PROBABILITY AND MATHEMATICAL STATISTICS Vol. 29, Fasc. 2 (2009), pp. 181–204

A FAMILY OF GENERALIZED GAMMA CONVOLUTED VARIABLES

BY

B. ROYNETTE (VANDOEUVRE LES NANCY), P. VALLOIS (VANDOEUVRE LES NANCY) AND M. YOR (PARIS)

Abstract. This paper consists of three parts: in the first part, we describe a family of generalized gamma convoluted (abbreviated as GGC) variables. In the second part, we use this description to prove that several r.v.'s, related to the length of excursions away from 0 for a recurrent linear diffusion on \mathbb{R}_+ , are GGC. Finally, in the third part, we apply our results to the case of Bessel processes with dimension $d = 2(1 - \alpha)$, where 0 < d < 2 or $0 < \alpha < 1$.

2000 AMS Mathematics Subject Classification: 60J25, 60G51, 60E07, 60E05.

Key words and phrases: GGC variables, lengths of excursions, Bessel processes.

1. NOTATION AND INTRODUCTION

1.1. Let $l : \mathbb{R}_+ \to \mathbb{R}_+$ denote a Borel function such that

(1.1)
$$\int_{0}^{\infty} \frac{l(z)}{z} dz < \infty.$$

Without loss of generality, we assume that

(1.2)
$$\int_{0}^{\infty} \frac{l(z)}{z} dz = 1.$$

With l we associate an r.v. Y on \mathbb{R}_+ whose probability density f_Y is given by

(1.3)
$$f_Y(u) = \int_0^\infty e^{-uz} l(z) dz \quad (u \ge 0).$$

Indeed, due to (1.2), we get

(1.4)
$$\int_{0}^{\infty} f_{Y}(u) du = \int_{0}^{\infty} du \int_{0}^{\infty} e^{-uz} l(z) dz = \int_{0}^{\infty} \frac{l(z)}{z} dz = 1.$$

To emphasize the relation between Y and l, we shall (sometimes) write Y_l .

We denote by $\varphi_l \equiv \varphi_{Y_l}$ the Laplace transform of Y_l :

(1.5)
$$\varphi_l(\lambda) = \varphi_{Y_l}(\lambda) = E(e^{-\lambda Y_l}) = \int_0^\infty e^{-\lambda u} f_{Y_l}(u) du$$
$$= \int_0^\infty \frac{l(z)}{\lambda + z} dz.$$

Thus, since f_{Y_l} is the Laplace transform of l, φ_l is the Stieltjes transform of l.

1.2. A reminder about GGC variables. Let μ denote a positive σ -finite measure on \mathbb{R}_+ . We recall (see Bondesson [3]) that a positive r.v. Y is a GGC variable with Thorin measure μ if

(1.6)
$$E(e^{-\lambda Y}) = \exp\left\{-\int_{0}^{\infty} (1-e^{-\lambda x}) \left(\int_{0}^{\infty} e^{-xz} \mu(dz)\right) \frac{dx}{x}\right\} \quad (\lambda \ge 0).$$

Such an r.v. is self-decomposable, hence infinitely divisible.

The GGC r.v.'s Y whose Thorin measure μ has a finite total mass, equal to m, are characterized by (see [6])

(1.7)
$$E(e^{-\lambda Y}) = \exp\left\{-m\int_{0}^{\infty} (1-e^{-\lambda x}) E(e^{-xG}) \frac{dx}{x}\right\},$$

where G is an \mathbb{R}_+ -valued r.v. such that $E(\log^+(1/G)) < \infty$. Such an r.v. is a gamma-m mixture, i.e. it satisfies¹:

(1.8)
$$Y \stackrel{(\text{law})}{=} \gamma_m \cdot Z,$$

where γ_m is a gamma variable with parameter m, independent of the \mathbb{R}_+ -valued variable Z. We note that any r.v. which is a gamma-m mixture is also a gamma-m' mixture for any m' > m, since we have the identity

(1.9)
$$\gamma_m \stackrel{(\text{law})}{=} \gamma_{m'} \cdot \beta_{m,m'-m},$$

where $\gamma_{m'}$ is a gamma variable with parameter m' and $\beta_{m,m'-m}$ is a beta variable with parameters (m, m' - m) independent of $\gamma_{m'}$.

We also recall (see [3], p. 51) that the parameter m of a GGC r.v. Y, with Thorin measure with total mass m, may be obtained from the formula

(1.10)
$$m = \sup\left\{\delta \ge 0; \lim_{u \downarrow 0_+} \frac{f_Y(u)}{u^{\delta-1}} = 0\right\}.$$

¹ It would be more correct to say that: the law of such an r.v. is a gamma-m mixture; however, such an abuse is usual, and should not lead to confusion.

2. A FAMILY OF GGC VARIABLES

The aim of this part is to present a sufficient condition on l which implies that the associated variable Y_l is GGC.

DEFINITION 1. A function l which satisfies (1.1) belongs to the *class* C if there exist $a \ge 0$, b > a, $\sigma \ge 0$ and $\theta : \mathbb{R}_+ \to \mathbb{R} \cup (+\infty)$ a Borel, decreasing function, which is identically equal to $+\infty$ on [0, a], such that

(2.1)
$$l(z) = \exp\left\{\sigma + \int_{b}^{z} \frac{\theta(y)}{y} \, dy\right\}.$$

Of course, if (2.1) is satisfied with a > 0, then the function l is identically 0 on [0, a[. On the other hand, if l is identically 0 on [0, a[and differentiable on $]a, \infty[$, then l belongs to the class C if and only if the function

(2.2)
$$y \to y \ (\log l)'(y) := \theta(y)$$

is decreasing on $[a, \infty]$.

The following properties are elementary:

- (2.3) If $l \in C$, then, for every $u > 0, x \to l(ux) \in C$.
- (2.4) If $l_1, l_2 \in \mathcal{C}$, then $l_1 \cdot l_2 \in \mathcal{C}$.
- (2.5) For every α real, $x \to x^{\alpha}$ satisfies (2.1) but not (1.1).
- (2.6) For every k < 0 and $\gamma \ge 0, x \to (x + \gamma)^k \in \mathcal{C}$.

THEOREM 2. Assume that l satisfies (1.2) and belongs to C, and let Y_l denote the r.v. associated with l. Then: Y_l is a GGC r.v. whose Thorin measure μ has total mass m smaller than or equal to 1. In other terms, there exists an r.v. G taking values in $\overline{\mathbb{R}}_+$ and satisfying $E(\log^+(1/G)) < \infty$ and $m \leq 1$ such that

(2.7)
$$E(e^{-\lambda Y_l}) = \exp\left\{-m\int_0^\infty (1-e^{-\lambda x})E(e^{-xG})\frac{dx}{x}\right\} \quad (\lambda \ge 0).$$

Proof. Our proof consists of three parts.

1. It suffices to show that Y_l is GGC since, if so, then the total mass m of its Thorin measure equals, by (1.3) and (1.10):

$$m = \sup\left\{\delta \ge 0; \lim_{u \downarrow 0_+} \frac{1}{u^{\delta-1}} \int_0^\infty e^{-uz} l(z) dz = 0\right\}$$

and, of course, $m \leq 1$ since, for $\delta = 1$:

$$\frac{1}{u^{\delta-1}}\int\limits_{0}^{\infty}e^{-uz}\,l(z)dz=\int\limits_{0}^{\infty}e^{-uz}\,l(z)dz\xrightarrow[u\downarrow 0_{+}]{0}\int\limits_{0}^{\infty}l(z)dz>0.$$

2. To show that Y_l is GGC, we shall use the following characterization (see [3], Theorem 6.1.1, p. 90) of these r.v.'s:

Y is GGC if and only if its Laplace transform φ_Y is hyperbolically completely monotone, that is, it satisfies: for every u > 0, the function H_u , defined by

(2.8)
$$H_u(w) = \varphi_Y(uv) \cdot \varphi_Y\left(\frac{u}{v}\right), \text{ where } w = v + \frac{1}{v},$$

is a completely monotone function, i.e., it is the Laplace transform of a positive measure carried by \mathbb{R}_+ .

In our framework, this criterion becomes: for every u > 0, H_u is completely monotone with, by (1.5),

(2.9)
$$H_u(w) = \int_0^\infty \int_0^\infty \frac{l(x)l(y)}{(x+uv)(y+u/v)} \, dx \, dy \quad (w=v+1/v),$$

and so

(2.10)
$$H_u(w) = \int_0^\infty \int_0^\infty \frac{l(ux)l(uy)}{(x+v)(y+1/v)} \, dx \, dy$$

(after the change of variables x = ux', y = uy').

Our aim is to show that the hypothesis $l \in C$ implies that H_u is completely monotone, and since $x \to l(ux)$ belongs to C if $l \in C$ (by (2.3)), it suffices to see that the function H defined by

(2.11)
$$H(w) := \int_{0}^{\infty} \int_{0}^{\infty} \frac{l(x)l(y)}{(x+v)(y+1/v)} \, dx \, dy \quad (w=v+1/v)$$

is completely monotone.

3. We show now that H, defined by (2.11), is completely monotone.

(i) We write

(2.12)
$$H(w) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{l(x)l(y)}{(x+v)(y+1/v)} \, dx \, dy$$
$$= \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x)l(y) \left[\frac{1}{(x+v)(y+1/v)} + \frac{1}{(x+1/v)(y+v)} \right] dx \, dy$$

(by symmetry). Hence

$$\begin{split} H(w) &= \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y) \bigg[\frac{x^2 - 1}{xy - 1} \cdot \frac{1}{x^2 + xw + 1} \\ &+ \frac{y^2 - 1}{xy - 1} \cdot \frac{1}{y^2 + yw + 1} \bigg] dx \, dy \end{split}$$

(after reducing both reciprocals to the same denominator and decomposing into simple elements). Consequently,

$$\begin{split} H(w) &= \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x)l(y)dx\,dy\\ \times \left[\frac{x^2 - 1}{xy - 1} \int_{0}^{\infty} \exp\left(-b(x^2 + xw + 1)\right)db + \frac{y^2 - 1}{xy - 1} \int_{0}^{\infty} \exp\left(-b(y^2 + yw + 1)\right)db \right]\\ &= \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} l(x)l(y)dx\,dy \left[\frac{x^2 - 1}{xy - 1} \cdot \frac{1}{x} \int_{0}^{\infty} \exp\left(-bw - b(x + 1/x)\right)db \right]\\ &+ \int_{0}^{\infty} \frac{y^2 - 1}{xy - 1} \frac{1}{y} \exp\left(-bw - b(y + 1/y)\right)db \right] \end{split}$$

(after making the change of variables bx = b', by = b'). Therefore

(2.13)
$$H(w) = \int_{0}^{\infty} e^{-bw} db \left[\int_{0}^{\infty} \int_{0}^{\infty} l(x) l(y) \frac{x^2 - 1}{(xy - 1)x} \exp\left(-b(x + 1/x)\right) dx \, dy \right]$$

after interverting the orders of integration.

We note that the preceding computation is a little formal: we have transformed an absolutely convergent integral into an integral which is no longer absolutely convergent; however, this does not matter for our purpose, as we shall soon gather the different terms in another way.

(ii) Thus, we need to show, by (2.13), that, for every $b \ge 0$:

(2.14)
$$I_b := \int_0^\infty \int_0^\infty l(x)l(y) \frac{x^2 - 1}{(xy - 1)x} \exp\left(-b(x + 1/x)\right) dx \, dy \ge 0.$$

• Let us show (2.14). For this purpose, we define the four domains (Fig. 1)

$$\mathcal{N}_1 = \left\{ 0 < x \leqslant 1, \ y > \frac{1}{x} \right\}, \quad \mathcal{N}_2 = \left\{ x \ge 1, \ y < \frac{1}{x} \right\},$$
$$\mathcal{P}_1 = \left\{ x \ge 1, \ y > \frac{1}{x} \right\}, \quad \mathcal{P}_2 = \left\{ 0 < x \leqslant 1, \ y < \frac{1}{x} \right\}.$$

Let us define

(2.15)
$$\psi(x,y) := l(x)l(y) \frac{x^2 - 1}{(xy - 1)x} \exp\left(-b(x + 1/x)\right).$$

It is clear that ψ is negative on \mathcal{N}_1 and \mathcal{N}_2 and positive on \mathcal{P}_1 and \mathcal{P}_2 . We note

$$N_i := \iint_{\mathcal{N}_i} |\psi(x, y)| dx \, dy \quad (i = 1, 2),$$
$$P_i := \iint_{\mathcal{P}_i} \psi(x, y) \, dx \, dy \quad (i = 1, 2).$$

FIGURE 1

1

 \mathbf{b}_{x}

• To prove (2.14) it suffices to see that $N_i \leq P_i$ (i = 1, 2). To compute N_1 and P_2 $(\mathcal{N}_1, \mathcal{P}_2 \subset \{(x, y) \in \mathbb{R}^2_+; x \leq 1\})$, we make the change of variables for $x \in]0, 1], t \geq 2$:

$$x = \frac{t - \sqrt{t^2 - 4}}{2};$$

so we have

0

$$\frac{1}{x} = \frac{t + \sqrt{t^2 - 4}}{2}, \quad x + \frac{1}{x} = t, \quad \frac{x^2 - 1}{x^2} \, dx = dt.$$

We obtain

(2.16)
$$N_{1} = \int_{2}^{\infty} dt \int_{(t+\sqrt{t^{2}-4})/2}^{\infty} dy \, l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l(y) \frac{e^{-bt}}{y-(t+\sqrt{t^{2}-4})/2}$$
$$= \int_{2}^{\infty} dt \int_{0}^{\infty} dz \, l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right) l\left(\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)(1+z)\right) \frac{e^{-bt}}{z}$$

(after making the change of variable $y = (1+z)((t+\sqrt{t^2-4})/2))$ and

(2.17)
$$P_2 = \int_{2}^{\infty} dt \int_{0}^{1} dz \, l\left(\frac{t - \sqrt{t^2 - 4}}{2}\right) l\left(\left(\frac{t + \sqrt{t^2 - 4}}{2}\right)(1 - z)\right) \frac{e^{-bt}}{z}.$$

To compute N_2 and P_1 (\mathcal{N}_2 , $\mathcal{P}_1 \subset \{(x, y) \in \mathbb{R}^2_+; x \ge 1\}$) for $x \ge 1, t \ge 2$ we make the change of variable:

$$x = \frac{t + \sqrt{t^2 - 4}}{2};$$

so we have

 $\frac{1}{x} = \frac{t - \sqrt{t^2 - 4}}{2}, \quad x + \frac{1}{x} = t, \quad \frac{x^2 - 1}{x^2} \, dx = dt.$

We obtain

(2.18)
$$N_2 = \int_2^\infty dt \int_0^1 dz \ l\left(\frac{t+\sqrt{t^2-4}}{2}\right) l\left(\left(\frac{t-\sqrt{t^2-4}}{2}\right)(1-z)\right) \frac{e^{-bt}}{z},$$

(2.19)
$$P_1 = \int_{2}^{\infty} dt \int_{0}^{\infty} dz \, l\left(\frac{t+\sqrt{t^2-4}}{2}\right) l\left(\left(\frac{t-\sqrt{t^2-4}}{2}\right)(1+z)\right) \frac{e^{-bt}}{z}$$

We shall now use the hypothesis that l belongs to C to show that

$$P_1 \ge N_1$$
 and $P_2 \ge N_2$,

which will complete the proof of our theorem.

• Comparing (2.19) and (2.16), it suffices to prove that $P_1 \ge N_1$ to show that

$$\left(\frac{t+\sqrt{t^2-4}}{2}\right)l\left(\left(\frac{t-\sqrt{t^2-4}}{2}\right)(1+z)\right)$$

$$\geqslant l\left(\frac{t-\sqrt{t^2-4}}{2}\right)l\left(\left(\frac{t+\sqrt{t^2-4}}{2}\right)(1+z)\right),$$

i.e.

(2.20)
$$l\left(\frac{1}{x}\right)l(cx) \ge l(x)l\left(\frac{c}{x}\right) \quad \text{with } x \le 1 \text{ and } c \ge 1.$$

If $a \ge 1$ (a being featured in the definition of C), the relation (2.20) is trivially satisfied since l(x) = 0 for $x \le a$ (and $x \le 1$).

We now examine the case $0 \le a < 1$.

If $x \le a$, the relation (2.20) is again trivially satisfied. Thus, let us assume that $1 \ge x \ge a$. The relation (2.20) is equivalent to

$$\log l\left(\frac{1}{x}\right) - \log l(x) \ge \log l\left(\frac{c}{x}\right) - \log (cx)$$

or also to

(2.21)
$$\int_{x}^{1/x} \frac{\theta(y)}{y} \, dy - \int_{cx}^{c/x} \frac{\theta(y)}{y} \, dy \ge 0$$

(since $\log l(x) = \sigma + \int_b^x (\theta(y)/y) dy$ by (2.1)). Thus, (2.21) is equivalent to

(2.22)
$$\int_{x}^{1/x} \frac{\theta(y)}{y} dy - c \int_{x}^{1/x} \frac{\theta(cy)}{cy} dy = \int_{x}^{1/x} \frac{\theta(y) - \theta(cy)}{y} dy \ge 0,$$

which is satisfied since θ is decreasing (and $c \ge 1$). We have shown that $P_1 \ge N_1$.

We now show that $P_2 \ge N_2$.

This time, using (2.17) and (2.18) it suffices to show that

$$l\left(\frac{t-\sqrt{t^{2}-4}}{2}\right)l\left(\frac{t+\sqrt{t^{2}-4}}{2}(1-z)\right) \\ \ge l\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)l\left(\frac{t-\sqrt{t^{2}-4}}{2}(1-z)\right)$$

or, equivalently,

(2.23)
$$l(x) l\left(\frac{c}{x}\right) \ge l\left(\frac{1}{x}\right) l(cx) \text{ with } x \le 1 \text{ and } c \le 1.$$

The relation (2.23) is trivial for $x \le a$ (since $cx \le a$ and l(cx) = 0). It remains to examine the case $x \ge a$, $a \le 1$. The relation (2.23) is then equivalent to

$$\int_{cx}^{c/x} \frac{\theta(y)}{y} \, dy - \int_{x}^{1/x} \frac{\theta(y)}{y} \, dy \ge 0, \quad \text{ i.e., } \quad \int_{x}^{1/x} \frac{\theta(cy) - \theta(y)}{y} \, dy \ge 0$$

The latter relation is obvious since θ is decreasing (and c < 1). This completes the proof of Theorem 2.

REMARK 3. Recall (see (2.8) above) that a function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be *hyperbolically completely monotone* (HCM) if, for every u > 0, the function of w:

$$v + \frac{1}{v} = w \to \varphi(uv)\varphi\left(\frac{u}{v}\right) \quad \text{(with } v \ge 0\text{)},$$

is completely monotone. Thus, by (1.5), our Theorem 2 may be stated as follows: if l belongs to C, then its Stieltjes transform is HCM.

3. APPLICATION TO SOME R.V.'S RELATED TO RECURRENT LINEAR DIFFUSIONS

3.1. Our notation and hypotheses are now those of Salminen et al. [11] to which we refer the reader. $(X_t, t \ge 0)$ denotes an \mathbb{R}_+ -valued diffusion which is recurrent; we denote its speed measure (assumed to have no atoms) by σ , and its scale function by S. $(L_t, t \ge 0)$ denotes the (continuous) local time at 0 and $(\tau_u, u \ge 0)$ its right-continuous inverse:

(3.1)
$$\tau_u := \inf\{t \ge 0; \ L_t > u\}.$$

 $(\tau_u, u \ge 0)$ is a subordinator whose Lévy measure admits a density (see [11]) which we shall denote by ν :

(3.2)
$$E\left(\exp(-\lambda\tau_u)\right) = \exp\left\{-u\int_0^\infty (1-e^{-\lambda x})\nu(x)dx\right\}.$$

188

In fact, ν may be expressed in the form

(3.3)
$$\nu(x) = \int_{0}^{\infty} e^{-xz} K(dz),$$

where K, the Krein measure (see Kotani and Watanabe [8] and Knight [7]), satisfies

(3.4)
$$\int_{0}^{\infty} \frac{K(dz)}{z(1+z)} < \infty \quad \text{and} \quad \int_{0}^{\infty} \frac{K(dz)}{z} = \infty.$$

3.2. Let, for every $t \ge 0$:

(3.5)
$$g_t := \sup\{s \leq t; X_s = 0\}, \quad d_t := \inf\{s \geq t; X_s = 0\},$$

and denote by \mathfrak{e}_p (p > 0) an exponentially distributed variable with parameter p, i.e. with density $f_{\mathfrak{e}_p}(u) = p \ e^{-pu} \mathbf{1}_{u \ge 0}$; \mathfrak{e}_p is assumed to be independent of $(X_t, t \ge 0)$. We define

(3.6)
$$Y_p^{(1)} := \mathfrak{e}_p - g_{\mathfrak{e}_p}, \quad Y_p^{(2)} := d_{\mathfrak{e}_p} - \mathfrak{e}_p, \quad Y_p^{(3)} := d_{\mathfrak{e}_p} - g_{\mathfrak{e}_p}.$$

It is shown in [11], Theorem 18, that for i = 1, 2, 3, $Y_p^{(i)}$ is infinitely divisible. More precisely, concerning $Y_p^{(3)}$, it is shown that $Y_p^{(3)}$ is a gamma-2 mixture, and consequently (see Kristiansen [9]) that $Y_p^{(3)}$ is infinitely divisible.

The aim of the following Theorem 4 is to improve, if possible, the results we have just recalled. More precisely, we shall prove that under certain hypotheses the r.v.'s $Y_p^{(i)}$ (i = 1, 2, 3) are GGC r.v.'s whose Thorin measures have total masses $m \leq 1$. Thus, these variables are:

• GGC, hence self-decomposable, and a fortiori infinitely divisible;

• gamma-m mixtures, with $m \leq 1$, and not only gamma-2 mixtures (see identity (1.9)).

THEOREM 4. We assume that Krein's measure K (defined by (3.3)) admits a differentiable density k.

1. Assume that

(3.7)
$$\frac{k'}{k}(x) = \frac{1}{x} + \frac{\theta(p+x)}{p+x} \quad \text{with } \theta \text{ decreasing};$$

then $Y_p^{(1)}$ is a GGC r.v. whose Thorin measure is a subprobability. 2. Assume that

(3.8)
$$\frac{k'}{k}(x) = \frac{1}{x+p} + \frac{\theta(x)}{x} \quad \text{with } \theta \text{ decreasing};$$

then $Y_p^{(2)}$ is a GGC r.v. whose Thorin measure is a subprobability.

B. Roynette et al.

3. Assume that

(3.9)
$$\frac{\frac{k'}{k}(z) = \frac{\theta(z)}{z} \qquad \text{for } z < p,\\ \frac{k'(z) - k'(z-p)}{k(z) - k(z-p)} = \frac{\theta(z)}{z} \quad \text{for } z \ge p,$$

with θ decreasing; then $Y_p^{(3)}$ is a GGC r.v. whose Thorin measure is a subprobability.

Proof. We denote by $f_{Y_p^{(i)}}$ the density of $Y_p^{(i)}$. From [11], p. 115, we have

(3.10)
$$f_{Y_p^{(1)}}(u) = C_1(p) \int_p^\infty e^{-uz} \frac{k(z-p)}{z-p} dz,$$

(3.11)
$$f_{Y_p^{(2)}}(u) = C_2(p) \int_0^\infty e^{-uz} \frac{k(z)}{z+p} dz,$$

(3.12)
$$f_{Y_p^{(3)}}(u) = C_3(p) \int_0^\infty e^{-uz} \left(k(z) - \mathbb{1}_{\{z \ge p\}} k(z-p) \right) dz$$

where $C_i(p)$, i = 1, 2, 3, are three normalising constants. We shall now use Theorem 2 with, successively:

(3.13)
$$l^{(1)}(x) = C_1(p) \frac{k(x-p)}{x-p} \mathbf{1}_{x \ge p},$$

(3.14)
$$l^{(2)}(x) = C_2(p) \frac{k(x)}{x+p},$$

(3.15)
$$l^{(3)}(x) = C_3(p) \left(k(x) - \mathbf{1}_{x \ge p} \, k(x-p) \right).$$

We have already noted that, for i = 1, 2, 3,

$$\int_{0}^{\infty} \frac{l^{(i)}(x)}{x} \, dx < \infty.$$

Indeed:

$$\int_{0}^{\infty} \frac{l^{(1)}(x)}{x} dx = C_{1}(p) \int_{p}^{\infty} \frac{k(x-p)}{x(x-p)} dx = C_{1}(p) \int_{0}^{\infty} \frac{k(x)}{x(x+p)} dx$$

$$< \infty \quad (by (3.4)),$$

$$\int_{0}^{\infty} \frac{l^{(2)}(x)}{x} dx = C_{2}(p) \int_{0}^{\infty} \frac{k(x)}{x(x+p)} dx < \infty \quad (by (3.4)),$$

$$\int_{0}^{\infty} \frac{l^{(3)}(x)}{x} dx = C_{3}(p) \int_{0}^{\infty} k(x) \left(\frac{1}{x} - \frac{1}{x+p}\right) dx$$

$$= p C_{3}(p) \int_{0}^{\infty} \frac{k(x)}{x(x+p)} dx < \infty \quad (by (3.4)).$$

Finally, it remains to observe that hypothesis (3.7) (respectively, (3.8) and (3.9)) implies that $l^{(1)} \in C$ (respectively, $l^{(2)} \in C$ and $l^{(3)} \in C$).

4. APPLICATION TO RECURRENT BESSEL PROCESSES

4.1. The notation is the same as in the preceding part, but now $(X_t, t \ge 0)$ is a Bessel process with dimension $d = 2(1 - \alpha)$ with 0 < d < 2 or, equivalently, $0 < \alpha < 1$.

THEOREM 5. For any $\alpha \in]0, 1[$ and for any p > 0 the r.v.'s

$$Y_p^{(1)} = \mathbf{e}_p - g_{\mathbf{e}_p}, \quad Y_p^{(2)} = d_{\mathbf{e}_p} - \mathbf{e}_p, \quad Y_p^{(3)} = d_{\mathbf{e}_p} - g_{\mathbf{e}_p}$$

are GGC r.v.'s whose Thorin measures have the same total mass $1 - \alpha = d/2$ (less than 1).

Proof. We have already noted that since, by (3.3),

$$\nu(a) = \int_{0}^{\infty} e^{-az} K(dz)$$

and, by [5], p. 213,

$$\nu(a) = \frac{1}{2^{\alpha} \Gamma(\alpha)} \frac{1}{a^{\alpha+1}} \mathbb{1}_{\{a>0\}},$$

the density k of Krein's measure equals here

(4.1)
$$k(z) = \frac{1}{2^{\alpha} \Gamma(\alpha) \Gamma(\alpha+1)} z^{\alpha} \mathbb{1}_{\{z>0\}}.$$

1. We begin by proving Theorem 5 for the r.v. $Y^{(2)}$. (To simplify the notation, we write $Y^{(2)}$ instead of $Y_p^{(2)}$.) To see that $Y^{(2)}$ is GGC, it suffices, by Theorem 2, to show that $l^{(2)} \in C$,

To see that $Y^{(2)}$ is GGC, it suffices, by Theorem 2, to show that $l^{(2)} \in C$, where

(4.2)
$$l^{(2)}(x) = C \frac{x^{\alpha}}{x+p}$$
 (from (4.1) and (3.14)).

Thus

$$x(\log l^{(2)})'(x) = \alpha - \frac{x}{x+p} = \alpha - 1 + \frac{p}{x+p}$$

is a decreasing function of x, hence $l^{(2)} \in C$ from (2.2). It remains to see that the total mass of the Thorin measure of $Y^{(2)}$ equals $1 - \alpha$. Now, by (1.10), this total

mass m equals

(4.3)
$$m := \sup\left\{\delta \ge 0; \lim_{u \downarrow 0_{+}} \frac{1}{u^{\delta-1}} f_{Y^{(2)}}(u) = 0\right\}$$
$$= \sup\left\{\delta \ge 0; \lim_{u \downarrow 0_{+}} \frac{C}{u^{\delta-1}} \int_{0}^{\infty} e^{-ux} \frac{x^{\alpha}}{x+p} \, dx = 0\right\}.$$

However, since the function $x \to x^{\alpha}/(x+p)$ decreases for x large enough and is equivalent to $x^{\alpha-1}$ when $x \to \infty$, the Tauberian theorem implies

(4.4)
$$f_{Y^{(2)}}(u) \underset{u \to 0}{\sim} \frac{C'}{u^{\alpha}}.$$

It is then clear that (4.3) and (4.4) imply $m = 1 - \alpha$.

2. We now prove Theorem 5 for the r.v. $Y^{(1)}$. For this purpose, we shall use a more direct method than that relying on Theorem 2. Indeed, from (1.5), (3.13) and (4.1) we have

$$(4.5) \quad E(e^{-\lambda Y^{(1)}}) = \int_{0}^{\infty} \frac{l^{(1)}(z)}{\lambda+z} dz = C \int_{p}^{\infty} \frac{1}{\lambda+z} (z-p)^{\alpha-1} dz$$
$$= C \int_{0}^{\infty} \frac{1}{\lambda+p+z} z^{\alpha-1} dz = C \int_{0}^{\infty} z^{\alpha-1} dz \int_{0}^{\infty} e^{-(\lambda+p)u} du$$
$$= C \int_{0}^{\infty} e^{-(\lambda+p)u} du \int_{0}^{\infty} e^{-zu} z^{\alpha-1} dz$$
$$= C \Gamma(\alpha) \int_{0}^{\infty} e^{-(\lambda+p)u} \frac{du}{u^{\alpha}} = (\lambda+p)^{\alpha-1} C \Gamma(\alpha) \Gamma(1-\alpha)$$
$$= \left(1 + \frac{\lambda}{p}\right)^{\alpha-1}$$

since the Laplace transform $E(e^{-\lambda Y^{(1)}})$ equals 1 for $\lambda = 0$. Thus

(4.6)
$$Y^{(1)} \stackrel{(\text{law})}{=} \frac{1}{p} \gamma_{1-\alpha},$$

where $\gamma_{1-\alpha}$ is a gamma r.v. with parameter $1-\alpha$, i.e., with density

$$f_{\gamma_{1-\alpha}}(u) := \frac{e^{-u}}{\Gamma(1-\alpha)} u^{-\alpha} \mathbf{1}_{u \ge 0}.$$

It follows clearly from (4.5) that

(4.7)
$$E(e^{-\lambda Y^{(1)}}) = \exp\left\{-(1-\alpha)\log\left(1+\frac{\lambda}{p}\right)\right\}$$
$$= \exp\left\{-(1-\alpha)\int_{0}^{\infty}(1-e^{-\lambda x})\frac{dx}{x}e^{-xp}\right\}.$$

Thus, by (1.7), formula (4.7) shows that $Y^{(1)}$ is a GGC variable with Thorin measure $(1 - \alpha)\delta_p$.

3. We now prove Theorem 5 for the r.v. $Y_p^{(3)}$. In fact, the result that $Y^{(3)}$ is a GGC variable whose Thorin measure has total mass equal to $1 - \alpha$ has already been proved in [2] (with p = 1, but this involves no loss of generality). The proof we shall give now is a totally different one from that of [2]. We also assume here, for simplicity, that p = 1 and we write $Y^{(3)}$ instead of $Y_1^{(3)}$. Following the arguments of the proof of Theorem 2, we need to show, by (2.16)–(2.19) that, for every $x \in]0, 1]$:

(4.8)
$$\Delta(x) = \int_{0}^{\infty} \left\{ l\left(\frac{1}{x}\right) l\left(x(1+z)\right) - l(x)l\left(\frac{1}{x}(1+z)\right) \right\} \frac{dz}{z} + \int_{0}^{1} \left\{ l(x)l\left(\frac{1}{x}(1-z)\right) - l\left(\frac{1}{x}\right)l\left(x(1-z)\right) \right\} \frac{dz}{z} \ge 0,$$

where the function $l (= l^{(3)})$ equals, by (4.1) and (3.15),

(4.9)
$$l(y) = y^{\alpha} - 1_{y \ge 1} (y - 1)^{\alpha} \quad (y \ge 0).$$

Thus, we need to show (4.8). For this purpose, we have to compute the integrals featured in (4.8), hence, given (4.9), to discuss, owing to the positions of x(1+z), $x^{-1}(1+z)$, $x^{-1}(1-z)$ and x(1-z) with respect to 1 (see Fig. 2). We consider the first integral in (4.8) for $x(1+z) \ge 1$ (hence, a fortiori $x^{-1}(1+z) \ge 1$ since $x \le 1$). The first term equals

$$\begin{split} \Delta_1(x) &= \int_{(1/x)-1}^{\infty} \left\{ \left[\frac{1}{x^{\alpha}} - \left(\frac{1}{x} - 1 \right)^{\alpha} \right] \left(x^{\alpha} (1+z)^{\alpha} - \left(x(1+z) - 1 \right)^{\alpha} \right) \right. \\ &\quad - x^{\alpha} \left[\left(\frac{1}{x^{\alpha}} (1+z)^{\alpha} \right) - \left(\frac{1}{x} (1+z) - 1 \right)^{\alpha} \right] \right\} \frac{dz}{z} \\ &= \int_{(1/x)-1}^{\infty} \left(1 - (1-x)^{\alpha} \right) \left[(1+z)^{\alpha} - \left(1 + z - \frac{1}{x} \right)^{\alpha} \right] \\ &\quad - \left((1+z)^{\alpha} - (1+z-x)^{\alpha} \right) \frac{dz}{z} \\ &= \int_{(1/x)-1}^{\infty} \left\{ \left[(1+z-x)^{\alpha} - \left(1 + z - \frac{1}{x} \right)^{\alpha} \right] \right\} \frac{dz}{z} \\ &= \left((1-x)^{\alpha} \left[(1+z)^{\alpha} - \left(1 + z - \frac{1}{x} \right)^{\alpha} \right] \right\} \frac{dz}{z} \\ &:= \Delta_1^{(1)}(x) - \Delta_1^{(2)}(x). \end{split}$$

Let us examine $\Delta_1^{(1)}(x)$:

FIGURE 2

Now, we apply Fubini's theorem:

$$\Delta_1^{(1)}(x) = \int_0^{(1/x)-1} \alpha \, u^{\alpha-1} du \int_{(1/x)-1}^{u+(1/x)-1} \frac{dz}{z} + \int_{(1/x)-1}^\infty \alpha \, u^{\alpha-1} du \int_{u+x-1}^{u+(1/x)-1} \frac{dz}{z}$$
$$= \int_0^{(1/x)-1} \alpha \, u^{\alpha-1} \log\left(\frac{ux+1-x}{1-x}\right) du + \int_{(1/x)-1}^\infty \alpha \, u^{\alpha-1} \log\left(\frac{u+x^{-1}-1}{u+x-1}\right) du$$

Thus we compute each term of $\Delta(x)$ and we obtain, after some simple, although tedious, computations:

$$\Delta(x) = \overline{\Delta}^{1}(x) + \overline{\Delta}^{2}(x) + \overline{\Delta}^{3}(x),$$

where

$$\overline{\Delta}^{1}(x) := \int_{0}^{(1/x)-1} \log\left(\frac{1}{1-x}\right) \alpha \, u^{\alpha-1} du + \int_{0}^{(1/x)-x} \log\left(\frac{ux+1-x}{1-x}\right) \alpha \, u^{\alpha-1} du,$$

$$\begin{split} \overline{\Delta}^2(x) &:= \int_{(1/x)-x}^{\infty} \log\left(\frac{u+x^{-1}-1}{u+x-1}\right) \alpha \, u^{\alpha-1} du \\ &- \int_{(1/x)-1}^{\infty} \log\left(\frac{u/(1-x)+x^{-1}-1}{u/(1-x)-1}\right) \alpha \, u^{\alpha-1} du, \\ \overline{\Delta}^3(x) &:= \int_{0}^{x(1-x)} \log\left(\frac{1-x-u}{(1-x)^2}\right) \alpha \, u^{\alpha-1} du \\ &- \int_{0}^{(1/x)-1} \log\left(\frac{u/(1-x)+x^{-1}-1}{x^{-1}-1}\right) \alpha \, u^{\alpha-1} du. \end{split}$$

We note that, since $x \in]0,1]$, we have

$$x(1-x) \le 1 - x \le \frac{1}{x} - 1 \le \frac{1}{x} - x$$

and that all the integrals in $\overline{\Delta}^i(x)$ are positive. For example, we have

$$\overline{\Delta}^2(x) = \int_{(1/x)-x}^{\infty} \log\left(\frac{ux + (1-x)}{ux + (1-x)^2}\right) \alpha \, u^{\alpha - 1} du$$

and this last integral is positive since $(1-x)^2 \leq 1-x$. Gathering thus all the terms in $\Delta(x)$, we obtain

$$(4.10) \quad \Delta(x) = \int_{0}^{\infty} \log\left(\frac{ux+1-x}{ux+(1-x)^{2}}\right) \alpha \, u^{\alpha-1} du \\ - \int_{(1/x)-1}^{(1/x)-1} \log\left(\frac{1-x}{x(u+x-1)}\right) \alpha \, u^{\alpha-1} du + \int_{0}^{x(1-x)} \log\left(\frac{1-x-u}{(1-x)^{2}}\right) \alpha \, u^{\alpha-1} du \\ = \alpha(1-x)^{\alpha} \int_{1/x}^{(1/x)+1} \log\left(\frac{1}{x(v-1)}\right) \left[\left(\frac{xv-1}{1+v-xv}\right)^{\alpha-1} \frac{x^{2-\alpha}}{(1+x-xv)^{2}} + \left(\frac{xv-1}{x(v-1)}\right)^{\alpha-1} \frac{1-x}{x(v-1)^{2}} - v^{\alpha-1}\right] dv$$

after making the changes of variables:

$$\frac{ux+1-x}{ux+(1-x)^2} = \frac{1}{x(v-1)},$$
$$u = (1-x)v,$$
$$\frac{1-x-u}{(1-x)^2} = \frac{1}{x(v-1)}$$

in the first, the second, and the third integral of (4.10), respectively.

Thus, to conclude, it remains to show that, for every $v \in [x^{-1}, x^{-1} + 1]$, (4.11)

$$v^{\alpha-1} \leqslant \left(\frac{xv-1}{1+x-xv}\right)^{\alpha-1} \frac{1}{x^{\alpha-1}} \frac{x}{(1+x-xv)^2} + \left(\frac{xv-1}{x(v-1)}\right)^{\alpha-1} \frac{1-x}{x(v-1)^2}$$

or, equivalently, that

(4.12)
$$\left(\frac{xv-1}{xv}\right)^{1-\alpha} \leq \frac{x}{(1+x-xv)^{\alpha+1}} + \frac{1-x}{x} \frac{1}{(v-1)^{\alpha+1}}.$$

Now, this last inequality is obvious. Indeed, since

$$f_1(v) := \left(\frac{xv-1}{xv}\right)^{1-\alpha}$$
 and $f_2(v) := \frac{x}{(1+x-xv)^{\alpha+1}}$

are increasing, it suffices to verify that

$$f_1\left(\frac{1}{x}+1\right) \leqslant f_2\left(\frac{1}{x}\right).$$

We have

$$f_1\left(\frac{1}{x}+1\right) = \left(\frac{x}{1+x}\right)^{1-\alpha} \le 1 \le f_2\left(\frac{1}{x}\right) = \frac{1}{x^{\alpha}}$$

since $x \in [0, 1]$. This shows that $Y^{(3)}$ is GGC.

Finally, it is not difficult to prove that the total mass of the Thorin measure equals $1 - \alpha$. Indeed, since $l^{(3)}(x) = C(x^{\alpha} - 1_{x \ge 1}(x - 1)^{\alpha})$, we have

$$l^{(3)}(x) \underset{x \to \infty}{\sim} C x^{\alpha - 1}$$

Hence, by the Tauberian theorem,

$$f_{Y^{(3)}}(u) \underset{u \to 0}{\sim} \frac{C}{u^{\alpha}},$$

and we finally use (1.10).

4.2. Description of the r.v.'s $\mathbb{G}_{\alpha}^{(i)}$ $(i = 1, 2, 3; 0 < \alpha < 1)$. In the sequel, it will be convenient to assume that p = 1 and we write simply $Y^{(i)}$ for the r.v.'s $Y_1^{(i)}$ (i = 1, 2, 3). Theorem 5 implies, by (1.7), the existence of r.v.'s $\mathbb{G}_{\alpha}^{(i)}$ $(i = 1, 2, 3; \alpha \in]0, 1[)$ such that $E(\log^+(1/\mathbb{G}_{\alpha}^{(i)})) < \infty$ and (4.13)

$$E\left(\exp(-\lambda Y^{(i)})\right) = \exp\left\{-\left(1-\alpha\right)\int_{0}^{\infty} (1-e^{-\lambda x})\frac{dx}{x} E\left(\exp(-x\mathbb{G}_{\alpha}^{(i)})\right)\right\}.$$

The aim of this section is to identify the (laws of the) r.v.'s $\mathbb{G}_{\alpha}^{(i)}$ and to describe some of their properties.

(i) The case i = 1.

Formula (4.6) implies that the r.v. $\mathbb{G}_{\alpha}^{(1)}$ is a.s. equal to 1, i.e. its distribution is δ_1 , the Dirac measure at 1. In particular, this distribution does not depend on α .

(ii) The case i = 3.

In [2] a complete study of the r.v.'s $\mathbb{G}_{\alpha}^{(3)}$, denoted by \mathbb{G}_{α} in [2], has been undertaken. We refer the reader to formula (1.17), p. 318, in [2] (note that in formula (1.50), p. 322, exponent α is missing). In particular, it is shown there that the density $f_{\mathbb{G}_{\alpha}^{(3)}}$ of $\mathbb{G}_{\alpha}^{(3)}$ equals

$$(4.14) \quad f_{\mathbb{G}_{\alpha}^{(3)}}(u) = \frac{\alpha \sin(\pi \alpha)}{(1-\alpha)\pi} \frac{u^{\alpha-1}(1-u)^{\alpha-1}}{(1-u)^{2\alpha} - 2(1-u)^{\alpha}u^{\alpha}\cos(\pi \alpha) + u^{2\alpha}} \mathbf{1}_{[0,1]}(u).$$

Thus, $\mathbb{G}_{1/2}^{(3)}$ is arc-sine distributed:

(4.15)
$$f_{\mathbb{G}_{1/2}^{(3)}}(u) = \frac{1}{\pi} \frac{1}{\sqrt{u(1-u)}} \mathbf{1}_{[0,1]}(u)$$

and the r.v.'s $\mathbb{G}_{\alpha}^{(3)}$ converge in law, as $\alpha \to 0$ and $\alpha \to 1$, respectively, towards $\mathbb{G}_{0}^{(3)}$ and $\mathbb{G}_{1}^{(3)}$, where

(4.16)
$$\mathbb{G}_0^{(3)} \stackrel{(\text{law})}{=} \frac{1}{1 + \exp(\pi C)}$$
 with C a standard Cauchy r.v.,

(4.17)
$$\mathbb{G}_1^{(3)} \stackrel{(\text{law})}{=} U$$
 with U uniform on $[0, 1]$.

(iii) The case i = 2.

Theorem 6. For every $\alpha \in]0,1[$

(1) (i) we have

(4.18)
$$Y^{(2)} \stackrel{(law)}{=} \mathbf{e} \cdot \frac{\gamma_{1-\alpha}}{\gamma_{\alpha}} \stackrel{(law)}{=} \mathbf{e} \frac{\beta_{1-\alpha,\alpha}}{1-\beta_{1-\alpha,\alpha}},$$

where $\mathfrak{e}, \gamma_{1-\alpha}, \gamma_{\alpha}$ are independent, with respective laws the standard exponential and the gamma distributions with respective parameters $(1-\alpha)$ and α , and where \mathfrak{e} and $\beta_{1-\alpha,\alpha}$ are independent with respective distributions the standard exponential and the beta distribution with parameters $(1-\alpha, \alpha)$;

(ii) for $\lambda \ge 0$ we have

(4.19)
$$E\left(\exp(-\lambda Y^{(2)})\right) = \frac{\lambda^{\alpha} - 1}{\lambda - 1} \quad (= \alpha \ if \ \lambda = 1).$$

(2) $Y^{(2)}$ is a gamma- $(1 - \alpha)$ mixture, i.e.

(4.20)
$$Y^{(2)} = \gamma_{1-\alpha} \cdot D^{(2)}_{1-\alpha},$$

where $\gamma_{1-\alpha}$ is a gamma $(1-\alpha)$ variable, independent of the positive r.v. $D_{1-\alpha}^{(2)}$. Furthermore:

(4.21)
$$D_{1-\alpha}^{(2)} \stackrel{(law)}{=} \frac{\mathfrak{e}}{\gamma_{\alpha}},$$

(4.22)
$$E\left(\exp(-\lambda D_{1-\alpha}^{(2)})\right) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{\lambda+y} dy = \alpha \int_{0}^{\infty} \frac{e^{-\lambda y}}{(1+y)^{\alpha+1}} dy.$$

The density $f_{D_{1-\alpha}^{(2)}}$ of $D_{1-\alpha}^{(2)}$ equals

(4.23)
$$f_{D_{1-\alpha}^{(2)}}(u) = \frac{\alpha}{(1+u)^{\alpha+1}} \, \mathbf{1}_{[0,\infty[}(u).$$

(3) (i) The density $f_{\mathbb{G}_{\alpha}^{(2)}}$ of $\mathbb{G}_{\alpha}^{(2)}$ equals

(4.24)
$$f_{\mathbb{G}_{\alpha}^{(2)}}(u) = \frac{\alpha \sin(\pi \alpha)}{(1-\alpha)\pi} \frac{u^{\alpha-1}}{u^{2\alpha} - 2u^{\alpha} \cos(\pi \alpha) + 1} \mathbf{1}_{[0,\infty[}(u).$$

(ii) The r.v.'s $\mathbb{G}_{\alpha}^{(2)}$ are related to the r.v.'s $\mathbb{G}_{\alpha}^{(3)}$ via the identity in law:

(4.25)
$$\frac{\mathbb{G}_{\alpha}^{(2)}}{1 + \mathbb{G}_{\alpha}^{(2)}} \stackrel{(law)}{=} \mathbb{G}_{\alpha}^{(3)} \quad or, \ equivalently, \quad \mathbb{G}_{\alpha}^{(2)} \stackrel{(law)}{=} \frac{\mathbb{G}_{\alpha}^{(3)}}{1 - \mathbb{G}_{\alpha}^{(3)}}$$

(iii) We have the identity

(4.26)
$$\mathbb{G}_{\alpha}^{(2)} \stackrel{(law)}{=} \frac{1}{\mathbb{G}_{\alpha}^{(2)}}$$

(iv) As $\alpha \to 0$ and $\alpha \to 1$, $\mathbb{G}_{\alpha}^{(2)}$ converges in law towards, respectively,

(4.27)
$$\mathbb{G}_0^{(2)} \stackrel{(law)}{=} \exp(\pi C) \quad and \quad \mathbb{G}_1^{(2)} \stackrel{(law)}{=} \frac{U}{1-U}$$

with C a standard Cauchy r.v. and U uniform on [0, 1].

(4) Let $\mu \in]0,1[$ and T_{μ} denote the positive stable r.v. with index μ whose law is characterized by

$$E(\exp(-\lambda T_{\mu})) = \exp(-\lambda^{\mu}) \quad (\lambda > 0).$$

Then

(4.28)
$$\mathbb{G}_{\alpha}^{(2)} \stackrel{(law)}{=} \left(\frac{T_{1-\alpha}}{T_{1-\alpha}'}\right)^{(1-\alpha)/\alpha}$$

where $T'_{1-\alpha}$ is an independent copy of $T_{1-\alpha}$.

An equivalent way of writing (4.28) is

(4.29)
$$\mathbb{G}_{\alpha}^{(2)} \stackrel{(law)}{=} \left(\frac{M_{1-\alpha}}{M'_{1-\alpha}}\right)^{1/\alpha},$$

where $M_{1-\alpha}$ and $M'_{1-\alpha}$ are two independent Mittag-Leffler r.v.'s with parameter $1 - \alpha$, whose common law is characterized by

$$E\left(\exp(\lambda M_{1-\alpha})\right) = \sum_{n \ge 0} \frac{\lambda^n}{\Gamma\left(1 + n(1-\alpha)\right)},$$
$$E[M_{1-\alpha}^n] = \frac{\Gamma(n+1)}{\Gamma\left(1 + n(1-\alpha)\right)}, \quad M_{1-\alpha} \stackrel{(law)}{=} \left(\frac{1}{T_{1-\alpha}}\right)^{1-\alpha}$$

(4.30)

(see [4], p. 114, Exercise 4.19).

Proof. We prove (4.18). Denoting by $(R_t, t \ge 0)$ a Bessel process with dimension $2(1 - \alpha)$ ($0 < \alpha < 1$) starting from 0, we have by scaling:

$$Y^{(2)} = d_{\mathfrak{e}} - \mathfrak{e} \stackrel{(\text{law})}{=} \mathfrak{e}(d_1 - 1) \stackrel{(\text{law})}{=} \mathfrak{e}\left(\frac{R_1^2}{2\gamma_\alpha}\right)$$

(see [2]), where R_1^2 is the value of R_t^2 for t = 1. Hence

$$Y^{(2)} \stackrel{(\text{law})}{=} \mathfrak{e} \; \frac{\gamma_{1-\alpha}}{\gamma_{\alpha}} = \mathfrak{e} \; \frac{\beta_{1-\alpha,\,\alpha}}{1-\beta_{1-\alpha,\,\alpha}}$$

(from the classical "beta-gamma algebra").

We prove (4.19). We have from (4.1) and (4.2):

$$l^{(2)}(x) = \frac{\sin(\pi\alpha)}{\pi} \frac{x^{\alpha}}{1+x}, \quad x \ge 0,$$

noting that

$$\int_{0}^{\infty} \frac{l^{(2)}(x)}{x} \, dx = \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} \, dx = \frac{\sin(\pi\alpha)}{\pi} \, B(\alpha, 1-\alpha) = 1$$

(see [10], pp. 3 and 13). Hence, by (1.3), $f_{Y^{(2)}}$, the density of $Y^{(2)}$, equals

$$f_{Y^{(2)}}(u) = \frac{\sin(\pi \alpha)}{\pi} \int_{0}^{\infty} e^{-ux} \frac{x^{lpha}}{1+x} dx$$

(we might also have derived this formula from (4.18)).

We now compute the Laplace transform of $Y^{(2)}$:

$$\begin{split} E\left(\exp(-\lambda Y^{(2)})\right) &= \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} e^{-\lambda u} du \int_{0}^{\infty} e^{-ux} \frac{x^{\alpha}}{1+x} dx \\ &= \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha}}{(1+x)(\lambda+x)} dx \\ &= \frac{1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} x^{\alpha} \left[\frac{1}{1+x} - \frac{1}{\lambda+x}\right] dx \\ &= \lim_{A \to \infty} \frac{1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} \left[\int_{0}^{A} \frac{x^{\alpha}}{1+x} dx - \lambda^{\alpha} \int_{0}^{A/\lambda} \frac{x^{\alpha}}{1+x} dx \right] \\ &= \lim_{A \to \infty} \frac{1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} \left[\int_{0}^{A} \left(x^{\alpha-1} - \frac{x^{\alpha-1}}{1+x} \right) dx \right] \\ &= \lim_{A \to \infty} \frac{1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} \left[\frac{A^{\alpha}}{\alpha} - \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} dx \right] \\ &= \frac{\lambda^{\alpha} - 1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} dx \\ &= \frac{\lambda^{\alpha} - 1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} dx \\ &= \frac{\lambda^{\alpha} - 1}{\lambda-1} \frac{\sin(\pi\alpha)}{\pi} B(\alpha, 1-\alpha) = \frac{\lambda^{\alpha} - 1}{\lambda-1} \end{split}$$

since (see [10], p. 3) $B(\alpha, 1 - \alpha) = \Gamma(\alpha)\Gamma(1 - \alpha) = \pi/\sin(\pi\alpha)$.

Let us show (4.24). By taking the logarithmic derivative of (4.19):

$$E\left(\exp(-\lambda Y^{(2)})\right) = \frac{\lambda^{\alpha} - 1}{\lambda - 1}$$

= $\exp\left\{-\left(1 - \alpha\right)\int_{0}^{\infty} (1 - e^{-\lambda x})\frac{dx}{x} E\left(\exp(-x \mathbb{G}_{\alpha}^{(2)})\right)\right\},\$

we obtain

(4.31)
$$E\left[\frac{1}{\lambda + \mathbb{G}_{\alpha}^{(2)}}\right] = \frac{1}{1-\alpha} \left[\frac{1}{1-\lambda} - \frac{\alpha\lambda^{\alpha-1}}{\lambda^{\alpha}-1}\right].$$

Thus, we have just computed the Stieltjes transform of the r.v. $\mathbb{G}_{\alpha}^{(2)}$. The inversion

formula for the Stieltjes transform (see [12], p. 345) leads us to

$$\begin{split} f_{\mathbb{G}_{\alpha}^{(2)}}(u) &= \frac{1}{2i\pi(1-\alpha)} \lim_{\eta \to 0} \left[\frac{1}{1-\lambda(-u-i\eta)} - \frac{\alpha(-u-i\eta)^{\alpha-1}}{(-u-i\eta)^{\alpha}-1} \right] \\ &- \frac{1}{1-\lambda(-u+i\eta)} + \frac{\alpha(-u+i\eta)^{\alpha-1}}{(-u+i\eta)^{\alpha}-1} \right] \quad (u>0) \\ &= \frac{-\alpha}{2i\pi(1-\alpha)} \left[\frac{-u^{\alpha-1}e^{-i\pi\alpha}}{u^{\alpha}e^{-i\pi\alpha}-1} + \frac{u^{\alpha-1}e^{i\pi\alpha}}{u^{\alpha}e^{i\pi\alpha}-1} \right] \quad (u>0) \\ &= \frac{-\alpha}{2i\pi(1-\alpha)} \left[\frac{-u^{2\alpha-1}+u^{\alpha-1}e^{-i\pi\alpha}+u^{2\alpha-1}-u^{\alpha-1}e^{i\pi\alpha}}{u^{2\alpha}-u^{\alpha}e^{i\pi\alpha}-u^{\alpha}e^{-i\pi\alpha}+1} \right] \quad (u>0) \\ &= \frac{\alpha\sin(\pi\alpha)}{(1-\alpha)\pi} \frac{u^{\alpha-1}}{u^{2\alpha}-2u^{\alpha}\cos(\pi\alpha)+1} \mathbf{1}_{(u>0)}. \end{split}$$

We now show (4.25). For every h Borel and positive, we have

$$E\left[h\left(\frac{\mathbb{G}_{\alpha}^{(2)}}{1+\mathbb{G}_{\alpha}^{(2)}}\right)\right] = \frac{\alpha\sin(\pi\alpha)}{(1-\alpha)\pi} \int_{0}^{\infty} h\left(\frac{u}{1+u}\right) \frac{u^{\alpha-1}}{u^{2\alpha} - 2u^{\alpha}\cos(\pi\alpha) + 1} du$$

using (4.24). Thus, making the change of variable u/(1+u) = x, we get

$$\begin{split} & E\left[h\left(\frac{\mathbb{G}_{\alpha}^{(2)}}{1+\mathbb{G}_{\alpha}^{(2)}}\right)\right] \\ &= \frac{\alpha\sin(\pi\alpha)}{(1-\alpha)\pi} \int_{0}^{1} h(x) \frac{dx}{(1-x)^{2}} \frac{x^{\alpha-1}/(1-x)^{\alpha-1}}{x^{2\alpha}/(1-x)^{2\alpha} - (2\cos(\pi\alpha)x^{\alpha})/(1-x)^{\alpha} + 1} \\ &= \frac{\alpha\sin(\pi\alpha)}{(1-\alpha)\pi} \int_{0}^{1} h(x) \frac{x^{\alpha-1}(1-x)^{\alpha-1}}{x^{2\alpha} - 2x^{\alpha}(1-x)^{\alpha}\cos(\pi\alpha) + (1-x)^{2\alpha}} dx \\ &= E\left[h(\mathbb{G}_{\alpha}^{(3)})\right] \quad \text{(by (4.14)).} \end{split}$$

We now prove (4.26). It is shown in [2], p. 319, (1.27), that

(4.32)
$$\mathbb{G}_{\alpha}^{(3)} \stackrel{(\mathrm{law})}{=} 1 - \mathbb{G}_{\alpha}^{(3)},$$

which is, indeed, obvious. Thus, from (4.25) we get

$$\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text{law})}{=} \frac{\mathbb{G}_{\alpha}^{(3)}}{1 - \mathbb{G}_{\alpha}^{(3)}} \stackrel{(\text{law})}{=} \frac{1 - \mathbb{G}_{\alpha}^{(3)}}{\mathbb{G}_{\alpha}^{(3)}} = \frac{(1 + \mathbb{G}_{\alpha}^{(2)} - \mathbb{G}_{\alpha}^{(2)})/(1 + \mathbb{G}_{\alpha}^{(2)})}{\mathbb{G}_{\alpha}^{(2)}/(1 + \mathbb{G}_{\alpha}^{(2)})} \stackrel{(\text{law})}{=} \frac{1}{\mathbb{G}_{\alpha}^{(2)}}.$$

The relation (4.27) follows immediately from (4.25), (4.16) and (4.17).

We prove (4.28). It is shown in [2], p. 320, that

$$(4.33) \\ \mathbb{G}_{\alpha}^{(3)} \stackrel{(\text{law})}{=} \frac{(T_{1-\alpha})^{(1-\alpha)/\alpha}}{(T_{1-\alpha}')^{(1-\alpha)/\alpha} + (T_{1-\alpha})^{(1-\alpha)/\alpha}}, \ \mathbb{G}_{\alpha}^{(3)} \stackrel{(\text{law})}{=} \frac{(M_{1-\alpha})^{1/\alpha}}{(M_{1-\alpha})^{1/\alpha} + (M_{1-\alpha}')^{1/\alpha}}.$$

Thus, from (4.25) and (4.33) we get

$$(4.34) \quad \mathbb{G}_{\alpha}^{(2)} \stackrel{(\text{law})}{=} \frac{\mathbb{G}_{\alpha}^{(3)}}{1 - \mathbb{G}_{\alpha}^{(3)}} \\ = \frac{(T_{1-\alpha})^{(1-\alpha)/\alpha} / ((T_{1-\alpha}')^{(1-\alpha)/\alpha} + (T_{1-\alpha})^{(1-\alpha)/\alpha})}{(T_{1-\alpha}')^{(1-\alpha)/\alpha} / ((T_{1-\alpha}')^{(1-\alpha)/\alpha} + (T_{1-\alpha})^{(1-\alpha)/\alpha})} = \left(\frac{T_{1-\alpha}}{T_{1-\alpha}'}\right)^{(1-\alpha)/\alpha}$$

We note that (4.34) implies (4.26) and that (4.29) may be obtained from (4.34) in the same manner.

We now prove point (2) of Theorem 6. The formula (4.21), $D_{1-\alpha}^{(2)} \stackrel{\text{(law)}}{=} \mathfrak{e}/\gamma_{\alpha}$, is an immediate consequence of (4.18) and (4.20):

$$Y^{(2)} \stackrel{(\text{law})}{=} \mathfrak{e} \cdot \frac{\gamma_{1-\alpha}}{\gamma_{\alpha}} \stackrel{(\text{law})}{=} \gamma_{1-\alpha} D^{(2)}_{1-\alpha}$$

after observing that, in the latter formula, we may "simplify by $\gamma_{1-\alpha}$ " (see [4] or [6], point 1.4.6, for a justification of this "simplification"). The value of the density of $D_{1-\alpha}^{(2)}$, which is given by (4.23), now follows easily from $D_{1-\alpha}^{(2)} \stackrel{(\text{law})}{=} \mathfrak{e}/\gamma_{\alpha}$. Finally, we have

(4.35)
$$E\left(\exp\left(-\lambda D_{1-\alpha}^{(2)}\right)\right) = E\left(\exp\left(-\lambda\frac{\mathfrak{e}}{\gamma_{\alpha}}\right)\right)$$
$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \int_{0}^{\infty} \exp\left(-\lambda\frac{x}{y} - x - y\right) y^{\alpha-1} dx \, dy = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} y^{\alpha} dy \int_{0}^{\infty} e^{-z(\lambda+y)} dz$$

after making the change of variable x/y = z. Consequently,

(4.36)
$$E\left(\exp(-\lambda D_{1-\alpha}^{(2)})\right) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{y^{\alpha}}{\lambda+y} e^{-y} dy.$$

The formula

(4.37)
$$E\left(\exp(-\lambda D_{1-\alpha}^{(2)})\right) = \alpha \int_{0}^{\infty} e^{-\lambda y} \frac{dy}{(1+y)^{\alpha+1}}$$

follows immediately from (4.23) and it is easy to verify that

$$\frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}e^{-y}\frac{y^{\alpha}}{\lambda+y}\,dy = \alpha\int_{0}^{\infty}e^{-\lambda y}\frac{dy}{(1+y)^{\alpha+1}}.$$

Indeed,

$$\begin{split} \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{\lambda + y} \, dy &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} y^{\alpha} dy \int_{0}^{\infty} e^{-z(\lambda + y)} dz \\ &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda z} dz \int_{0}^{\infty} e^{-y(1+z)} y^{\alpha} dy \\ &= \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda z} \frac{dz}{(1+z)^{\alpha + 1}} = \alpha \int_{0}^{\infty} e^{-\lambda z} \frac{dz}{(1+z)^{\alpha + 1}}. \end{split}$$

This completes the proof of Theorem 6. ■

REMARK 7. 1. From the relation $Y^{(2)} \stackrel{(\text{law})}{=} \gamma_{1-\alpha} D^{(2)}_{1-\alpha}$ we deduce that $E\left(\exp(-\lambda Y^{(2)})\right) = E\left(\exp(-\lambda\gamma_{1-\alpha} \cdot D^{(2)}_{1-\alpha})\right) = E\left(\frac{1}{(1+\lambda D^{(2)}_{1-\alpha})^{1-\alpha}}\right)$ $= \alpha \int_{0}^{\infty} \left(\frac{1+\lambda x}{1+x}\right)^{\alpha-1} \frac{dx}{(1+x)^{2}} \quad (\text{by (4.23)})$ $= \frac{\alpha}{\lambda-1} \int_{1}^{\lambda} y^{\alpha-1} dy$

after making the change of variable $(1 + \lambda x)/(1 + x) = y$. Consequently,

$$E\left(\exp(-\lambda Y^{(2)})\right) = \frac{\lambda^{\alpha} - 1}{\lambda - 1}.$$

This is another way to obtain (4.19).

2. Here is now another way to obtain (4.22). It is clear from (4.24) that

$$E(|\log \mathbb{G}_{\alpha}^{(2)}|) < \infty$$

and, since $\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text{law})}{=} 1/\mathbb{G}_{\alpha}^{(2)}$, that $E(\log \mathbb{G}_{\alpha}^{(2)}) = 0$. Thus, from Theorem 2.1 (ii) in [6] we have

$$f_{Y^{(2)}}(u) = \frac{u^{-\alpha}}{\Gamma(1-\alpha)} E\left(\exp(-u D_{1-\alpha}^{(2)})\right)$$

(this is formula (2.7) in [6], with $t = 1 - \alpha$, $E(\log G) = 0$ and $G \stackrel{(\text{law})}{=} 1/G$). Hence, since

$$f_{Y^{(2)}}(u) = \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} e^{-ux} \frac{x^{\alpha}}{1+x} \ dx = \frac{u^{-\alpha}\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} e^{-y} \frac{y^{\alpha}}{u+y} \ dy$$

(after the change of variable ux = y), we obtain

$$E\left(\exp(-u\,D_{1-\alpha}^{(2)})\right) = \frac{\sin(\pi\alpha)}{\pi}\,\Gamma(1-\alpha)\int_{0}^{\infty}e^{-y}\frac{y^{\alpha}}{u+y}\,dy = \frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}e^{-y}\frac{y^{\alpha}}{u+y}\,dy.$$

3. Furthermore, we remark that from Theorem 2.1 of [6] we get

$$f_{D_{1-\alpha}^{(2)}}(u) = u^{-\alpha-1} f_{D_{1-\alpha}^{(2)}}(1/u).$$

This formula follows also from (4.23).

4. Finally, we also observe from Theorem 2.1 in [6], as a consequence of $\mathbb{G}_{\alpha}^{(2)} \stackrel{(\text{law})}{=} 1/\mathbb{G}_{\alpha}^{(2)}$ and $E(\log \mathbb{G}_{\alpha}^{(2)}) = 0$, that

(4.38)
$$f_{Y^{(2)}}(u) = E\left[\left(Y^{(2)}/u\right)^{\alpha/2} J_{-\alpha}(2\sqrt{u} Y^{(2)})\right],$$

where $J_{-\alpha}$ denotes the Bessel function with index $(-\alpha)$.

REFERENCES

- [1] J. Bertoin, *Subordinators: Examples and Applications*, in: *Ecole d'Eté de Saint-Flour*, Lecture Notes in Math. No 1717, Springer, 1997.
- [2] J. Bertoin, T. Fujita, B. Roynette and M. Yor, On a particular class of selfdecomposable random variables: the duration of Bessel excursions straddling independent exponential times, Probab. Math. Statist. 26 (2) (2006), pp. 315–366.
- [3] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist. 76, Springer, 1992.
- [4] L. Chaumont and M. Yor, *Exercises in Probability. A Guided Tour from Measure Theory to Random Processes, via Conditioning*, Camb. Ser. Stat. Probab. Math. 13 (2003).
- [5] C. Donati-Martin, B. Roynette, P. Vallois and M. Yor, On constants related to the choice of the local time at 0, and the corresponding Itô measure for Bessel processes with dimension $d = 2(1 \alpha)$, $0 < \alpha < 1$, Studia Sci. Math. Hungar. 45 (2008), pp. 207–221.
- [6] L. F. James, B. Roynette and M. Yor, Generalized gamma convolutions, Dirichlet means, Thorin measures with explicit examples, Probability Surveys 5 (2008), pp. 346–415.
- [7] F. B. Knight, Characterization of the Lévy measure of inverse local times of gap diffusions, Seminar on Stochastic Processes 22, Birkhäuser, 1981, pp. 53–78.
- [8] S. Kotani and S. Watanabe, Krein's spectral theory of strings and general diffusion processes, in: Functional Analysis in Markov Processes, M. Fukushima (Ed.), Lecture Notes in Math. No 923, Springer, 1982, pp. 235–259.
- [9] G. K. Kristiansen, A proof of Steutel's conjecture, Ann. Probab. 22 (1994), pp. 442–452.
- [10] N. N. Lebedev, Special Functions and Their Applications, translated and edited by R. A. Silverman, Dover Publications Inc., 1965.
- [11] P. Salminen, P. Vallois and M. Yor, *On the excursion theory for linear diffusions*, Japan J. Math. 2 (2007), pp. 97–127.
- [12] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton 1946.

B. Roynette and P. Vallois	M. Yor
Institut Elie Cartan, Université Henri Poincaré	Laboratoire de Probabilités et Modèles Aléatoires
B.P. 239, 54506 Vandoeuvre les Nancy Cedex	Universités Paris VI et VII
<i>E-mail</i> : roynette@iecn.u-nancy.fr	4 place Jussieu, Case 188
E-mail: vallois@iecn.u-nancy.fr	F-75252 Paris Cedex 05
	<i>E-mail</i> : vormarc@aol.com

Received on 13.6.2008; revised version on 10.10.2008