ (since $c x \leqslant a$ and $l(c x)=0$). It remains to examine the case $x \geqslant a, a \leqslant 1$. The relation (2.23) is then equivalent to

$$
\int_{c x}^{c / x} \frac{\theta(y)}{y} d y-\int_{x}^{1 / x} \frac{\theta(y)}{y} d y \geqslant 0, \quad \text { i.e., } \quad \int_{x}^{1 / x} \frac{\theta(c y)-\theta(y)}{y} d y \geqslant 0
$$

The latter relation is obvious since θ is decreasing (and $c<1$). This completes the proof of Theorem 2.

REMARK 3. Recall (see (2.8) above) that a function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is said to be hyperbolically completely monotone (HCM) if, for every $u>0$, the function of w :

$$
v+\frac{1}{v}=w \rightarrow \varphi(u v) \varphi\left(\frac{u}{v}\right) \quad(\text { with } v \geqslant 0)
$$

is completely monotone. Thus, by (1.5), our Theorem 2 may be stated as follows: if l belongs to \mathcal{C}, then its Stieltjes transform is HCM.

3. APPLICATION TO SOME R.V.'S RELATED TO RECURRENT LINEAR DIFFUSIONS

3.1. Our notation and hypotheses are now those of Salminen et al. [11] to which we refer the reader. $\left(X_{t}, t \geqslant 0\right)$ denotes an \mathbb{R}_{+}-valued diffusion which is recurrent; we denote its speed measure (assumed to have no atoms) by σ, and its scale function by $S .\left(L_{t}, t \geqslant 0\right)$ denotes the (continuous) local time at 0 and ($\tau_{u}, u \geqslant 0$) its right-continuous inverse:

$$
\begin{equation*}
\tau_{u}:=\inf \left\{t \geqslant 0 ; L_{t}>u\right\} \tag{3.1}
\end{equation*}
$$

$\left(\tau_{u}, u \geqslant 0\right)$ is a subordinator whose Lévy measure admits a density (see [11]) which we shall denote by ν :

$$
\begin{equation*}
E\left(\exp \left(-\lambda \tau_{u}\right)\right)=\exp \left\{-u \int_{0}^{\infty}\left(1-e^{-\lambda x}\right) \nu(x) d x\right\} \tag{3.2}
\end{equation*}
$$

In fact, ν may be expressed in the form

$$
\begin{equation*}
\nu(x)=\int_{0}^{\infty} e^{-x z} K(d z), \tag{3.3}
\end{equation*}
$$

where K, the Krein measure (see Kotani and Watanabe [8] and Knight [7]), satisfies

$$
\begin{equation*}
\int_{0}^{\infty} \frac{K(d z)}{z(1+z)}<\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{K(d z)}{z}=\infty . \tag{3.4}
\end{equation*}
$$

3.2. Let, for every $t \geqslant 0$:

$$
\begin{equation*}
g_{t}:=\sup \left\{s \leqslant t ; X_{s}=0\right\}, \quad d_{t}:=\inf \left\{s \geqslant t ; X_{s}=0\right\}, \tag{3.5}
\end{equation*}
$$

and denote by $\mathfrak{e}_{p}(p>0)$ an exponentially distributed variable with parameter p, i.e. with density $f_{\mathfrak{e}_{p}}(u)=p e^{-p u} 1_{u \geqslant 0} ; \mathfrak{e}_{p}$ is assumed to be independent of $\left(X_{t}, t \geqslant 0\right)$. We define

$$
\begin{equation*}
Y_{p}^{(1)}:=\mathfrak{e}_{p}-g_{\mathfrak{c}_{p}}, \quad Y_{p}^{(2)}:=d_{\mathfrak{e}_{p}}-\mathfrak{e}_{p}, \quad Y_{p}^{(3)}:=d_{\mathfrak{e}_{p}}-g_{\mathfrak{c}_{p}} . \tag{3.6}
\end{equation*}
$$

It is shown in [11], Theorem 18, that for $i=1,2,3, Y_{p}^{(i)}$ is infinitely divisible. More precisely, concerning $Y_{p}^{(3)}$, it is shown that $Y_{p}^{(3)}$ is a gamma-2 mixture, and consequently (see Kristiansen [9]) that $Y_{p}^{(3)}$ is infinitely divisible.

The aim of the following Theorem 4 is to improve, if possible, the results we have just recalled. More precisely, we shall prove that under certain hypotheses the r.v.'s $Y_{p}^{(i)}(i=1,2,3)$ are GGC r.v.'s whose Thorin measures have total masses $m \leqslant 1$. Thus, these variables are:

- GGC, hence self-decomposable, and a fortiori infinitely divisible;
- gamma- m mixtures, with $m \leqslant 1$, and not only gamma- 2 mixtures (see identity (1.9)).

Theorem 4. We assume that Krein's measure K (defined by (3.3)) admits a differentiable density k.

1. Assume that

$$
\begin{equation*}
\frac{k^{\prime}}{k}(x)=\frac{1}{x}+\frac{\theta(p+x)}{p+x} \quad \text { with } \theta \text { decreasing; } \tag{3.7}
\end{equation*}
$$

then $Y_{p}^{(1)}$ is a GGC r.v. whose Thorin measure is a subprobability.
2. Assume that

$$
\begin{equation*}
\frac{k^{\prime}}{k}(x)=\frac{1}{x+p}+\frac{\theta(x)}{x} \quad \text { with } \theta \text { decreasing } \tag{3.8}
\end{equation*}
$$

then $Y_{p}^{(2)}$ is a GGC r.v. whose Thorin measure is a subprobability.

3. Assume that

$$
\begin{array}{ll}
\frac{k^{\prime}}{k}(z)=\frac{\theta(z)}{z} & \text { for } z<p \\
\frac{k^{\prime}(z)-k^{\prime}(z-p)}{k(z)-k(z-p)}=\frac{\theta(z)}{z} & \text { for } z \geqslant p \tag{3.9}
\end{array}
$$

with θ decreasing; then $Y_{p}^{(3)}$ is a GGC r.v. whose Thorin measure is a subprobability.

Proof. We denote by $f_{Y_{p}^{(i)}}$ the density of $Y_{p}^{(i)}$. From [11], p. 115, we have

$$
\begin{gather*}
f_{Y_{p}^{(1)}}(u)=C_{1}(p) \int_{p}^{\infty} e^{-u z} \frac{k(z-p)}{z-p} d z \tag{3.10}\\
f_{Y_{p}^{(2)}}(u)=C_{2}(p) \int_{0}^{\infty} e^{-u z} \frac{k(z)}{z+p} d z \tag{3.11}\\
f_{Y_{p}^{(3)}}(u)=C_{3}(p) \int_{0}^{\infty} e^{-u z}\left(k(z)-1_{\{z \geqslant p\}} k(z-p)\right) d z \tag{3.12}
\end{gather*}
$$

where $C_{i}(p), i=1,2,3$, are three normalising constants. We shall now use Theorem 2 with, successively:

$$
\begin{gather*}
l^{(1)}(x)=C_{1}(p) \frac{k(x-p)}{x-p} 1_{x \geqslant p} \tag{3.13}\\
l^{(2)}(x)=C_{2}(p) \frac{k(x)}{x+p} \tag{3.14}\\
l^{(3)}(x)=C_{3}(p)\left(k(x)-1_{x \geqslant p} k(x-p)\right) \tag{3.15}
\end{gather*}
$$

We have already noted that, for $i=1,2,3$,

$$
\int_{0}^{\infty} \frac{l^{(i)}(x)}{x} d x<\infty
$$

Indeed:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{l^{(1)}(x)}{x} d x & =C_{1}(p) \int_{p}^{\infty} \frac{k(x-p)}{x(x-p)} d x=C_{1}(p) \int_{0}^{\infty} \frac{k(x)}{x(x+p)} d x \\
& <\infty \quad(\text { by }(3.4)), \\
\int_{0}^{\infty} \frac{l^{(2)}(x)}{x} d x & =C_{2}(p) \int_{0}^{\infty} \frac{k(x)}{x(x+p)} d x<\infty \quad(\text { by }(3.4)) \\
\int_{0}^{\infty} \frac{l^{(3)}(x)}{x} d x & =C_{3}(p) \int_{0}^{\infty} k(x)\left(\frac{1}{x}-\frac{1}{x+p}\right) d x \\
& =p C_{3}(p) \int_{0}^{\infty} \frac{k(x)}{x(x+p)} d x<\infty \quad(\text { by }(3.4))
\end{aligned}
$$

Finally, it remains to observe that hypothesis (3.7) (respectively, (3.8) and (3.9)) implies that $l^{(1)} \in \mathcal{C}$ (respectively, $l^{(2)} \in \mathcal{C}$ and $l^{(3)} \in \mathcal{C}$).

4. APPLICATION TO RECURRENT BESSEL PROCESSES

4.1. The notation is the same as in the preceding part, but now $\left(X_{t}, t \geqslant 0\right)$ is a Bessel process with dimension $d=2(1-\alpha)$ with $0<d<2$ or, equivalently, $0<\alpha<1$.

TheOrem 5. For any $\alpha \in] 0,1[$ and for any $p>0$ the r.v.'s

$$
Y_{p}^{(1)}=\mathfrak{e}_{p}-g_{\mathfrak{e}_{p}}, \quad Y_{p}^{(2)}=d_{\mathfrak{e}_{p}}-\mathfrak{e}_{p}, \quad Y_{p}^{(3)}=d_{\mathfrak{e}_{p}}-g_{\mathfrak{e}_{p}}
$$

are GGC r.v.'s whose Thorin measures have the same total mass $1-\alpha=d / 2$ (less than 1).

Proof. We have already noted that since, by (3.3),

$$
\nu(a)=\int_{0}^{\infty} e^{-a z} K(d z)
$$

and, by [5], p. 213,

$$
\nu(a)=\frac{1}{2^{\alpha} \Gamma(\alpha)} \frac{1}{a^{\alpha+1}} 1_{\{a>0\}},
$$

the density k of Krein's measure equals here

$$
\begin{equation*}
k(z)=\frac{1}{2^{\alpha} \Gamma(\alpha) \Gamma(\alpha+1)} z^{\alpha} 1_{\{z>0\}} \tag{4.1}
\end{equation*}
$$

1. We begin by proving Theorem 5 for the r.v. $Y^{(2)}$. (To simplify the notation, we write $Y^{(2)}$ instead of $Y_{p}^{(2)}$.)

To see that $Y^{(2)}$ is GGC, it suffices, by Theorem 2, to show that $l^{(2)} \in \mathcal{C}$, where

$$
\begin{equation*}
l^{(2)}(x)=C \frac{x^{\alpha}}{x+p} \quad(\text { from (4.1) and (3.14)) } \tag{4.2}
\end{equation*}
$$

Thus

$$
x\left(\log l^{(2)}\right)^{\prime}(x)=\alpha-\frac{x}{x+p}=\alpha-1+\frac{p}{x+p}
$$

is a decreasing function of x, hence $l^{(2)} \in \mathcal{C}$ from (2.2). It remains to see that the total mass of the Thorin measure of $Y^{(2)}$ equals $1-\alpha$. Now, by (1.10), this total
mass m equals

$$
\begin{align*}
m & :=\sup \left\{\delta \geqslant 0 ; \lim _{u \downarrow 0_{+}} \frac{1}{u^{\delta-1}} f_{Y^{(2)}}(u)=0\right\} \tag{4.3}\\
& =\sup \left\{\delta \geqslant 0 ; \lim _{u \downarrow 0_{+}} \frac{C}{u^{\delta-1}} \int_{0}^{\infty} e^{-u x} \frac{x^{\alpha}}{x+p} d x=0\right\} .
\end{align*}
$$

However, since the function $x \rightarrow x^{\alpha} /(x+p)$ decreases for x large enough and is equivalent to $x^{\alpha-1}$ when $x \rightarrow \infty$, the Tauberian theorem implies

$$
\begin{equation*}
f_{Y^{(2)}}(u) \underset{u \rightarrow 0}{\sim} \frac{C^{\prime}}{u^{\alpha}} . \tag{4.4}
\end{equation*}
$$

It is then clear that (4.3) and (4.4) imply $m=1-\alpha$.
2. We now prove Theorem 5 for the r.v. $Y^{(1)}$. For this purpose, we shall use a more direct method than that relying on Theorem 2. Indeed, from (1.5), (3.13) and (4.1) we have

$$
\begin{align*}
E\left(e^{-\lambda Y^{(1)}}\right) & =\int_{0}^{\infty} \frac{l^{(1)}(z)}{\lambda+z} d z=C \int_{p}^{\infty} \frac{1}{\lambda+z}(z-p)^{\alpha-1} d z \tag{4.5}\\
& =C \int_{0}^{\infty} \frac{1}{\lambda+p+z} z^{\alpha-1} d z=C \int_{0}^{\infty} z^{\alpha-1} d z \int_{0}^{\infty} e^{-(\lambda+p+z) u} d u \\
& =C \int_{0}^{\infty} e^{-(\lambda+p) u} d u \int_{0}^{\infty} e^{-z u} z^{\alpha-1} d z \\
& =C \Gamma(\alpha) \int_{0}^{\infty} e^{-(\lambda+p) u} \frac{d u}{u^{\alpha}}=(\lambda+p)^{\alpha-1} C \Gamma(\alpha) \Gamma(1-\alpha) \\
& =\left(1+\frac{\lambda}{p}\right)^{\alpha-1}
\end{align*}
$$

since the Laplace transform $E\left(e^{-\lambda Y^{(1)}}\right)$ equals 1 for $\lambda=0$. Thus

$$
\begin{equation*}
Y^{(1)} \stackrel{(\text { law })}{=} \frac{1}{p} \gamma_{1-\alpha} \tag{4.6}
\end{equation*}
$$

where $\gamma_{1-\alpha}$ is a gamma r.v. with parameter $1-\alpha$, i.e., with density

$$
f_{\gamma_{1-\alpha}}(u):=\frac{e^{-u}}{\Gamma(1-\alpha)} u^{-\alpha} 1_{u \geqslant 0}
$$

It follows clearly from (4.5) that

$$
\begin{align*}
E\left(e^{-\lambda Y^{(1)}}\right) & =\exp \left\{-(1-\alpha) \log \left(1+\frac{\lambda}{p}\right)\right\} \tag{4.7}\\
& =\exp \left\{-(1-\alpha) \int_{0}^{\infty}\left(1-e^{-\lambda x}\right) \frac{d x}{x} e^{-x p}\right\} .
\end{align*}
$$

Thus, by (1.7), formula (4.7) shows that $Y^{(1)}$ is a GGC variable with Thorin measure $(1-\alpha) \delta_{p}$.
3. We now prove Theorem 5 for the r.v. $Y_{p}^{(3)}$. In fact, the result that $Y^{(3)}$ is a GGC variable whose Thorin measure has total mass equal to $1-\alpha$ has already been proved in [2] (with $p=1$, but this involves no loss of generality). The proof we shall give now is a totally different one from that of [2]. We also assume here, for simplicity, that $p=1$ and we write $Y^{(3)}$ instead of $Y_{1}^{(3)}$. Following the arguments of the proof of Theorem 2, we need to show, by (2.16)-(2.19) that, for every $x \in] 0,1]$:

$$
\begin{align*}
\Delta(x)= & \int_{0}^{\infty}\left\{l\left(\frac{1}{x}\right) l(x(1+z))-l(x) l\left(\frac{1}{x}(1+z)\right)\right\} \frac{d z}{z} \tag{4.8}\\
& +\int_{0}^{1}\left\{l(x) l\left(\frac{1}{x}(1-z)\right)-l\left(\frac{1}{x}\right) l(x(1-z))\right\} \frac{d z}{z} \geqslant 0
\end{align*}
$$

where the function $l\left(=l^{(3)}\right)$ equals, by (4.1) and (3.15),

$$
\begin{equation*}
l(y)=y^{\alpha}-1_{y \geqslant 1}(y-1)^{\alpha} \quad(y \geqslant 0) . \tag{4.9}
\end{equation*}
$$

Thus, we need to show (4.8). For this purpose, we have to compute the integrals featured in (4.8), hence, given (4.9), to discuss, owing to the positions of $x(1+z)$, $x^{-1}(1+z), x^{-1}(1-z)$ and $x(1-z)$ with respect to 1 (see Fig. 2). We consider the first integral in (4.8) for $x(1+z) \geqslant 1$ (hence, a fortiori $x^{-1}(1+z) \geqslant 1$ since $x \leqslant 1$). The first term equals

$$
\begin{aligned}
\Delta_{1}(x)= & \int_{(1 / x)-1}^{\infty}\left\{\left[\frac{1}{x^{\alpha}}-\left(\frac{1}{x}-1\right)^{\alpha}\right]\left(x^{\alpha}(1+z)^{\alpha}-(x(1+z)-1)^{\alpha}\right)\right. \\
& \left.\quad-x^{\alpha}\left[\left(\frac{1}{x^{\alpha}}(1+z)^{\alpha}\right)-\left(\frac{1}{x}(1+z)-1\right)^{\alpha}\right]\right\} \frac{d z}{z} \\
= & \int_{(1 / x)-1}^{\infty}\left(1-(1-x)^{\alpha}\right)\left[(1+z)^{\alpha}-\left(1+z-\frac{1}{x}\right)^{\alpha}\right] \\
& \quad-\left((1+z)^{\alpha}-(1+z-x)^{\alpha}\right) \frac{d z}{z} \\
= & \int_{(1 / x)-1}^{\infty}\left\{\left[(1+z-x)^{\alpha}-\left(1+z-\frac{1}{x}\right)^{\alpha}\right]\right. \\
:= & \left.\quad-(1-x)^{\alpha}\left[(1+z)^{\alpha}-\left(1+z-\frac{1}{x}\right)^{\alpha}\right]\right\} \frac{d z}{z} \\
&
\end{aligned}
$$

Let us examine $\Delta_{1}^{(1)}(x)$:

$$
\begin{aligned}
\Delta_{1}^{(1)}(x) & =\int_{(1 / x)-1}^{\infty}\left[(1+z-x)^{\alpha}-\left(1+z-\frac{1}{x}\right)^{\alpha}\right] \frac{d z}{z} \\
& =\int_{(1 / x)-1}^{\infty} \frac{d z}{z} \int_{1+z-(1 / x)}^{1+z-x} \alpha u^{\alpha-1} d u
\end{aligned}
$$

Figure 2

Now, we apply Fubini's theorem:

$$
\begin{aligned}
& \Delta_{1}^{(1)}(x)=\int_{0}^{(1 / x)-1} \alpha u^{\alpha-1} d u \int_{(1 / x)-1}^{u+(1 / x)-1} \frac{d z}{z}+\int_{(1 / x)-1}^{\infty} \alpha u^{\alpha-1} d u \int_{u+x-1}^{u+(1 / x)-1} \frac{d z}{z} \\
= & \int_{0}^{(1 / x)-1} \alpha u^{\alpha-1} \log \left(\frac{u x+1-x}{1-x}\right) d u+\int_{(1 / x)-1}^{\infty} \alpha u^{\alpha-1} \log \left(\frac{u+x^{-1}-1}{u+x-1}\right) d u .
\end{aligned}
$$

Thus we compute each term of $\Delta(x)$ and we obtain, after some simple, although tedious, computations:

$$
\Delta(x)=\bar{\Delta}^{1}(x)+\bar{\Delta}^{2}(x)+\bar{\Delta}^{3}(x)
$$

where

$$
\bar{\Delta}^{1}(x):=\int_{0}^{(1 / x)-1} \log \left(\frac{1}{1-x}\right) \alpha u^{\alpha-1} d u+\int_{0}^{(1 / x)-x} \log \left(\frac{u x+1-x}{1-x}\right) \alpha u^{\alpha-1} d u
$$

$$
\begin{aligned}
\bar{\Delta}^{2}(x):= & \int_{(1 / x)-x}^{\infty} \log \left(\frac{u+x^{-1}-1}{u+x-1}\right) \alpha u^{\alpha-1} d u \\
& -\int_{(1 / x)-1}^{\infty} \log \left(\frac{u /(1-x)+x^{-1}-1}{u /(1-x)-1}\right) \alpha u^{\alpha-1} d u \\
\bar{\Delta}^{3}(x):= & \int_{0}^{x(1-x)} \log \left(\frac{1-x-u}{(1-x)^{2}}\right) \alpha u^{\alpha-1} d u \\
& -\int_{0}^{(1 / x)-1} \log \left(\frac{u /(1-x)+x^{-1}-1}{x^{-1}-1}\right) \alpha u^{\alpha-1} d u
\end{aligned}
$$

We note that, since $x \in] 0,1]$, we have

$$
x(1-x) \leqslant 1-x \leqslant \frac{1}{x}-1 \leqslant \frac{1}{x}-x
$$

and that all the integrals in $\bar{\Delta}^{i}(x)$ are positive. For example, we have

$$
\bar{\Delta}^{2}(x)=\int_{(1 / x)-x}^{\infty} \log \left(\frac{u x+(1-x)}{u x+(1-x)^{2}}\right) \alpha u^{\alpha-1} d u
$$

and this last integral is positive since $(1-x)^{2} \leqslant 1-x$. Gathering thus all the terms in $\Delta(x)$, we obtain
(4.10)

$$
\Delta(x)=\int_{0}^{\infty} \log \left(\frac{u x+1-x}{u x+(1-x)^{2}}\right) \alpha u^{\alpha-1} d u
$$

$$
\begin{array}{r}
-\int_{(1 / x)-1}^{(1 / x)-x} \log \left(\frac{1-x}{x(u+x-1)}\right) \alpha u^{\alpha-1} d u+\int_{0}^{x(1-x)} \log \left(\frac{1-x-u}{(1-x)^{2}}\right) \alpha u^{\alpha-1} d u \\
=\alpha(1-x)^{\alpha} \int_{1 / x}^{(1 / x)+1} \log \left(\frac{1}{x(v-1)}\right) \\
{\left[\left(\frac{x v-1}{1+v-x v}\right)^{\alpha-1} \frac{x^{2-\alpha}}{(1+x-x v)^{2}}\right.} \\
\left.+\left(\frac{x v-1}{x(v-1)}\right)^{\alpha-1} \frac{1-x}{x(v-1)^{2}}-v^{\alpha-1}\right] d v
\end{array}
$$

after making the changes of variables:

$$
\begin{gathered}
\frac{u x+1-x}{u x+(1-x)^{2}}=\frac{1}{x(v-1)} \\
u=(1-x) v \\
\frac{1-x-u}{(1-x)^{2}}=\frac{1}{x(v-1)}
\end{gathered}
$$

in the first, the second, and the third integral of (4.10), respectively.

Thus, to conclude, it remains to show that, for every $v \in\left[x^{-1}, x^{-1}+1\right]$,

$$
\begin{equation*}
v^{\alpha-1} \leqslant\left(\frac{x v-1}{1+x-x v}\right)^{\alpha-1} \frac{1}{x^{\alpha-1}} \frac{x}{(1+x-x v)^{2}}+\left(\frac{x v-1}{x(v-1)}\right)^{\alpha-1} \frac{1-x}{x(v-1)^{2}} \tag{4.11}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
\left(\frac{x v-1}{x v}\right)^{1-\alpha} \leqslant \frac{x}{(1+x-x v)^{\alpha+1}}+\frac{1-x}{x} \frac{1}{(v-1)^{\alpha+1}} \tag{4.12}
\end{equation*}
$$

Now, this last inequality is obvious. Indeed, since

$$
f_{1}(v):=\left(\frac{x v-1}{x v}\right)^{1-\alpha} \quad \text { and } \quad f_{2}(v):=\frac{x}{(1+x-x v)^{\alpha+1}}
$$

are increasing, it suffices to verify that

$$
f_{1}\left(\frac{1}{x}+1\right) \leqslant f_{2}\left(\frac{1}{x}\right) .
$$

We have

$$
f_{1}\left(\frac{1}{x}+1\right)=\left(\frac{x}{1+x}\right)^{1-\alpha} \leqslant 1 \leqslant f_{2}\left(\frac{1}{x}\right)=\frac{1}{x^{\alpha}}
$$

since $x \in] 0,1]$. This shows that $Y^{(3)}$ is GGC.
Finally, it is not difficult to prove that the total mass of the Thorin measure equals $1-\alpha$. Indeed, since $l^{(3)}(x)=C\left(x^{\alpha}-1_{x \geqslant 1}(x-1)^{\alpha}\right)$, we have

$$
l^{(3)}(x) \underset{x \rightarrow \infty}{\sim} C x^{\alpha-1} .
$$

Hence, by the Tauberian theorem,

$$
f_{Y^{(3)}}(u) \underset{u \rightarrow 0}{\sim} \frac{C}{u^{\alpha}},
$$

and we finally use (1.10).
4.2. Description of the r.v.'s $\mathbb{G}_{\alpha}^{(i)}(i=1,2,3 ; 0<\alpha<1)$. In the sequel, it will be convenient to assume that $p=1$ and we write simply $Y^{(i)}$ for the r.v.'s $Y_{1}^{(i)}(i=1,2,3)$. Theorem 5 implies, by (1.7), the existence of r.v.'s $\mathbb{G}_{\alpha}^{(i)}(i=$ $1,2,3 ; \alpha \in] 0,1[)$ such that $E\left(\log ^{+}\left(1 / \mathbb{G}_{\alpha}^{(i)}\right)\right)<\infty$ and

$$
\begin{equation*}
E\left(\exp \left(-\lambda Y^{(i)}\right)\right)=\exp \left\{-(1-\alpha) \int_{0}^{\infty}\left(1-e^{-\lambda x}\right) \frac{d x}{x} E\left(\exp \left(-x \mathbb{G}_{\alpha}^{(i)}\right)\right)\right\} \tag{4.13}
\end{equation*}
$$

The aim of this section is to identify the (laws of the) r.v.'s $\mathbb{G}_{\alpha}^{(i)}$ and to describe some of their properties.
(i) The case $i=1$.

Formula (4.6) implies that the r.v. $\mathbb{G}_{\alpha}^{(1)}$ is a.s. equal to 1 , i.e. its distribution is δ_{1}, the Dirac measure at 1. In particular, this distribution does not depend on α.
(ii) The case $i=3$.

In [2] a complete study of the r.v.'s $\mathbb{G}_{\alpha}^{(3)}$, denoted by \mathbb{G}_{α} in [2], has been undertaken. We refer the reader to formula (1.17), p. 318, in [2] (note that in formula (1.50), p. 322, exponent α is missing). In particular, it is shown there that the density $f_{\mathbb{G}_{\alpha}^{(3)}}$ of $\mathbb{G}_{\alpha}^{(3)}$ equals

$$
\begin{equation*}
f_{\mathbb{G}_{\alpha}^{(3)}}(u)=\frac{\alpha \sin (\pi \alpha)}{(1-\alpha) \pi} \frac{u^{\alpha-1}(1-u)^{\alpha-1}}{(1-u)^{2 \alpha}-2(1-u)^{\alpha} u^{\alpha} \cos (\pi \alpha)+u^{2 \alpha}} 1_{[0,1]}(u) . \tag{4.14}
\end{equation*}
$$

Thus, $\mathbb{G}_{1 / 2}^{(3)}$ is arc-sine distributed:

$$
\begin{equation*}
f_{\mathbb{G}_{1 / 2}^{(3)}}(u)=\frac{1}{\pi} \frac{1}{\sqrt{u(1-u)}} 1_{[0,1]}(u) \tag{4.15}
\end{equation*}
$$

and the r.v.'s $\mathbb{G}_{\alpha}^{(3)}$ converge in law, as $\alpha \rightarrow 0$ and $\alpha \rightarrow 1$, respectively, towards $\mathbb{G}_{0}^{(3)}$ and $\mathbb{G}_{1}^{(3)}$, where

$$
\begin{gather*}
\mathbb{G}_{0}^{(3)} \stackrel{(\text { law })}{=} \frac{1}{1+\exp (\pi C)} \quad \text { with } C \text { a standard Cauchy r.v., } \tag{4.16}\\
\mathbb{G}_{1}^{(3)} \stackrel{(\text { law })}{=} U \quad \text { with } U \text { uniform on }[0,1] \tag{4.17}
\end{gather*}
$$

(iii) The case $i=2$.

Theorem 6. For every $\alpha \in] 0,1[$
(1) (i) we have

$$
\begin{equation*}
Y^{(2)} \stackrel{(l a w)}{=} \mathfrak{e} \cdot \frac{\gamma_{1-\alpha}}{\gamma_{\alpha}} \stackrel{(l a w)}{=} \mathfrak{e} \frac{\beta_{1-\alpha, \alpha}}{1-\beta_{1-\alpha, \alpha}}, \tag{4.18}
\end{equation*}
$$

where $\mathfrak{e}, \gamma_{1-\alpha}, \gamma_{\alpha}$ are independent, with respective laws the standard exponential and the gamma distributions with respective parameters $(1-\alpha)$ and α, and where \mathfrak{e} and $\beta_{1-\alpha, \alpha}$ are independent with respective distributions the standard exponential and the beta distribution with parameters $(1-\alpha, \alpha)$;
(ii) for $\lambda \geqslant 0$ we have

$$
\begin{equation*}
E\left(\exp \left(-\lambda Y^{(2)}\right)\right)=\frac{\lambda^{\alpha}-1}{\lambda-1} \quad(=\alpha \text { if } \lambda=1) \tag{4.19}
\end{equation*}
$$

(2) $Y^{(2)}$ is a gamma- $(1-\alpha)$ mixture, i.e.

$$
\begin{equation*}
Y^{(2)}=\gamma_{1-\alpha} \cdot D_{1-\alpha}^{(2)} \tag{4.20}
\end{equation*}
$$

where $\gamma_{1-\alpha}$ is a gamma $(1-\alpha)$ variable, independent of the positive r.v. $D_{1-\alpha}^{(2)}$. Furthermore:

$$
\begin{equation*}
D_{1-\alpha}^{(2)} \stackrel{(\text { law })}{=} \frac{\mathfrak{e}}{\gamma_{\alpha}} \tag{4.21}
\end{equation*}
$$

$$
\begin{equation*}
E\left(\exp \left(-\lambda D_{1-\alpha}^{(2)}\right)\right)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{\lambda+y} d y=\alpha \int_{0}^{\infty} \frac{e^{-\lambda y}}{(1+y)^{\alpha+1}} d y \tag{4.22}
\end{equation*}
$$

The density $f_{D_{1-\alpha}^{(2)}}$ of $D_{1-\alpha}^{(2)}$ equals

$$
\begin{equation*}
f_{D_{1-\alpha}^{(2)}}(u)=\frac{\alpha}{(1+u)^{\alpha+1}} 1_{[0, \infty[}(u) \tag{4.23}
\end{equation*}
$$

(3) (i) The density $f_{\mathbb{G}_{\alpha}^{(2)}}$ of $\mathbb{G}_{\alpha}^{(2)}$ equals

$$
\begin{equation*}
f_{\mathbb{G}_{\alpha}^{(2)}}(u)=\frac{\alpha \sin (\pi \alpha)}{(1-\alpha) \pi} \frac{u^{\alpha-1}}{u^{2 \alpha}-2 u^{\alpha} \cos (\pi \alpha)+1} 1_{[0, \infty[}(u) \tag{4.24}
\end{equation*}
$$

(ii) The r.v.'s $\mathbb{G}_{\alpha}^{(2)}$ are related to the r.v.'s $\mathbb{G}_{\alpha}^{(3)}$ via the identity in law:
(4.25) $\quad \frac{\mathbb{G}_{\alpha}^{(2)}}{1+\mathbb{G}_{\alpha}^{(2)}} \stackrel{(\text { law })}{=} \mathbb{G}_{\alpha}^{(3)} \quad$ or, equivalently, $\quad \mathbb{G}_{\alpha}^{(2)} \stackrel{(\text { law })}{=} \frac{\mathbb{G}_{\alpha}^{(3)}}{1-\mathbb{G}_{\alpha}^{(3)}}$.
(iii) We have the identity

$$
\begin{equation*}
\mathbb{G}_{\alpha}^{(2)} \stackrel{(l a w)}{=} \frac{1}{\mathbb{G}_{\alpha}^{(2)}} \tag{4.26}
\end{equation*}
$$

(iv) As $\alpha \rightarrow 0$ and $\alpha \rightarrow 1, \mathbb{G}_{\alpha}^{(2)}$ converges in law towards, respectively,

$$
\begin{equation*}
\mathbb{G}_{0}^{(2)} \stackrel{(\text { law })}{=} \exp (\pi C) \quad \text { and } \quad \mathbb{G}_{1}^{(2)} \stackrel{(\text { law })}{=} \frac{U}{1-U} \tag{4.27}
\end{equation*}
$$

with C a standard Cauchy r.v. and U uniform on $[0,1]$.
(4) Let $\mu \in] 0,1\left[\right.$ and T_{μ} denote the positive stable r.v. with index μ whose law is characterized by

$$
E\left(\exp \left(-\lambda T_{\mu}\right)\right)=\exp \left(-\lambda^{\mu}\right) \quad(\lambda>0)
$$

Then

$$
\begin{equation*}
\mathbb{G}_{\alpha}^{(2)} \stackrel{(l a w)}{=}\left(\frac{T_{1-\alpha}}{T_{1-\alpha}^{\prime}}\right)^{(1-\alpha) / \alpha} \tag{4.28}
\end{equation*}
$$

where $T_{1-\alpha}^{\prime}$ is an independent copy of $T_{1-\alpha}$.

An equivalent way of writing (4.28) is

$$
\begin{equation*}
\mathbb{G}_{\alpha}^{(2)} \stackrel{(l a w)}{=}\left(\frac{M_{1-\alpha}}{M_{1-\alpha}^{\prime}}\right)^{1 / \alpha} \tag{4.29}
\end{equation*}
$$

where $M_{1-\alpha}$ and $M_{1-\alpha}^{\prime}$ are two independent Mittag-Leffler r.v.'s with parameter $1-\alpha$, whose common law is characterized by

$$
\begin{gather*}
E\left(\exp \left(\lambda M_{1-\alpha}\right)\right)=\sum_{n \geqslant 0} \frac{\lambda^{n}}{\Gamma(1+n(1-\alpha))} \\
E\left[M_{1-\alpha}^{n}\right]=\frac{\Gamma(n+1)}{\Gamma(1+n(1-\alpha))}, \quad M_{1-\alpha} \stackrel{(l a w)}{=}\left(\frac{1}{T_{1-\alpha}}\right)^{1-\alpha} \tag{4.30}
\end{gather*}
$$

(see [4], p. 114, Exercise 4.19).
Proof. We prove (4.18). Denoting by $\left(R_{t}, t \geqslant 0\right)$ a Bessel process with dimension $2(1-\alpha)(0<\alpha<1)$ starting from 0 , we have by scaling:

$$
Y^{(2)}=d_{\mathfrak{e}}-\mathfrak{e} \stackrel{(\text { law })}{=} \mathfrak{e}\left(d_{1}-1\right) \stackrel{(\text { law })}{=} \mathfrak{e}\left(\frac{R_{1}^{2}}{2 \gamma_{\alpha}}\right)
$$

(see [2]), where R_{1}^{2} is the value of R_{t}^{2} for $t=1$. Hence

$$
Y^{(2)} \stackrel{(\text { law })}{=} \mathfrak{e} \frac{\gamma_{1-\alpha}}{\gamma_{\alpha}}=\mathfrak{e} \frac{\beta_{1-\alpha, \alpha}}{1-\beta_{1-\alpha, \alpha}}
$$

(from the classical "beta-gamma algebra").
We prove (4.19). We have from (4.1) and (4.2):

$$
l^{(2)}(x)=\frac{\sin (\pi \alpha)}{\pi} \frac{x^{\alpha}}{1+x}, \quad x \geqslant 0
$$

noting that

$$
\int_{0}^{\infty} \frac{l^{(2)}(x)}{x} d x=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x=\frac{\sin (\pi \alpha)}{\pi} B(\alpha, 1-\alpha)=1
$$

(see [10], pp. 3 and 13). Hence, by (1.3), $f_{Y^{(2)}}$, the density of $Y^{(2)}$, equals

$$
f_{Y^{(2)}}(u)=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} e^{-u x} \frac{x^{\alpha}}{1+x} d x
$$

(we might also have derived this formula from (4.18)).

We now compute the Laplace transform of $Y^{(2)}$:

$$
\begin{aligned}
& E\left(\exp \left(-\lambda Y^{(2)}\right)\right)=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} e^{-\lambda u} d u \int_{0}^{\infty} e^{-u x} \frac{x^{\alpha}}{1+x} d x \\
&=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha}}{(1+x)(\lambda+x)} d x \\
&=\frac{1}{\lambda-1} \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} x^{\alpha}\left[\frac{1}{1+x}-\frac{1}{\lambda+x}\right] d x \\
&=\lim _{A \rightarrow \infty} \frac{1}{\lambda-1} \frac{\sin (\pi \alpha)}{\pi}\left[\int_{0}^{A} \frac{x^{\alpha}}{1+x} d x-\lambda^{\alpha} \int_{0}^{A / \lambda} \frac{x^{\alpha}}{1+x} d x\right] \\
&=\lim _{A \rightarrow \infty} \frac{1}{\lambda-1} \frac{\sin (\pi \alpha)}{\pi}\left[\int_{0}^{A}\left(x^{\alpha-1}-\frac{x^{\alpha-1}}{1+x}\right) d x\right. \\
&=\lim _{A \rightarrow \infty} \frac{1}{\lambda-1} \frac{\sin (\pi \alpha)}{\pi}\left[\frac{\lambda^{\alpha}}{\alpha}-\int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x\right. \\
& \\
&\left.=\frac{\left.\left.\lambda^{\alpha-1}-\frac{x^{\alpha-1}}{1+x}\right) d x\right]}{\lambda-1} \frac{\lambda^{\alpha}}{\frac{\lambda^{\alpha}}{\alpha}}(A / \lambda)^{\alpha}+\lambda^{\alpha} \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x\right] \\
&=\frac{\lambda^{\alpha}-1}{\lambda-1} \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x \\
& \pi(\alpha, 1-\alpha)=\frac{\lambda^{\alpha}-1}{\lambda-1}
\end{aligned}
$$

since $($ see $[10]$, p. 3) $B(\alpha, 1-\alpha)=\Gamma(\alpha) \Gamma(1-\alpha)=\pi / \sin (\pi \alpha)$.
Let us show (4.24). By taking the logarithmic derivative of (4.19):

$$
\begin{aligned}
E\left(\exp \left(-\lambda Y^{(2)}\right)\right) & =\frac{\lambda^{\alpha}-1}{\lambda-1} \\
& =\exp \left\{-(1-\alpha) \int_{0}^{\infty}\left(1-e^{-\lambda x}\right) \frac{d x}{x} E\left(\exp \left(-x \mathbb{G}_{\alpha}^{(2)}\right)\right)\right\}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
E\left[\frac{1}{\lambda+\mathbb{G}_{\alpha}^{(2)}}\right]=\frac{1}{1-\alpha}\left[\frac{1}{1-\lambda}-\frac{\alpha \lambda^{\alpha-1}}{\lambda^{\alpha}-1}\right] \tag{4.31}
\end{equation*}
$$

Thus, we have just computed the Stieltjes transform of the r.v. $\mathbb{G}_{\alpha}^{(2)}$. The inversion
formula for the Stieltjes transform (see [12], p. 345) leads us to

$$
\begin{aligned}
& f_{\mathbb{G}_{\alpha}^{(2)}}(u)=\frac{1}{2 i \pi(1-\alpha)} \lim _{\eta \rightarrow 0}\left[\frac{1}{1-\lambda(-u-i \eta)}-\frac{\alpha(-u-i \eta)^{\alpha-1}}{(-u-i \eta)^{\alpha}-1}\right. \\
= & \left.\frac{-\alpha}{1-\lambda(-u+i \eta)}+\frac{\alpha(-u+i \eta)^{\alpha-1}}{(-u+i \eta)^{\alpha}-1}\right] \quad(u>0) \\
2 i \pi(1-\alpha) & \left.\frac{-u^{\alpha-1} e^{-i \pi \alpha}}{u^{\alpha} e^{-i \pi \alpha}-1}+\frac{u^{\alpha-1} e^{i \pi \alpha}}{u^{\alpha} e^{i \pi \alpha}-1}\right] \quad(u>0) \\
= & \frac{-\alpha}{2 i \pi(1-\alpha)}\left[\frac{-u^{2 \alpha-1}+u^{\alpha-1} e^{-i \pi \alpha}+u^{2 \alpha-1}-u^{\alpha-1} e^{i \pi \alpha}}{u^{2 \alpha}-u^{\alpha} e^{i \pi \alpha}-u^{\alpha} e^{-i \pi \alpha}+1}\right] \quad(u>0) \\
= & \frac{\alpha \sin (\pi \alpha)}{(1-\alpha) \pi} \frac{u^{\alpha-1}}{u^{2 \alpha}-2 u^{\alpha} \cos (\pi \alpha)+1} 1_{(u>0) .}
\end{aligned}
$$

We now show (4.25). For every h Borel and positive, we have

$$
E\left[h\left(\frac{\mathbb{G}_{\alpha}^{(2)}}{1+\mathbb{G}_{\alpha}^{(2)}}\right)\right]=\frac{\alpha \sin (\pi \alpha)}{(1-\alpha) \pi} \int_{0}^{\infty} h\left(\frac{u}{1+u}\right) \frac{u^{\alpha-1}}{u^{2 \alpha}-2 u^{\alpha} \cos (\pi \alpha)+1} d u
$$

using (4.24). Thus, making the change of variable $u /(1+u)=x$, we get

$$
\begin{aligned}
& E\left[h\left(\frac{\mathbb{G}_{\alpha}^{(2)}}{1+\mathbb{G}_{\alpha}^{(2)}}\right)\right] \\
= & \frac{\alpha \sin (\pi \alpha)}{(1-\alpha) \pi} \int_{0}^{1} h(x) \frac{d x}{(1-x)^{2}} \frac{x^{\alpha-1} /(1-x)^{\alpha-1}}{x^{2 \alpha} /(1-x)^{2 \alpha}-\left(2 \cos (\pi \alpha) x^{\alpha}\right) /(1-x)^{\alpha}+1} \\
= & \frac{\alpha \sin (\pi \alpha)}{(1-\alpha) \pi} \int_{0}^{1} h(x) \frac{x^{\alpha-1}(1-x)^{\alpha-1}}{x^{2 \alpha}-2 x^{\alpha}(1-x)^{\alpha} \cos (\pi \alpha)+(1-x)^{2 \alpha}} d x \\
= & E\left[h\left(\mathbb{G}_{\alpha}^{(3)}\right)\right] \quad(\operatorname{by}(4.14)) .
\end{aligned}
$$

We now prove (4.26). It is shown in [2], p. 319, (1.27), that

$$
\begin{equation*}
\mathbb{G}_{\alpha}^{(3)} \stackrel{(\text { law })}{=} 1-\mathbb{G}_{\alpha}^{(3)} \tag{4.32}
\end{equation*}
$$

which is, indeed, obvious. Thus, from (4.25) we get

$$
\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text { law })}{=} \frac{\mathbb{G}_{\alpha}^{(3)}}{1-\mathbb{G}_{\alpha}^{(3)}} \stackrel{(\text { law })}{=} \frac{1-\mathbb{G}_{\alpha}^{(3)}}{\mathbb{G}_{\alpha}^{(3)}}=\frac{\left(1+\mathbb{G}_{\alpha}^{(2)}-\mathbb{G}_{\alpha}^{(2)}\right) /\left(1+\mathbb{G}_{\alpha}^{(2)}\right)}{\mathbb{G}_{\alpha}^{(2)} /\left(1+\mathbb{G}_{\alpha}^{(2)}\right)} \stackrel{\text { law) }}{=} \frac{1}{\mathbb{G}_{\alpha}^{(2)}}
$$

The relation (4.27) follows immediately from (4.25), (4.16) and (4.17).
We prove (4.28). It is shown in [2], p. 320, that
$\mathbb{G}_{\alpha}^{(3)} \stackrel{(\text { law })}{=} \frac{\left(T_{1-\alpha}\right)^{(1-\alpha) / \alpha}}{\left(T_{1-\alpha}^{\prime}\right)^{(1-\alpha) / \alpha}+\left(T_{1-\alpha}\right)^{(1-\alpha) / \alpha}}, \quad \mathbb{G}_{\alpha}^{(3)} \stackrel{(\text { law })}{=} \frac{\left(M_{1-\alpha}\right)^{1 / \alpha}}{\left(M_{1-\alpha}\right)^{1 / \alpha}+\left(M_{1-\alpha}^{\prime}\right)^{1 / \alpha}}$.

Thus, from (4.25) and (4.33) we get

$$
\begin{equation*}
\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text { law })}{=} \frac{\mathbb{G}_{\alpha}^{(3)}}{1-\mathbb{G}_{\alpha}^{(3)}} \tag{4.34}
\end{equation*}
$$

$$
=\frac{\left(T_{1-\alpha}\right)^{(1-\alpha) / \alpha} /\left(\left(T_{1-\alpha}^{\prime}\right)^{(1-\alpha) / \alpha}+\left(T_{1-\alpha}\right)^{(1-\alpha) / \alpha}\right)}{\left(T_{1-\alpha}^{\prime}\right)^{(1-\alpha) / \alpha} /\left(\left(T_{1-\alpha}^{\prime}\right)^{(1-\alpha) / \alpha}+\left(T_{1-\alpha}\right)^{(1-\alpha) / \alpha}\right)}=\left(\frac{T_{1-\alpha}}{T_{1-\alpha}^{\prime}}\right)^{(1-\alpha) / \alpha} .
$$

We note that (4.34) implies (4.26) and that (4.29) may be obtained from (4.34) in the same manner.

We now prove point (2) of Theorem 6. The formula (4.21), $D_{1-\alpha}^{(2)} \stackrel{(\text { law })}{=} \mathfrak{e} / \gamma_{\alpha}$, is an immediate consequence of (4.18) and (4.20):

$$
Y^{(2)} \stackrel{(\text { law })}{=} \mathfrak{e} \cdot \frac{\gamma_{1-\alpha}}{\gamma_{\alpha}} \stackrel{(\text { law })}{=} \gamma_{1-\alpha} D_{1-\alpha}^{(2)}
$$

after observing that, in the latter formula, we may "simplify by $\gamma_{1-\alpha}$ " (see [4] or [6], point 1.4.6, for a justification of this "simplification"). The value of the density of $D_{1-\alpha}^{(2)}$, which is given by (4.23), now follows easily from $D_{1-\alpha}^{(2)} \stackrel{\text { (law) }}{=} \mathfrak{e} / \gamma_{\alpha}$. Finally, we have
(4.35) $E\left(\exp \left(-\lambda D_{1-\alpha}^{(2)}\right)\right)=E\left(\exp \left(-\lambda \frac{\mathfrak{e}}{\gamma_{\alpha}}\right)\right)$
$=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-\lambda \frac{x}{y}-x-y\right) y^{\alpha-1} d x d y=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} y^{\alpha} d y \int_{0}^{\infty} e^{-z(\lambda+y)} d z$
after making the change of variable $x / y=z$. Consequently,

$$
\begin{equation*}
E\left(\exp \left(-\lambda D_{1-\alpha}^{(2)}\right)\right)=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{y^{\alpha}}{\lambda+y} e^{-y} d y \tag{4.36}
\end{equation*}
$$

The formula

$$
\begin{equation*}
E\left(\exp \left(-\lambda D_{1-\alpha}^{(2)}\right)\right)=\alpha \int_{0}^{\infty} e^{-\lambda y} \frac{d y}{(1+y)^{\alpha+1}} \tag{4.37}
\end{equation*}
$$

follows immediately from (4.23) and it is easy to verify that

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{\lambda+y} d y=\alpha \int_{0}^{\infty} e^{-\lambda y} \frac{d y}{(1+y)^{\alpha+1}}
$$

Indeed,

$$
\begin{aligned}
\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{\lambda+y} d y & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} y^{\alpha} d y \int_{0}^{\infty} e^{-z(\lambda+y)} d z \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda z} d z \int_{0}^{\infty} e^{-y(1+z)} y^{\alpha} d y \\
& =\frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda z} \frac{d z}{(1+z)^{\alpha+1}}=\alpha \int_{0}^{\infty} e^{-\lambda z} \frac{d z}{(1+z)^{\alpha+1}} .
\end{aligned}
$$

This completes the proof of Theorem 6.
REMARK 7. 1. From the relation $Y^{(2)} \stackrel{(\text { law })}{=} \gamma_{1-\alpha} D_{1-\alpha}^{(2)}$ we deduce that

$$
\begin{aligned}
E\left(\exp \left(-\lambda Y^{(2)}\right)\right) & =E\left(\exp \left(-\lambda \gamma_{1-\alpha} \cdot D_{1-\alpha}^{(2)}\right)\right)=E\left(\frac{1}{\left(1+\lambda D_{1-\alpha}^{(2)}\right)^{1-\alpha}}\right) \\
& =\alpha \int_{0}^{\infty}\left(\frac{1+\lambda x}{1+x}\right)^{\alpha-1} \frac{d x}{(1+x)^{2}} \quad(\text { by }(4.23)) \\
& =\frac{\alpha}{\lambda-1} \int_{1}^{\lambda} y^{\alpha-1} d y
\end{aligned}
$$

after making the change of variable $(1+\lambda x) /(1+x)=y$. Consequently,

$$
E\left(\exp \left(-\lambda Y^{(2)}\right)\right)=\frac{\lambda^{\alpha}-1}{\lambda-1}
$$

This is another way to obtain (4.19).
2. Here is now another way to obtain (4.22). It is clear from (4.24) that

$$
E\left(\left|\log \mathbb{G}_{\alpha}^{(2)}\right|\right)<\infty
$$

and, since $\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text { law })}{=} 1 / \mathbb{G}_{\alpha}^{(2)}$, that $E\left(\log \mathbb{G}_{\alpha}^{(2)}\right)=0$. Thus, from Theorem 2.1 (ii) in [6] we have

$$
f_{Y^{(2)}}(u)=\frac{u^{-\alpha}}{\Gamma(1-\alpha)} E\left(\exp \left(-u D_{1-\alpha}^{(2)}\right)\right)
$$

(this is formula (2.7) in [6], with $t=1-\alpha, E(\log G)=0$ and $G \stackrel{(\text { law })}{=} 1 / G)$. Hence, since

$$
f_{Y^{(2)}}(u)=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} e^{-u x} \frac{x^{\alpha}}{1+x} d x=\frac{u^{-\alpha} \sin (\pi \alpha)}{\pi} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{u+y} d y
$$

(after the change of variable $u x=y$), we obtain $E\left(\exp \left(-u D_{1-\alpha}^{(2)}\right)\right)=\frac{\sin (\pi \alpha)}{\pi} \Gamma(1-\alpha) \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{u+y} d y=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{u+y} d y$.
3. Furthermore, we remark that from Theorem 2.1 of [6] we get

$$
f_{D_{1-\alpha}^{(2)}}(u)=u^{-\alpha-1} f_{D_{1-\alpha}^{(2)}}(1 / u) .
$$

This formula follows also from (4.23).
4. Finally, we also observe from Theorem 2.1 in [6], as a consequence of $\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text { law })}{=} 1 / \mathbb{G}_{\alpha}^{(2)}$ and $E\left(\log \mathbb{G}_{\alpha}^{(2)}\right)=0$, that

$$
\begin{equation*}
f_{Y^{(2)}}(u)=E\left[\left(Y^{(2)} / u\right)^{\alpha / 2} J_{-\alpha}\left(2 \sqrt{u Y^{(2)}}\right)\right] \tag{4.38}
\end{equation*}
$$

where $J_{-\alpha}$ denotes the Bessel function with index $(-\alpha)$.

REFERENCES

[1] J. Bertoin, Subordinators: Examples and Applications, in: Ecole d'Eté de Saint-Flour, Lecture Notes in Math. No 1717, Springer, 1997.
[2] J. Bertoin, T. Fujita, B. Roynette and M. Yor, On a particular class of selfdecomposable random variables: the duration of Bessel excursions straddling independent exponential times, Probab. Math. Statist. 26 (2) (2006), pp. 315-366.
[3] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist. 76, Springer, 1992.
[4] L. Chaumont and M. Yor, Exercises in Probability. A Guided Tour from Measure Theory to Random Processes, via Conditioning, Camb. Ser. Stat. Probab. Math. 13 (2003).
[5] C. Donati-Martin, B. Roynette, P. Vallois and M. Yor, On constants related to the choice of the local time at 0 , and the corresponding Itô measure for Bessel processes with dimension $d=2(1-\alpha), 0<\alpha<1$, Studia Sci. Math. Hungar. 45 (2008), pp. 207-221.
[6] L. F. James, B. Roynette and M. Yor, Generalized gamma convolutions, Dirichlet means, Thorin measures with explicit examples, Probability Surveys 5 (2008), pp. 346-415.
[7] F. B. Knight, Characterization of the Lévy measure of inverse local times of gap diffusions, Seminar on Stochastic Processes 22, Birkhäuser, 1981, pp. 53-78.
[8] S. Kotani and S. Watanabe, Krein's spectral theory of strings and general diffusion processes, in: Functional Analysis in Markov Processes, M. Fukushima (Ed.), Lecture Notes in Math. No 923, Springer, 1982, pp. 235-259.
[9] G. K. Kristiansen, A proof of Steutel's conjecture, Ann. Probab. 22 (1994), pp. 442-452.
[10] N. N. Lebedev, Special Functions and Their Applications, translated and edited by R. A. Silverman, Dover Publications Inc., 1965.
[11] P. Salminen, P. Vallois and M. Yor, On the excursion theory for linear diffusions, Japan J. Math. 2 (2007), pp. 97-127.
[12] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton 1946.
B. Roynette and P. Vallois

Institut Elie Cartan, Université Henri Poincaré B.P. 239, 54506 Vandoeuvre les Nancy Cedex

E-mail: roynette@iecn.u-nancy.fr
E-mail: vallois@iecn.u-nancy.fr
M. Yor

Laboratoire de Probabilités et Modèles Aléatoires Universités Paris VI et VII 4 place Jussieu, Case 188 F-75252 Paris Cedex 05 E-mail: yormarc@aol.com

[^0]: ${ }^{1}$ It would be more correct to say that: the law of such an r.v. is a gamma- m mixture; however, such an abuse is usual, and should not lead to confusion.

