PROBABILITY AND MATHEMATICAL STATISTICS Vol. 30, Fasc. 1 (2010), pp. 73–85

LIMIT THEOREMS FOR PRODUCTS OF SUMS OF INDEPENDENT RANDOM VARIABLES

Tomasz K. Krajka ZdzisŁaw Rychlik

Abstract: Let $\{X_n, n \ge 1\}$ be a sequence of independent random variables with finite second moments and $\{N_n, n \ge 1\}$ be a sequence of positive integer-valued random variables. Write $S_n = \sum_{k=1}^n (X_k - EX_k)$, $n \ge 1$, and let N be a standard normal random variable. In the paper the convergences

$$\left(\prod_{k=1}^{n} (S_k/a_k+1)\right)^{\gamma_n} \xrightarrow{\mathcal{D}} e^N$$
 and $\left(\prod_{k=1}^{N_n} (S_k/a_k+1)\right)^{\gamma_n} \xrightarrow{\mathcal{D}} e^N$

are considered for some sequences $\{a_n\}$ and $\{\gamma_n\}$ of positive integer numbers such that $S_n + a_n \ge 0$ a.e. The case when γ_n are random variables is also considered. The main results generalize the main theorems presented by Pang et al. [3].

2000 AMS Mathematics Subject Classification: Primary: 60F05; Secondary: 60G50.

Keywords and phrases: Lognormal distribution; randomly indexed product of sums; central limit theorem; self-normalized.

THE FULL TEXT IS AVAILABLE HERE