PROBABILITY AND MATHEMATICAL STATISTICS Vol. 31, Fasc. 1 (2011), pp. 99–118

SEVERAL FORMS OF STOCHASTIC INTEGRAL REPRESENTATIONS OF GAMMA RANDOM VARIABLES AND RELATED TOPICS

TAKAHIRO AOYAMA MAKOTO MAEJIMA YOHEI UEDA

Abstract: Gamma distributions can be characterized as the laws of stochastic integrals with respect to many different Lévy processes with different nonrandom integrands. A Lévy process corresponds to an infinitely divisible distribution. Therefore, many infinitely divisible distributions can yield a gamma distribution through stochastic integral mappings with different integrands. In this paper, we pick up several integrands which have appeared in characterizing well-studied classes of infinitely divisible distributions, and find inverse images of a gamma distribution through each stochastic integral mapping. As a by-product of our approach to stochastic integral representations of gamma random variables, we find a remarkable new general characterization of classes of infinitely divisible distributions, which were already considered by James et al. (2008) and Aoyama et al. (2010) in some special cases.

2000 AMS Mathematics Subject Classification: Primary: 60E07; Secondary: 62E10.

Keywords and phrases: Infinitely divisible distribution, gamma distribution, stochastic integral representation, Lévy process.

THE FULL TEXT IS AVAILABLE HERE