PROBABILITY AND MATHEMATICAL STATISTICS Vol. 31, Fasc. 1 (2011), pp. 1–15

DENSENESS OF CERTAIN SMOOTH LÉVY FUNCTIONALS IN $\mathbb{D}_{1,2}$

Christel Geiss Eija Laukkarinen

Abstract: The Malliavin derivative for a Lévy process (X_t) can be defined on the space $\mathbb{D}_{1,2}$ using a chaos expansion or in the case of a pure jump process also *via* an increment quotient operator. In this paper we define the Malliavin derivative operator D on the class S of smooth random variables $f(X_{t_1}, \ldots, X_{t_n})$, where f is a smooth function with compact support. We show that the closure of $L_2(\mathbb{P}) \supseteq S \xrightarrow{D} L_2(\mathbb{m} \otimes \mathbb{P})$ yields to the space $\mathbb{D}_{1,2}$.

2000 AMS Mathematics Subject Classification: Primary: 60H07; Secondary: 60G51.

Keywords and phrases: Malliavin calculus, Lévy processes.

THE FULL TEXT IS AVAILABLE HERE