PROBABILITY

FAST APPROXIMATION OF SOLUTIONS OF SDE'S WITH OBLIQUE REFLECTION ON AN ORTHANT

KRZYSZTOF T. CZARKOWSKI (TORUŃ)

Abstract. We consider the discrete "fast" penalization scheme for SDE's driven by general semimartingale on orthant \mathbb{R}_{+}^{d} with oblique reflection.

2000 AMS Mathematics Subject Classification: Primary: 60H20; Secondary: 60H99.

Key words and phrases: Skorokhod problem, reflected stochastic differential equations, discrete approximation methods.

1. INTRODUCTION

Suppose we have a d-dimensional semimartingale $Z=\left(Z^{1}, \ldots, Z^{d}\right)^{T}$, a Lipschitz continuous function $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, and a nonnegative $d \times d$ matrix Q with zeros on the diagonal and spectral radius $\rho(Q)$ strictly less than one. Consider a d-dimensional stochastic differential equation (SDE) on orthant \mathbb{R}_{+}^{d} with oblique reflection:

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) d Z_{s}+\left(1-Q^{T}\right) K_{t}, \quad t \in \mathbb{R}_{+} \tag{1.1}
\end{equation*}
$$

The equation of type (1.1) was introduced by Harrison and Reiman [9]. Later it was discussed by Dupuis and Ishi [5]. Czarkowski and Słomiński [3] introduced a numerical scheme for approximation of solution of SDE (1.1). In this paper we will define a new numerical scheme.

Throughout the paper we assume $\rho_{t}^{n}=\max \{i / n ; i \in \mathbb{N} \cup\{0\}, i / n \leqslant t\}$ and $Z_{t}^{(n)}$ is a discretization of Z, i.e. $Z_{t}^{(n)}=Z_{\rho_{t}^{n}} \rightarrow \mathcal{P}$ denotes convergence in probability, $\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ means the space of càdlàg function $y: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}, \Delta y_{t}=$ $y_{t}-y_{t-}$ and $\omega_{1 / n}(y,[0, t])$ denotes the modulus of continuity of y on $[0, t]$.

Let us define the function $[z]^{+}=\max \{z, 0\}$ for $z \in \mathbb{R}$ and, by analogy, the function $[z]^{+}=\left(\left[z^{1}\right]^{+}, \ldots,\left[z^{d}\right]^{+}\right)^{T}$ for $z=\left(z^{1}, \ldots, z^{d}\right)^{T} \in \mathbb{R}^{d}$. We will use the norm $\|Q\|=\max _{1 \leqslant i \leqslant d} \sum_{j=1}^{d} q_{i j}$.

In the simplest form our new numerical scheme is given in Section 3 (see (3.3)):

$$
x_{(i+1) / n}^{n}=x_{i / n}^{n}+\Delta y_{(i+1) / n}+\left(I-Q^{T}\right)\left[-x_{i / n}^{n}-\Delta y_{(i+1) / n}\right]^{+}
$$

In Section 3 we prove also convergence in some topology for the càdlàg and continuous function y (see Theorem 3.1 and Corollary 3.1). We show that our scheme satisfies the Lipschitz property for the càdlàg function. In Section 4, we use the scheme for SDE driven by a semimartingale Z_{t}. In Section 5, we prove that

$$
E \sup _{s \leqslant t}\left|X_{s}^{n}-X_{s}\right|^{2 p}=\mathcal{O}\left(\left(\frac{\ln n}{n}\right)^{p}\right)
$$

for diffusion X_{t}.
The Appendix includes a description of some properties of Π_{Q} projection on the orthant \mathbb{R}_{+}^{d}, which connects this paper with [3].

2. THE SKOROKHOD PROBLEM ON AN ORTHANT

Let Q be a nonnegative matrix with zeros on the diagonal and spectral radius $\rho(Q)<1$ and let $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}$. Following Harrison and Reiman [9] a pair $(x, k) \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{2 d}\right)$ is called a solution to the Skorokhod problem

$$
\begin{equation*}
x_{t}=y_{t}+\left(I-Q^{T}\right) k_{t}, \quad t \in \mathbb{R}_{+} \tag{2.1}
\end{equation*}
$$

on \mathbb{R}_{+}^{d} associated with y, if (2.1) is satisfied and
$x_{t} \in \mathbb{R}_{+}^{d}, t \in \mathbb{R}_{+}$,
k^{j} is nondecreasing, $k_{0}^{j}=0$ and $\int_{0}^{t} x_{s}^{j} d k_{s}^{j}=0$ for $j=1, \ldots, d, t \in \mathbb{R}_{+}$.
REMARK 2.1 ([3], Theorem 1).

1. For every $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}$ there exists a unique solution $\left(x_{t}, k_{t}\right)$ of the Skorokhod problem.
2. If additionally $\|Q\|<1$, then k_{t} satisfies the equation

$$
\begin{equation*}
k_{t}=F(k)_{t} \tag{2.2}
\end{equation*}
$$

where

$$
F(u)_{t}=\sup _{s \leqslant t}\left[Q^{T} u_{s}-y_{s}\right]^{+}
$$

In this paper, like in [9] and [3], we make a technical assumption that

$$
\begin{equation*}
\|Q\|<1 \tag{2.3}
\end{equation*}
$$

3. FAST APPROXIMATION SCHEME

Let (x, k) be a solution to the Skorokhod problem for $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}$.

For every $n \in \mathbb{N}$ we define the approximations $\left(x^{n}, k^{n}\right)$ of (x, k) :

$$
\left\{\begin{align*}
k_{0}^{n} & =0, \quad x_{0}^{n}=y_{0}, \tag{3.1}\\
k_{(i+1) / n}^{n} & =\left[Q^{T} k_{i / n}^{n}-y_{(i+1) / n}\right]^{+} \vee k_{i / n}^{n}, \\
x_{(i+1) / n}^{n} & =y_{(i+1) / n}+\left(I-Q^{T}\right) k_{(i+1) / n}^{n}, \\
k_{t}^{n} & =k_{i / n}^{n}, \quad x_{t}^{n}=x_{i / n}^{n} \text { for } t \in[i / n,(i+1) / n) .
\end{align*}\right.
$$

Remark 3.1. We can write another but equivalent form of k^{n}, x^{n}. Note that for every $n \in \mathbb{N}, i \in \mathbb{N} \cup\{0\}$:

$$
\begin{align*}
k_{(i+1) / n}^{n} & =\left[\left(Q^{T}-I\right) k_{i}^{n}-y_{(i+1) / n}\right]^{+}+k_{i / n}^{n} \tag{3.2}\\
& =\left[-\left(x_{i / n}^{n}+\Delta y_{(i+1) / n)}\right]^{+}+k_{i / n}^{n},\right. \\
x_{(i+1) / n}^{n} & =x_{i / n}^{n}+\Delta y_{(i+1) / n}+\left(I-Q^{T}\right)\left[-x_{i / n}^{n}-\Delta y_{(i+1) / n}\right]^{+}, \tag{3.3}
\end{align*}
$$

where $\Delta y_{(i+1) / n}=y_{(i+1) / n}-y_{i / n}$.
Formulas (3.1) and (3.3) are equivalent, but (3.3) looks better and is simpler to calculate. The form (3.3) can be used in computer simulations.

Remark 3.2. We can see that k_{t}^{n} satisfies the equations

$$
\begin{equation*}
k_{t}^{n}=F^{n}\left(k^{n,(n-)}\right)_{t}, \tag{3.4}
\end{equation*}
$$

where $F^{n}(u)_{t}=\sup _{s \leqslant t}\left[Q^{T} u_{s}-y_{s}^{(n)}\right]^{+}, u_{t}^{(n-)}=u_{(i-1) / n}, t \in[i / n,(i+1) / n)$.
The next two theorems describe some properties of scheme (3.1). In Theorem 3.1 we estimate a "distance" between a function x and its approximation x^{n} (and k and k^{n}), and in Theorem 3.2 we prove the Lipschitz property for our scheme.

THEOREM 3.1. There exists a constant $\mathcal{C}>0$ depending only on Q such that for every $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}, t \in \mathbb{R}_{+}$:

$$
\begin{equation*}
\sup _{s \leqslant t}\left|x_{s}^{n}-x_{s}\right|+\sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right| \leqslant \mathcal{C} \omega_{1 / n}(y,[0, t]) . \tag{3.5}
\end{equation*}
$$

Proof. Since $\sup _{s \leqslant t}\left|x_{s}^{n}-x_{s}\right|<\|Q\| \sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right|+\omega_{1 / n}(y,[0, t])$, we estimate only the first term, i.e. $\sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right|$.

We assume that (2.3) is satisfied, i.e. $\|Q\|<1$.

From Remarks 2.1 and 3.2 we obtain

$$
\begin{aligned}
\sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right|= & \sup _{s \leqslant t}\left|F^{n}\left(k^{n,(n-)}\right)_{s}-F(k)_{s}\right| \\
& \leqslant \sup _{s \leqslant t}\left|F^{n}\left(k^{n,(n-)}\right)_{s}-F^{n}\left(k^{n}\right)_{s}\right|+\sup _{s \leqslant t}\left|F^{n}\left(k^{n}\right)_{s}-F\left(k^{n}\right)_{s}\right| \\
& +\sup _{s \leqslant t}\left|F\left(k^{n}\right)_{s}-F(k)_{s}\right| \\
= & I_{t}^{1}+I_{t}^{2}+I_{t}^{3} .
\end{aligned}
$$

Now we estimate every part separately:

$$
\begin{aligned}
I_{t}^{1} & =\sup _{s \leqslant t}\left|F^{n}\left(k^{n,(n-)}\right)_{s}-F^{n}\left(k^{n}\right)_{s}\right| \leqslant\|Q\| \max _{i / n \leqslant t}\left|k_{(i-1) / n}^{n}-k_{i / n}^{n}\right| \\
& \leqslant\|Q\|^{2} \max _{i / n \leqslant t}\left|k_{(i-2) / n}^{n}-k_{(i-1) / n}^{n}\right|+\|Q\| \max _{i / n \leqslant t}\left|y_{(i-1) / n}-y_{i / n}\right| \\
& \leqslant \frac{\|Q\|}{1-\|Q\|} \omega_{1 / n}(y,[0, t]), \\
I_{t}^{2} & =\sup _{s \leqslant t}\left|F^{n}\left(k^{n}\right)_{s}-F\left(k^{n}\right)_{s}\right| \\
& \leqslant \sup _{s \leqslant t}\left|\left[Q^{T} k_{s}^{n}-y_{s}^{(n)}\right]^{+}-\left[Q^{T} k_{s}^{n}-y_{s}\right]^{+}\right| \\
& \leqslant \sup _{s \leqslant t}\left|y_{s}^{(n)}-y_{s}\right|=\omega_{1 / n}(y,[0, t]), \\
I_{t}^{3} & =\sup _{s \leqslant t}\left|F\left(k^{n}\right)_{s}-F(k)_{s}\right| \leqslant\|Q\| \sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right| .
\end{aligned}
$$

Consequently, we have

$$
\sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right| \leqslant \frac{\|Q\|}{1-\|Q\|} \omega_{1 / n}(y,[0, t])+\omega_{1 / n}(y,[0, t])+\|Q\| \sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right| .
$$

So we can calculate the value of the constant \mathcal{C} as follows:

$$
\sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right| \leqslant \frac{1}{(1-\|Q\|)^{2}} \omega_{1 / n}(y,[0, t])
$$

Corollary 3.1. For every $y \in \mathbb{C}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}$ we have

$$
\sup _{s \leqslant t}\left|x_{s}^{n}-x_{s}\right|+\sup _{s \leqslant t}\left|k_{s}^{n}-k_{s}\right| \rightarrow 0 .
$$

Theorem 3.2. There exists a constant $\mathcal{C}>0$ depending only on Q such that for every $y^{1}, y^{2} \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right), y_{0}^{1}, y_{0}^{2} \in \mathbb{R}_{+}^{d}$:

$$
\sup _{s \leqslant t}\left|k_{s}^{1, n}-k_{s}^{2, n}\right|+\sup _{s \leqslant t}\left|x_{s}^{1, n}-x_{s}^{2, n}\right| \leqslant \mathcal{C} \sup _{s \leqslant t}\left|y_{s}^{1}-y_{s}^{2}\right| .
$$

Proof. As in Theorem 3.1 we need only to prove the first of the examined terms. The second can be obtained from (3.1):

$$
\begin{aligned}
\sup _{s \leqslant t}\left|k_{s}^{1, n}-k_{s}^{2, n}\right| & =\sup _{s \leqslant t}\left|F^{n}\left(k^{1, n,(n-)}\right)_{s}-F^{n}\left(k^{2, n,(n-)}\right)_{s}\right| \\
& =\sup _{s \leqslant t}\left|\left[Q^{T} k_{s}^{1, n,(n-)}-y_{s}^{1,(n)}\right]^{+}-\left[Q^{T} k_{s}^{2, n,(n-)}-y_{s}^{2,(n)}\right]^{+}\right| \\
& \leqslant\|Q\| \max _{i / n \leqslant t}\left|k_{(i-1) / n}^{1, n}-k_{(i-1) / n}^{2, n}\right|+\max _{i / n \leqslant t}\left|y_{i / n}^{1}-y_{i / n}^{2}\right| \\
& \leqslant\|Q\| \sup _{s \leqslant t}\left|k_{s}^{1, n}-k_{s}^{2, n}\right|+\sup _{s \leqslant t}\left|y_{s}^{1}-y_{s}^{2}\right|
\end{aligned}
$$

and

$$
\sup _{s \leqslant t}\left|k_{s}^{1, n}-k_{s}^{2, n}\right| \leqslant \frac{1}{1-\|Q\|} \sup _{s \leqslant t}\left|y_{s}^{1}-y_{s}^{2}\right|
$$

We obtain an easy corollary:
Corollary 3.2. There exists a constant $\mathcal{C}>0$ such that for every $y \in$ $\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}:$

$$
k_{t}^{n} \leqslant \mathcal{C} \sup _{s \leqslant t}\left|y_{s}\right|<+\infty
$$

From previous theorems we can obtain convergence for continuous functions. For a càdlàg function, we expect some problems with convergence in points of discontinuity.

Lemma 3.1. Assume that $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ with $y_{0} \in \mathbb{R}_{+}^{d}$ has the form

$$
\begin{equation*}
y_{t}=\sum_{i=0}^{+\infty} y_{t_{i}} \mathbf{1}_{\left[t_{i}, t_{i+1}\right)}(t) \tag{3.6}
\end{equation*}
$$

where $0=t_{0}<t_{1}<\ldots$ Then

$$
\begin{equation*}
x_{t}^{n} \rightarrow x_{t} \quad \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

for $t \neq t_{i}, i \in \mathbb{N}$, where $\left(x_{t}, k_{t}\right)$ is a solution of the Skorokhod problem for y_{t}.
Proof. We prove the lemma by induction. It is well known that if y is of the form (3.6), then

$$
x_{t}= \begin{cases}y_{0}, & t \in\left[0, t_{1}\right) \\ \Pi_{Q}\left(x_{t_{i-1}}+\Delta y_{t_{i}}\right), & t \in\left[t_{i}, t_{i+1}\right), i \in \mathbb{N}\end{cases}
$$

1. For $t \in\left[0, t_{1}\right)$ the assertion is satisfied by definition.
2. By (3.3) we have:

$$
x_{(i+1) / n}^{n}=\left\{\begin{array}{r}
x_{i / n}^{n}+\Delta y_{(i+1) / n}+\left(I-Q^{T}\right)\left[-x_{i / n}^{n}-\Delta y_{(i+1) / n}\right]^{+} \\
\quad \text { for } i \text { such that } i / n \leqslant t_{i}<(i+1) / n \\
x_{i / n}^{n}+\left(I-Q^{T}\right)\left[-x_{i / n}^{n}\right]^{+} \quad \text { for } i \text { such that } t_{i}<i / n<t_{i+1}
\end{array}\right.
$$

The second part, the sequence $x_{i / n}$ between jumps looks like z_{i} (by (6.2) in the Appendix) for a starting point $z_{0}=\left(x_{t_{i}}+\Delta y_{t_{i}}\right)$.

Now, from Corollary 6.1 we have

$$
\lim _{n \rightarrow+\infty} x_{t}^{n}=\Pi_{Q}\left(x_{t_{i}}+\Delta y_{t_{i}}\right) \quad \text { for } t \in\left(t_{i}, t_{i+1}\right)
$$

In the next example we show that (3.7) cannot be straightened to the convergence in the Skorokhod topology J_{1}.

Example 3.1. Let $d=2$,

$$
Q=\left\{\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right\} \quad \text { and } \quad y_{t}= \begin{cases}(0,0)^{T}, & t<1 \\
(-1,-1)^{T}, & t \geqslant 1\end{cases}
$$

The following functions are the solution of the Skorokhod problem:

$$
x_{t}=(0,0)^{T}, t \in \mathbb{R}_{+}, \quad \text { and } \quad k_{t}=\left\{\begin{array}{l}
(0,0)^{T}, t<1 \\
(2,2)^{T}, t \geqslant 1
\end{array}\right.
$$

Now, we use scheme (3.1) for these functions and try to find the limit of $\left(x^{n}, k^{n}\right)$ when n tends to infinity. Then we obtain

$$
k_{t}^{n}= \begin{cases}(0,0)^{T}, & t<1 \\ (1,1)^{T}, & t \in[1,1+1 / n) \\ \left(2-1 / 2^{i}, 2-1 / 2^{i}\right)^{T}, & t \in[1+i / n, 1+(i+1) / n), \quad i \in \mathbb{N}\end{cases}
$$

and

$$
x_{t}^{n}= \begin{cases}(0,0)^{T}, & t<1, \\ \left(-\frac{1}{2},-\frac{1}{2}\right)^{T}, & t \in[1,1+1 / n) \\ \left(-1 / 2^{i+1},-1 / 2^{i+1}\right)^{T}, & t \in[1+i / n, 1+(i+1) / n), \quad i \in \mathbb{N}\end{cases}
$$

Since $\sup _{t \leqslant 2}\left|x_{t}^{n}\right|=\frac{1}{2}$, we have the solution $x^{n} \nrightarrow x$ in J_{1}.
Using the notation of jump point, we can obtain another type of problems. For example, for jump at $t_{1}=\frac{1}{3}$ the limit $\lim _{n \rightarrow+\infty} x_{t_{1}}^{n}$ does not exist.

Classical topology J_{1} is too strong in order to obtain convergence for our scheme. There exists a topology S that is weaker than J_{1}, which is obviously weaker than the uniform topology. The S topology has been introduced by Jakubowski in [11] and in the next papers (e.g. [12]) good criteria of convergence in topology S were given. From the point of view of computer simulation and numerical methods convergence in the S topology is sufficient.

From Lemma 2.14 in [11] we obtain
COROLLARY 3.3. If y satisfies the assumption of Lemma 3.1, then

$$
\begin{equation*}
\left(x^{n}, k^{n}\right) \rightarrow(x, k) \text { in }\left(\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{2 d}\right), S\right) \tag{3.8}
\end{equation*}
$$

The following theorem can be generalized for càdlàg functions.
THEOREM 3.3. If $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ and $y_{0} \in \mathbb{R}_{+}^{d}$, then

$$
\begin{equation*}
\left(x^{n}, k^{n}\right) \rightarrow(x, k) \text { in }\left(\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{2 d}\right), S\right) \tag{3.9}
\end{equation*}
$$

Proof. For all $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ and all $\epsilon>0$ there exists $y^{\epsilon} \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ satisfying the assumption of Lemma 3.1 so that $\sup _{s \leqslant t}\left|y_{s}^{\epsilon}-y_{s}\right| \leqslant \epsilon$.

Let $t_{0}=0$ and

$$
t_{i+1}=\inf \left\{s>t_{i}:\left|y_{s}-y_{t_{i}}\right| \geqslant \epsilon\right\} .
$$

Then

$$
y_{t}^{\epsilon}=y_{t_{i}}, \quad t \in\left[t_{i}, t_{i+1}\right)
$$

Let the pair $\left(x^{\epsilon}, k^{\epsilon}\right)$ be a solution of the Skorokhod problem for y^{ϵ}. Then from Lemma 3.1 we get

$$
\left(x^{\epsilon, n}, k^{\epsilon, n}\right) \rightarrow\left(x^{\epsilon}, k^{\epsilon}\right) \text { in }\left(\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{2 d}\right), S\right)
$$

To prove the assertion we need to show that

$$
\lim _{\epsilon \rightarrow 0} \sup _{n} \sup _{s \leqslant t}\left|k_{s}^{\epsilon, n}-k_{s}^{n}\right|=0
$$

From Theorem 3.2 we have

$$
\sup _{s \leqslant t}\left|k_{s}^{\epsilon, n}-k_{s}^{n}\right| \leqslant \mathcal{C} \sup _{s \leqslant t}\left|y_{s}^{\epsilon(n)}-y_{s}^{(n)}\right| \leqslant \mathcal{C} \epsilon
$$

REMARK 3.3. If $y \in \mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$ and $y_{0} \in \mathbb{R}_{+}^{d}$, then $x^{n} \rightarrow x$ for continuity point of y and $\left\{x^{n}\right\}$ is relatively S-compact.

4. FAST APPROXIMATION SCHEME FOR SDE

Let Z be an $\left(\mathcal{F}_{t}\right)$-adapted semimartingale. Let us recall that the pair (X, K) of $\left(\mathcal{F}_{t}\right)$-adapted processes is said to be a strong solution of (1.1) if (X, K) is a solution to the Skorokhod problem associated with the semimartingale

$$
\begin{equation*}
Y_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) d Z_{s}, \quad t \in \mathbb{R}_{+} \tag{4.1}
\end{equation*}
$$

REMARK 4.1. If σ is Lipschitz continuous, then there exists a unique strong solution to the SDE (1.1).

Using formulas (3.1) we can define a "fast" scheme for SDE:

$$
\begin{aligned}
X_{0}^{n} & =X_{0}, \quad K_{0}^{n}=0, \\
K_{(i+1) / n}^{n} & =\left[Q^{T} K_{i / n}^{n}-\left(X_{i / n}^{n}+\sigma\left(X_{i / n}^{n}\right)\left(Z_{(i+1) / n}-Z_{i / n}\right)\right)\right]^{+} \vee K_{i / n}^{n}, \\
X_{(i+1) / n}^{n} & =X_{i / n}^{n}+\sigma\left(X_{i / n}^{n}\right)\left(Z_{(i+1) / n}-Z_{i / n}\right)+\left(1-Q^{T}\right) K_{(i+1) / n}^{n}, \\
\left(X_{t}^{n}, K_{t}^{n}\right) & =\left(X_{i / n}^{n}, K_{i / n}^{n}\right), \quad t \in[i / n,(i+1) / n) .
\end{aligned}
$$

Lemma 4.1. Assume that there exist stoping times $\left\{\tau_{i}\right\} \subset \mathbb{R}_{+}$such that $0=$ $\tau_{0}<\tau_{1}<\ldots$ and $\left\{Z_{i}\right\} \subset \mathbb{R}^{d}$. If Z is a semimartingale such that $Z_{t}=Z_{i}$ for $t \in\left[\tau_{i}, \tau_{i+1}\right), i \in \mathbb{N} \cup\{0\}$, then

$$
\begin{equation*}
X_{t}^{n} \rightarrow X_{t} \quad \text { for } t \neq t_{i} \tag{4.2}
\end{equation*}
$$

Proof. We define

$$
X_{t}= \begin{cases}X_{0}, & t \in\left[0, \tau_{1}\right) \\ \Pi_{Q}\left(X_{\tau_{i-1}}+\sigma\left(X_{\tau_{i-1}}\right) \Delta Z_{\tau_{i}}\right), & t \in\left[\tau_{i}, \tau_{i+1}\right), i \in \mathbb{N}\end{cases}
$$

The rest of the proof is the same as for Lemma 3.1. We need only to change $\Delta y_{(i+1) / n}^{(n)}$ by $\sigma\left(X_{\tau_{i-1}}\right) \Delta Z_{\tau_{i}}$.

Theorem 4.1. Assume that σ is Lipschitz continuous. Then

$$
\begin{equation*}
\left(X^{n}, K^{n}\right) \underset{\mathcal{P}}{ }(X, K) \text { in }\left(\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{2 d}\right), S\right) \tag{4.3}
\end{equation*}
$$

Proof. As in Theorem 3.3, for all $\epsilon>0$ we construct a "piecewise constant" martingale Z^{ϵ}. It follows that for all $\epsilon>0$ there exists Z^{ϵ} such that

$$
\sup _{s \leqslant t}\left|Z_{s}-Z_{s}^{\epsilon}\right| \leqslant \epsilon
$$

Let the pair $\left(X^{\epsilon n}, K^{\epsilon n}\right)$ be a solution of the Skorokhod problem for the semimartingale

$$
Y_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s-}\right) d Z_{s}^{\epsilon}, \quad t \in \mathbb{R}_{+} .
$$

From Lemma 4.1 we have the convergence

$$
\left(X^{\epsilon n}, K^{\epsilon n}\right) \rightarrow\left(X^{\epsilon}, K^{\epsilon}\right) \text { in }\left(\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}^{2 d}\right), S\right)
$$

To complete the proof we need to show that, for all $\eta>0$,

$$
\lim _{\epsilon \rightarrow 0} \limsup _{n} P\left(\sup _{s \leqslant t}\left|X_{s}^{\epsilon n}-X_{s}^{n}\right|>\eta\right)=0
$$

Using Theorem 3.2, we obtain

$$
\begin{aligned}
\sup _{s \leqslant t}\left|X_{s}^{\epsilon n}-X_{s}^{n}\right| \leqslant & \mathcal{C} \sup _{s \leqslant t}\left|Y_{s}^{\epsilon n}-Y_{s}^{n}\right| \\
= & \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d Z_{u}^{(n)}-\int_{0}^{s} \sigma\left(X_{u-}^{\epsilon n}\right) d Z_{u}^{\epsilon,(n)}\right| \\
\leqslant & \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d Z_{u}^{(n)}-\int_{0}^{s} \sigma\left(X_{u-}^{\epsilon n}\right) d Z_{u}^{(n)}\right| \\
& +\mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s} \sigma\left(X_{u-}^{\epsilon n}\right) d Z_{u}^{(n)}-\int_{0}^{s} \sigma\left(X_{u-}^{\epsilon n}\right) d Z_{u}^{\epsilon,(n)}\right| \\
= & \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s}\left(\sigma\left(X_{u-}^{n}\right)-\sigma\left(X_{u-}^{\epsilon n}\right)\right) d Z_{u}^{(n)}\right|+\mathcal{C} \sup _{s \leqslant t}\left|H_{s}^{\epsilon, n}\right|, \\
H_{t}^{\epsilon, n}= & \int_{0}^{t} \sigma\left(X_{s-}^{\epsilon n}\right) d Z_{s}^{(n)}-\int_{0}^{t} \sigma\left(X_{s-}^{\epsilon n}\right) d Z_{s}^{\epsilon,(n)} \\
= & \int_{0}^{t} \sigma\left(X_{s-}^{\epsilon n}\right) d\left(Z_{s}^{(n)}-Z_{s}^{\epsilon,(n)}\right) \\
= & \sigma\left(X_{t}^{\epsilon n}\right)\left(Z_{t}^{(n)}-Z_{t}^{\epsilon,(n)}\right)-\int_{0}^{t}\left(Z_{s-}^{(n)}-Z_{s-}^{\epsilon,(n)}\right) d \sigma\left(X_{s}^{\epsilon n}\right) \\
& -\left[\sigma\left(X_{t}^{\epsilon n}\right),\left(Z_{t}^{(n)}-Z_{t}^{\epsilon,(n)}\right)\right] .
\end{aligned}
$$

Obviously,

$$
\left[\sigma\left(X_{t}^{\epsilon n}\right),\left(Z_{t}^{(n)}-Z_{t}^{\epsilon,(n)}\right)\right] \leqslant\left(\left[\sigma\left(X_{t}^{\epsilon n}\right)\right]\right)^{1 / 2}\left(\left[\left(Z_{t}^{(n)}-Z_{t}^{\epsilon,(n)}\right)\right]\right)^{1 / 2}
$$

By definition, $X_{t}^{\epsilon n}$ has the form

$$
X_{t}^{\epsilon n}=X_{0}+\int_{0}^{t} \sigma\left(X^{\epsilon_{s-}^{n}}\right) d Z_{s}^{\epsilon, n}+\left(1-Q^{T}\right) K_{t}^{\epsilon n}
$$

So, we can write the inequalities

$$
\begin{aligned}
\sup _{s \leqslant t}\left|X_{t}^{\epsilon n}\right| & \leqslant\left|X_{0}\right|+\sup _{s \leqslant t}\left|\int_{0}^{t} \sigma\left(X^{\epsilon_{u-} n}\right) d Z_{u}^{\epsilon, n}\right|+\left(1-Q^{T}\right) \sup _{s \leqslant t}\left|K^{\epsilon_{s}^{n}}\right| \\
& \leqslant\left|X_{0}\right|+2 \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{t} \sigma\left(X^{\epsilon_{u-}^{n}}\right) d Z_{u}^{\epsilon, n}\right|
\end{aligned}
$$

From Gronwall's lemma it follows that $\left\{\sup \left|X^{\epsilon^{n}}\right|\right\}$ is bounded for σ satisfying the Lipschitz condition. So, if $\left\{\sigma\left(\left|X^{\epsilon^{n}}\right|\right)\right\}$ is bounded in probability, then

$$
\int_{0}^{t} \sigma\left(X^{\epsilon_{s-}}\right) d Z_{s}^{\epsilon, n}
$$

satisfies $U T$ condition.
Because $\left\{K^{\epsilon^{n}}\right\}$ is bounded in probability, this means that it also satisfies $U T$. $\left\{X^{\epsilon^{n}}\right\}$ satisfies $U T$ as a sum of two processes that satisfy $U T$. So, $\sigma\left(X^{\epsilon^{n}}\right)$ satisfies $U T$ for $\sigma \in C^{2}$.

5. FAST APPROXIMATION SCHEME FOR DIFFUSION

Consider SDE with reflection on \mathbb{R}_{+}^{d} of the form

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}+\left(1-Q^{T}\right) K_{t} \tag{5.1}
\end{equation*}
$$

where W is a d-dimensional Wiener process, and $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$.
REMARK 5.1. If b and σ are Lipschitz continuous, then there exists a unique strong solution of the SDE (5.1).

Let us define

$$
\begin{aligned}
X_{0}^{n}= & X_{0}, \quad K_{0}^{n}=0 \\
K_{(i+1) / n}^{n}= & {\left[Q^{T} K_{i / n}^{n}-\left(X_{i / n}^{n}+b\left(X_{i / n}^{n}\right) n^{-1}+\sigma\left(X_{i / n}^{n}\right)\left(W_{(i+1) / n}-W_{i / n}\right)\right)\right]^{+} } \\
& \vee K_{i / n}^{n} \\
X_{(i+1) / n}^{n}= & X_{i / n}^{n}+b\left(X_{i / n}^{n}\right) n^{-1}+\sigma\left(X_{i / n}^{n}\right)\left(W_{(i+1) / n}-W_{i / n}\right) \\
& +\left(1-Q^{T}\right) K_{(i+1) / n}^{n}, \\
\left(X_{t}^{n}, K_{t}^{n}\right)= & \left(X_{i / n}^{n}, K_{i / n}^{n}\right), \quad t \in[i / n,(i+1) / n) .
\end{aligned}
$$

We can see that X^{n} satisfies the equation

$$
\begin{equation*}
X_{t}^{n}=X_{0}^{n}+\int_{0}^{t} b\left(X_{s-}^{n}\right) d \rho_{s}^{n}+\int_{0}^{t} \sigma\left(X_{s-}^{n}\right) d W_{s}^{(n)}+\left(1-Q^{T}\right) K_{t}^{n} \tag{5.2}
\end{equation*}
$$

THEOREM 5.1. Let the assumptions of Remark 5.1 be satisfied and let (X, K) be a strong solution to the SDE (5.1). Then for every $p \in \mathbb{N}$

$$
\begin{equation*}
E \sup _{s \leqslant t}\left|X_{s}^{n}-X_{s}\right|^{2 p}=\mathcal{O}\left(\left(\frac{\ln n}{n}\right)^{p}\right) \tag{5.3}
\end{equation*}
$$

First we prove the following lemma:
LEMMA 5.1. Under the assumptions as in Theorem 5.1 we obtain

$$
\begin{equation*}
\sup _{n} E \sup _{s \leqslant t}\left|X_{s}^{n}\right|^{2 p}<+\infty \tag{5.4}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\sup _{s \leqslant t}\left|X_{s}^{n}-X_{0}^{n}\right| \leqslant \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d W_{u}^{(n)}+\int_{0}^{s} b\left(X_{u-}^{n}\right) d \rho_{u}^{n}\right|, \tag{5.5}
\end{equation*}
$$

which implies

$$
\sup _{s \leqslant t}\left|X_{s}^{n}-X_{0}^{n}\right|^{2 p} \leqslant 2 \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d W_{u}^{(n)}\right|^{2 p}+2 \mathcal{C} \sup _{s \leqslant t}\left|\int_{0}^{s} b\left(X_{u-}^{n}\right) d \rho_{u}^{n}\right|^{2 p}
$$

Now, because b and σ are Lipschitz, we have

$$
\begin{aligned}
E \sup _{s \leqslant t}\left|X_{s}^{n}-X_{0}^{n}\right|^{2 p} & \leqslant 2 \mathcal{C} E\left(\int_{0}^{t} \sigma\left(X_{s-}^{n}\right) d W_{s}^{(n)}\right)^{2 p}+2 \mathcal{C} E\left(\int_{0}^{t}\left|b\left(X_{s}^{n}\right)\right| d s\right)^{2 p} \\
& \leqslant 2 \mathcal{C} E \int_{0}^{t} \sigma^{2 p}\left(X_{s-}^{n}\right) d \rho_{s}^{n}+2 \mathcal{C} E \int_{0}^{t} b^{2 p}\left(X_{s^{-}}^{n}\right) d \rho_{s}^{n} \\
& \leqslant \mathcal{C} E \int_{0}^{t}\left(\left(X_{s-}^{n}\right)^{2 p}+1\right) d \rho_{s}^{n} \\
& \leqslant \mathcal{C}\left(1+\int_{0}^{t} E \sup _{u \leqslant s}\left|X_{u}^{n}-X_{0}^{n}\right|^{2 p} d s\right) .
\end{aligned}
$$

Thus, from Gronwall's lemma we have the assertion.
Proof of Theorem 5.1. By definition we have

$$
\begin{aligned}
X_{t}^{n}-X_{t}= & \int_{0}^{t}\left(\sigma\left(X_{s-}^{n}\right)-\sigma\left(X_{s-}\right)\right) d W_{s}^{(n)} \\
& +\int_{0}^{t}\left(b\left(X_{s-}^{n}\right)-b\left(X_{s-}\right)\right) d \rho_{s}^{n}+\left(1-Q^{T}\right)\left(K_{t}^{n}-K_{t}\right)
\end{aligned}
$$

Because b and σ are Lipschitz, we get

$$
E \sup _{s \leqslant t}\left|X_{s}^{n}-X_{s}\right|^{2 p} \leqslant 2 \mathcal{C}\left(E \sup _{s \leqslant t}\left|K_{s}^{n}-K_{s}\right|^{2 p}+\int_{0}^{t} E \sup _{u \leqslant s}\left|X_{u}^{n}-X_{u}\right|^{2 p} d s\right)
$$

From Gronwall's lemma we obtain

$$
E \sup _{s \leqslant t}\left|X_{s}^{n}-X_{s}\right|^{2 p} \leqslant 2 \mathcal{C} E \sup _{s \leqslant t}\left|K_{s}^{n}-K_{s}\right|^{2 p}
$$

In the same way we can prove that

$$
E \sup _{s \leqslant t}\left|X_{s}^{n}\right|^{2} \leqslant \mathcal{C} E \sup _{s \leqslant t}\left|K_{s}^{n}\right|^{2}
$$

Since

$$
K_{t}^{n}=\sup _{s \leqslant t}\left[Q^{T} K^{n,(n-)}-\left(X_{0}^{n}+\int_{0}^{s} b\left(X_{u-}^{n}\right) d \rho_{u}^{n}+\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d W_{u}^{(n)}\right)\right]^{+}
$$

and

$$
K_{t}=\sup _{s \leqslant t}\left[Q^{T} K_{s}-\left(X_{0}^{n}+\int_{0}^{s} b\left(X_{u-}\right) d \rho_{u}+\int_{0}^{s} \sigma\left(X_{u-}\right) d W_{u}\right)\right]^{+}
$$

we have

$$
\begin{aligned}
K_{t}^{n}-K_{t}= & \sup _{s \leqslant t}\left[Q^{T} K_{s}^{n,(n-)}-\left(X_{0}^{n}+\int_{0}^{s} b\left(X_{u-}^{n}\right) d \rho_{u}^{n}+\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d W_{u}^{(n)}\right)\right]^{+} \\
& -\sup _{s \leqslant t}\left[Q^{T} K_{s}^{n}-\left(X_{0}^{n}+\int_{0}^{s} b\left(X_{u-}^{n}\right) d \rho_{u}^{n}+\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d W_{u}^{(n)}\right)\right]^{+} \\
& +\sup _{s \leqslant t}\left[Q^{T} K_{s}^{n}-\left(X_{0}^{n}+\int_{0}^{s} b\left(X_{u-}^{n}\right) d \rho_{u}^{n}+\int_{0}^{s} \sigma\left(X_{u-}^{n}\right) d W_{u}^{(n)}\right)\right]^{+} \\
& -\sup _{s \leqslant t}\left[Q^{T} K_{s}^{n}-\left(X_{0}+\int_{0}^{s} b\left(X_{u-}\right) d \rho_{u}+\int_{0}^{s} \sigma\left(X_{u-}\right) d W_{u}\right)\right]^{+} \\
& +\sup _{s \leqslant t}\left[Q^{T} K_{s}^{n}-\left(X_{0}+\int_{0}^{s} b\left(X_{u-}\right) d \rho_{u}+\int_{0}^{s} \sigma\left(X_{u-}\right) d W_{u}\right)\right]^{+} \\
& -\sup _{s \leqslant t}\left[Q^{T} K_{s}-\left(X_{0}+\int_{0}^{s} b\left(X_{u-}\right) d \rho_{u}+\int_{0}^{s} \sigma\left(X_{u-}\right) d W_{u}\right)\right]^{+} \\
= & I_{t}^{1}+I_{t}^{2}+I_{t}^{3} .
\end{aligned}
$$

Now we estimate every part separately:

$$
\begin{aligned}
& I_{t}^{1} \leqslant \sup _{s \leqslant t}\left|K_{s}^{n,(n-)}-K_{s}^{n}\right| \leqslant \sup _{s \leqslant t}\left|\sigma\left(X_{s-}^{n}\right)\left(W_{s}-W_{s}^{(n)}\right)+b\left(X_{s-}^{n}\right)\left(s-\rho_{s}^{n}\right)\right| \\
& I_{t}^{2} \leqslant \sup _{u \leqslant s}\left|\int_{0}^{s}\left(b\left(X_{u-}^{n}\right)-b\left(X_{u-}\right)\right) d \rho_{u}^{n}+\int_{0}^{s}\left(\sigma\left(X_{u-}^{n}\right)-\sigma\left(X_{u-}\right)\right) d W_{u}^{(n)}\right| \\
& I_{t}^{3} \leqslant \sup _{s \leqslant t}\left|K_{s}^{n}-K_{s}\right|
\end{aligned}
$$

and we have

$$
\begin{aligned}
E \sup _{s \leqslant t}\left|K_{s}-K_{s}^{n}\right|^{2 p} & \leqslant \mathcal{C}\left(E \sup _{s \leqslant t}\left|W_{s}-W_{s}^{(n)}\right|^{2 p}+\int_{0}^{s} E \sup _{u \leqslant s}\left|K_{u}-K_{u}^{n}\right|^{2 p} d u\right) \\
& \leqslant \mathcal{C} E\left(\omega_{1 / n}(W,[0, t])\right)^{2 p} \\
& =\mathcal{O}\left(\left(\frac{\ln n}{n}\right)^{p}\right) .
\end{aligned}
$$

6. APPENDIX. Π_{Q} PROJECTION

Finding the projection π on the domain D is the standard technique to obtain a solution of the Skorokhod problem. In [3] we define a projection on the orthant \mathbb{R}_{+}^{d} as follows:

REMARK 6.1. $\Pi_{Q}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{d}$ is defined by

$$
\Pi_{Q}(z)=z+\left(I-Q^{T}\right) \bar{r}
$$

where \bar{r} satisfies the equation $\bar{r}=\left[Q^{T} \bar{r}-z\right]^{+}$.
In that definition, we have to find the fixed point \bar{r}. Typically, we use the approximation sequence of \bar{r} and \bar{z} :

$$
\left\{\begin{align*}
\bar{r}_{0} & =0, \tag{6.1}\\
\bar{z}_{0} & =z, \\
\bar{r}_{n+1} & =\left[Q^{T} \bar{r}_{n}-z\right]^{+}, \quad n \in \mathbb{N} \cup\{0\}, \\
\bar{z}_{n+1} & =z+\left(I-Q^{T}\right) \bar{r}_{n+1}, \quad n \in \mathbb{N} \cup\{0\} .
\end{align*}\right.
$$

It is easy to see that

$$
\lim _{n \rightarrow+\infty} \bar{r}_{n}=\bar{r} \quad \text { and } \quad \lim _{n \rightarrow+\infty} \bar{z}_{n}=\Pi_{Q}(z)
$$

Using simple calculations, we can obtain an equivalent formula for \bar{r}_{n+1} :
REMARK 6.2. We have

$$
\bar{r}_{n+1}=\left[Q^{T} \bar{r}_{n}-z\right]^{+}=\left[-\left(z+\left(I-Q^{T}\right) \bar{r}_{n}\right)+\bar{r}_{n}\right]^{+}=\left[\bar{z}_{n}+\bar{r}_{n}\right]^{+} .
$$

Now we define another sequence starting from the same point:

$$
\begin{align*}
z_{0} & =z \\
z_{n+1} & =z_{n}+\left(I-Q^{T}\right)\left[-z_{n}\right]^{+}, \quad n \in \mathbb{N} \cup\{0\} \tag{6.2}
\end{align*}
$$

That sequence looks like that in our scheme used for a constant function $y_{t}=z$ ($\Delta y_{t}=0$).

Once again simple calculations lead to obtaining an equivalent formula:
REMARK 6.3. We have

$$
z_{n+1}=z_{n}+\left(I-Q^{T}\right)\left[-z_{n}\right]^{+}=z+\left(I-Q^{T}\right) \sum_{i=0}^{n}\left[-z_{i}\right]^{+}
$$

Sequences z_{n} and \bar{z}_{n} look different, but in fact they are only different representations of the same sequence.

Lemma 6.1. For every $z \in \mathbb{R}^{d}$ and for all $n \in \mathbb{N} \cup\{0\}$ we have

$$
\begin{equation*}
z_{n}=\bar{z}_{n} \tag{6.3}
\end{equation*}
$$

Proof. The proof will be done by induction. For $n=0$ we have

$$
z_{0}=z=\bar{z}_{0} .
$$

Now assume that $z_{i}=\bar{z}_{i}$ for $i=0, \ldots, n$. Then from (6.1) and Remark 6.2 we have

$$
\begin{equation*}
\bar{r}_{i}=\bar{r}_{i-1}+\left[-\bar{z}_{i-1}\right]^{+} \tag{6.4}
\end{equation*}
$$

for $i=0, \ldots, n$.
Now we check

$$
\begin{aligned}
\bar{z}_{n+1}-z_{n+1} & =z+\left(I-Q^{T}\right) \bar{r}_{n+1}-z_{n}+\left(I-Q^{T}\right)\left[-z_{n}\right]^{+} \\
& =\bar{z}_{n}+\left(I-Q^{T}\right)\left(\left[-\bar{z}_{n}+\bar{r}_{i}\right]^{+}-\bar{r}_{n}\right)-z_{n}+\left(I-Q^{T}\right)\left[-z_{n}\right]^{+} \\
& =\left(\bar{z}_{n}-z_{n}\right)+\left(I-Q^{T}\right)\left(\left[-\bar{z}_{n}+\bar{r}_{n}\right]^{+}-\bar{r}_{n}-\left[-z_{n}\right]^{+}\right) \\
& =\left(I-Q^{T}\right)\left(\left[-\bar{z}_{n}+\bar{r}_{n}\right]^{+}-\bar{r}_{n}-\left[-\bar{z}_{n}\right]^{+}\right) .
\end{aligned}
$$

Let us define

$$
\begin{equation*}
R_{n}^{j}=\left[-\bar{z}_{n}^{j}+\bar{r}_{n}^{j}\right]^{+}-\bar{r}_{n}^{j}-\left[-\bar{z}_{n}^{j}\right]^{+}, \quad j=1, \ldots, d \tag{6.5}
\end{equation*}
$$

It is easy to show that if $\bar{z}_{n}^{j} \leqslant 0$, then $R_{n}^{j}=0$. To complete the proof we need to check whether $R_{n}^{j}=0$ when $\bar{z}_{n}^{j}>0$.

Without loss of generality we can assume that $j=1$. Then

$$
\begin{aligned}
\bar{z}_{n}^{1} & =z_{n}^{1} \\
& =z_{n-1}^{1}+\left[-z_{n-1}^{1}\right]^{+}-q_{21}\left[-z_{n-1}^{2}\right]^{+}+\ldots-q_{d 1}\left[-z_{n-1}^{d}\right]^{+} \\
& \leqslant z_{n-1}^{1}+\left[-z_{n-1}^{1}\right]^{+} \\
& =\bar{z}_{n-1}^{1}+\left[-\bar{z}_{n-1}^{1}\right]^{+} .
\end{aligned}
$$

Consequently, if $\bar{z}_{n}^{1}>0$, then $\bar{z}_{n-1}^{1}>0$. In the same way we can prove that $\bar{z}_{i}^{1}>0$ for $i=n-1, \ldots, 0$. If $\bar{z}_{0}^{1}>0$, then $\bar{r}_{1}^{1}=0$, and by (6.4) we have $\bar{r}_{n}^{1}=0$. Thus $R_{n}^{1}=0$.

Corollary 6.1. We have

$$
\lim _{n \rightarrow+\infty} z_{n}=\Pi_{Q}(z)
$$

REFERENCES

[1] H. Chen and A. Mandelbaum, Stochastic discrete flow newtworks: diffusion approximations and bottlenecks, Ann. Probab. 19 (1991), pp. 1463-1519.
[2] R. J. Chitashvili and N. L. Lazrieva, Strong solutions of stochastic differential equations with boundary conditions, Stochastics 5 (1981), pp. 225-309.
[3] K. Czarkowski and L. Słomiński, Approximation of solutions of SDE's with oblique reflection on an orthant, Probab. Math. Statist. 22 (2002), pp. 29-49.
[4] C. Dellacherie and P. A. Meyer, Probabilités et potentiel, Hermann, Paris 1980.
[5] P. Dupuis and H. Ishi, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep. 35 (1991), pp. 31-62.
[6] P. Dupuis and H. Ishi, SDEs with oblique reflection on nonsmooth domains, Ann. Probab. 21 (1993), pp. 554-580.
[7] P. Dupuis and K. Ramanan, Convex duality and the Skorokhod problem. I, Probab. Theory Related Fields 115 (1999), pp. 153-197.
[8] P. Dupuis and K. Ramanan, Convex duality and the Skorokhod problem. II, Probab. Theory Related Fields 115 (1999), pp. 197-237.
[9] J. M. Harrison and M. I. Reiman, Reflected Brownian motion on an orthant, Ann. Probab. 9 (1981), pp. 302-308.
[10] J. M. Harrison and R. J. Williams, A multiclass closed queueing network with unconventional heavy traffic behavior, Ann. Appl. Probab. 6 (1996), pp. 1-47.
[11] A. Jakubowski, A non-Skorohod topology on the Skorohod space, EJP 2 (1997), pp. 1-21.
[12] A. Jakubowski, J. Mémin and G. Pages, Convergence en loi des suites d'intégrales stochastiques sur l'espace D^{1} de Skorokhod, Probab. Theory Related Fields 81 (1989), pp. 111-137.
[13] O. Kella, Stability and nonproduct form of stochastic fluid networks with Lévy inputs, Ann. Appl. Probab. 6 (1996), pp. 186-199.
[14] T. G. Kurtz and P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (1991), pp. 1035-1070.
[15] T. G. Kurtz and P. Protter, Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's, Proc. Conference in Honor Moshe Zakai 65th Birthday, Haifa, Stochastic Analysis (1991), pp. 331-346.
[16] D. Lépingle, Un schéma d'Euler pour équations différentielles stochastiques réfléchies, C. R. Acad. Sci. Paris 316 (1993), pp. 601-605.
[17] Y. Liu, Numerical approches to stochastic differential equations with boundary conditions, Thesis, Purdue University, 1993.
[18] J. Mémin and L. Słomiński, Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques, Sém. de Probab. XXV, Lecture Notes in Math. No 1485, Springer, Berlin 1991, pp. 162-177.
[19] M. Métivier and J. Pellaumail, Une formule de majoration pour martingales, C. R. Acad. Sci. Paris, Sér. A 285 (1977), pp. 685-688.
[20] R. Pettersson, Approximations for stochastic differential equation with reflecting convex boundaries, Stochastic Process. Appl. 59 (1995), pp. 295-308.
[21] R. Pettersson, Penalization schemes for reflecting stochastic differential equations, Bernoulli 3 (4) (1997), pp. 403-414.
[22] P. Protter, Stochastic Integration and Differential Equations, Springer, Berlin 1990.
[23] M. A. Shashiashvili, On the variation of the difference of singular components in the Skorokhod problem and on stochastic differential systems in a half-space, Stochastics 24 (1988), pp. 151-169.
[24] L. Słomiński, Stability of strong solutions of stochastic differential equations, Stochastic Process. Appl. 31 (1989), pp. 173-202.
[25] L. Słomiński, On approximation of solutions of multidimensional SDE's with reflecting boundary conditions, Stochastic Process. Appl. 50 (1994), pp. 197-219.
[26] L. Słomiński, Stability of stochastic differential equations driven by general semimartingales, Dissertationes Math. 349 (1996), pp. 1-113.
[27] L. Słomiński, Euler's approximations of solutions of SDE's with reflecting boundary, Stochastic Process. Appl. 94 (2001), pp. 317-337.
[28] C. Stricker, Loi de semimartingales et critères de compacité, Sém. de Probab. XIX, Lecture Notes in Math. No 1123, Springer, Berlin 1985.
[29] R. J. Williams, Semimartingale reflecting Brownian motions in the orthant, in: Stochastic Networks, F. P. Kelly and R. J. Williams (Eds.), Springer, 1995.
[30] R. J. Williams and S. R. S. Varadhan, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 12 (1985), pp. 147-225.
[31] K. Yamada, Diffusion approximation for open state-dependent queueing networks in the heavy traffic situation, Ann. Appl. Probab. 5 (1995), pp. 958-982.

Faculty of Mathematics and Computer Science
Nicholas Copernicus University
ul. Chopina 12/18
87-100 Toruń, Poland
E-mail: kczark@mat.umk.pl

