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Abstract. Gamma distributions can be characterized as the laws of
stochastic integrals with respect to many different Lévy processes with dif-
ferent nonrandom integrands. A Lévy process corresponds to an infinitely
divisible distribution. Therefore, many infinitely divisible distributions can
yield a gamma distribution through stochastic integral mappings with dif-
ferent integrands. In this paper, we pick up several integrands which have
appeared in characterizing well-studied classes of infinitely divisible dis-
tributions, and find inverse images of a gamma distribution through each
stochastic integral mapping. As a by-product of our approach to stochastic
integral representations of gamma random variables, we find a remarkable
new general characterization of classes of infinitely divisible distributions,
which were already considered by James et al. (2008) and Aoyama et al.
(2010) in some special cases.
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1. INTRODUCTION AND PRELIMINARIES

Let I(Rd) be the class of all infinitely divisible distributions on Rd and

Ilog(Rd) =
{
µ ∈ I(Rd) :

∫
Rd

log+ |x|µ(dx) <∞
}
,

where log+ |x| = (log |x|)∨ 0. Let {X(µ)
t } be a Lévy process on Rd with L(X(µ)

1 )
= µ ∈ I(Rd), where and in what follows L denotes “the law of.” Recently, many
stochastic integral mappings have been studied. Namely, for a nonrandom measur-
able function f , we define

µ̃ = Φf (µ) = L
(∞∫

0

f(t)dX
(µ)
t

)
, µ ∈ D(Φf ) ⊂ I(Rd),

where D(Φf ) is the domain of the mapping Φf , that is, the class of µ ∈ I(Rd) for
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which
∫∞
0

f(t)dX
(µ)
t is definable. (See, e.g., [18].) The well-studied mappings are

the following.
(i) U-mapping [8]: For µ ∈ D(U) = I(Rd), U(µ) = L

( ∫ 1

0
tdX

(µ)
t

)
.

(ii) Υ-mapping [4]: For µ ∈ D(Υ)=I(Rd), Υ(µ)=L
( ∫ 1

0
log(t−1)dX

(µ)
t

)
.

(iii) Φ-mapping ([10], [20], [21]): For µ ∈ D(Φ) = Ilog(Rd),

Φ(µ) = L
(∞∫

0

e−tdX
(µ)
t

)
.

(iv) Ψ-mapping [4]: Let p(x) =
∫∞
x

e−uu−1du, x > 0, and denote its inverse

function by p∗(t). For µ ∈ D(Ψ) = Ilog(Rd), Ψ(µ) = L
( ∫∞

0
p∗(t)dX

(µ)
t

)
.

(v) G-mapping [15]: Let g(x) =
∫∞
x

exp(−u2)du, x > 0, and denote its in-

verse function by g∗(t). For µ ∈ D(G) = I(Rd), G(µ) = L
( ∫ π1/2/2

0
g∗(t)dX

(µ)
t

)
.

(vi) M-mapping [13]: Let m(x) =
∫∞
x

exp(−u2)u−1du, x > 0, and denote
its inverse function by m∗(t). For µ ∈ D(M) = Ilog(Rd),

M(µ) = L
(∞∫

0

m∗(t)dX
(µ)
t

)
.

We also use the notation ΦL
f , UL, ΥL, ΦL, ΨL, GL andML as the transfor-

mations of Lévy measures in each mapping. For instance, if ν is the Lévy measure
of µ, then ΦL

f (ν) is the Lévy measure of Φf (µ), provided that Φf (µ) is definable.
These mappings are related to the following subclasses of I(Rd), which are

defined in terms of Lévy measures. To explain it, we need the polar decomposition
of Lévy measures (see, e.g., [4]).

Let ν be the Lévy measure of the characteristic function of some µ ∈ I(Rd)
with 0 < ν(Rd) ¬ ∞. Then there exist a measure λ on S = {ξ ∈ Rd : |ξ| = 1}
with 0 < λ(S) ¬ ∞ and a family {νξ, ξ ∈ S} of measures on (0,∞) such that
νξ(B) is measurable in ξ for each B ∈ B

(
(0,∞)

)
, 0 < νξ

(
(0,∞)

)
¬ ∞ for each

ξ ∈ S, and

(1.1) ν(B) =
∫
S

λ(dξ)
∞∫
0

1B(rξ)νξ(dr), B ∈ B(Rd \ {0}).

Here λ and {νξ} are uniquely determined by ν up to multiplication of a measurable
function c(ξ) and c(ξ)−1 with 0 < c(ξ) <∞, and νξ is called the radial component
of ν. If ν fulfills (1.1), then we say that (λ, νξ) is a polar decomposition of ν.

Classes in I(Rd) we are going to be concerned with in this paper are defined
in the following way in terms of νξ:

(i) The class U(Rd) (the Jurek class): νξ(dr) = ℓξ(r)dr, where ℓξ(r) is mea-
surable in ξ ∈ S and nonincreasing and right-continuous in r ∈ (0,∞).

(ii) The class B(Rd) (the Goldie–Steutel–Bondesson class): νξ(dr) =
ℓξ(r)dr, where ℓξ(r) is measurable in ξ∈S and completely monotone in r∈(0,∞).
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(iii) The class L(Rd) (the class of selfdecomposable distributions): νξ(dr) =
r−1 kξ(r)dr, where kξ(r) is measurable in ξ ∈ S and nonincreasing and right-
continuous in r ∈ (0,∞).

(iv) The class T (Rd) (the Thorin class): νξ(dr) = r−1kξ(r)dr, where kξ(r)
is measurable in ξ ∈ S and completely monotone in r ∈ (0,∞).

(v) The class G(Rd) (the class of generalized type G distributions): νξ(dr) =
gξ(r

2)dr, where gξ(r) is measurable in ξ ∈S and completely monotone in r∈
(0,∞).

(vi) The class M(Rd) (the class M ): νξ(dr) = gξ(r
2)r−1dr, where gξ(r) is

measurable in ξ ∈ S and completely monotone in r ∈ (0,∞).
Then we know the following characterizations of these classes by the map-

pings above.

PROPOSITION 1.1. (i) U(Rd) = U
(
I(Rd)

)
; [8].

(ii) B(Rd) = Υ
(
I(Rd)

)
; [4].

(iii) L(Rd) = Φ
(
Ilog(Rd)

)
([10], [20], [21]).

(iv) T (Rd) = Ψ
(
Ilog(Rd)

)
; [4].

(v) G(Rd) = G
(
I(Rd)

)
([2] for symmetric case and [15] for general case).

(vi) M(Rd) =M
(
Ilog(Rd)

)
([3] for symmetric case and [13] for general

case).

The relations among the classes are the following:

U(Rd) ⊃ B(Rd) ∪ L(Rd), B(Rd) ∩ L(Rd) ⊃ T (Rd),(1.2)

G(Rd) ⊃ B(Rd)(1.3)

and

(1.4) M(Rd) ⊃ T (Rd).

The relations (1.2) can be seen from their definitions, (1.3) is shown in [15] and
(1.4) is proved in [3] for symmetric case, but it is also true for general case. There-
fore, T (Rd) is the smallest class among these six classes. Many concrete one-
dimensional infinitely divisible distributions belonging to these classes are known.
(See [11].)

Since one of the main topics in this paper is a gamma distribution, we hence-
forth consider only distributions in I(R).

Let γc,λ be a gamma random variable with parameters c > 0 and λ > 0.
Namely,

P (γc,λ ∈ B) = λcΓ(c)−1
∫

B∩(0,∞)

xc−1e−λxdx, B ∈ B(R),

and
E[exp(izγc,λ)] = exp

{
c
∞∫
0

(eizx − 1)x−1e−λxdx
}
.
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Therefore, L(γc,λ) belongs to all six classes mentioned above. Since the six map-
pings above are injective (see, e.g., [4], [8], [10], [13]), the inverse image ofL(γc,λ)
through each mapping is unique. Our first interest is what they are. Namely, since

(1.5) γc,λ
d
=



1∫
0

tdX
(µU )
t , for a unique µU ∈ I(R),

1∫
0

log (t−1)dX
(µΥ)
t , for a unique µΥ ∈ I(R),

∞∫
0

e−tdX
(µΦ)
t , for a unique µΦ ∈ Ilog(R),

∞∫
0

p∗(t)dX
(µΨ)
t , for a unique µΨ ∈ Ilog(R),

∞∫
0

g∗(t)dX
(µG)
t , for a unique µG ∈ I(R),

∞∫
0

m∗(t)dX
(µM)
t , for a unique µM ∈ Ilog(R),

where d
= means equality in distribution, we want to find µU , µΥ, µΦ, µΨ, µG and

µM.
This paper is organized as follows. Section 2 answers this question. The proofs

are given in Section 3 in a more general setting. This general setting allows us to
find a new general characterization of classes of infinitely divisible distributions,
which is discussed in Section 4.

2. RESULTS

Let µ̂ be the characteristic function of µ ∈ I(R). The answer to the question
stated after (1.5) is the following.

PROPOSITION 2.1. We have:

µ̂U (z) = exp
{
c
∞∫
0

(eizx − 1)e−λx(λ+ x−1)dx
}
,(2.1)

µ̂Υ(z) = exp
{
c
1/λ∫
0

(eizx − 1)x−1dx
}
,(2.2)

µ̂Φ(z) = exp
{
cλ
∞∫
0

(eizx − 1)e−λxdx
}
,(2.3)

µ̂Ψ(z) = exp
{
c
(
exp(izλ−1)− 1

)}
,(2.4)

µ̂G(z) = exp
{
2π−1/2c

∞∫
0

(eizx − 1)x−1 exp(−λ2x2/4)dx
}
,(2.5)

µ̂M(z) = exp
{
π−1/2cλ

∞∫
0

(eizx − 1) exp(−λ2x2/4)dx
}
.(2.6)
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We can prove Proposition 2.1 by the direct calculation of the cumulant func-
tions of the stochastic integrals, but we give another proof in a more general setting
in the next section.

The explicit forms of µU , µΦ, µΨ and µM are given as follows.

COROLLARY 2.1. Let {N(t)} be a Poisson process with parameter 1. Let
us consider {γt,λ, t  0}, with γ0,λ = 0, a gamma process with parameter λ > 0
and let {γ̃t,λ} be an independent copy of {γt,λ}. Let W1,W2, . . . be i.i.d. standard
normal random variables. Assume that the processes and the random variables
above are independent. Then we have the following:

γc,λ
d
=



1∫
0

td(γN(ct),λ + γ̃ct,λ), µU = L(γN(c),λ + γ̃c,λ),

∞∫
0

e−tdγN(ct),λ, µΦ = L(γN(c),λ),

λ−1
∞∫
0

p∗(t)dN(ct), µΨ = L
(
λ−1N(c)

)
,

21/2λ−1
∞∫
0

m∗(t)d
(N(ct)∑

k=1

|Wk|
)
, µM = L

(
21/2λ−1

N(c)∑
k=1

|Wk|
)
.

Here and in what follows,
∑0

k=1 is regarded as 0. The last expression suggests us
the following result about symmetrized gamma distributions:

γc,λ − γ̃c,λ
d
= 21/2λ−1

∞∫
0

m∗(t)dB
(
N(2ct)

)
,

where {B(t)} is a Brownian motion independent of {N(t)}.
Let I(R+) be the totality of µ ∈ I(R) whose support is included in R+ =

[0,∞). We use the symbol

U(R+) := U(R) ∩ I(R+).

We also use B(R+), L(R+), T (R+), G(R+), M(R+) and Ilog(R+) in the same
way.

The following is a comment on µΥ.

REMARK 2.1. What is µΥ? We do not know an answer. However, this distri-
bution is important in L(R+) in the sense that if some property holds (for example,
the unimodality of distributions on R+) for this special distribution, then the same
property holds for all distributions in L(R+). (See, e.g., [22], [17].) We call this
distribution a building-block of L(R+). (This remark is based on a private discus-
sion with Ken-iti Sato.)

We do not know a probabilistic meaning of µG .
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3. MORE GENERAL FACTS INCLUDING THE PROOF OF PROPOSITION 2.1

Let γ = γ1,1. As E[exp(izγc,λ)] =
(
E[exp(izλ−1γ)]

)c, we may assume c =

λ = 1 without loss of generality. Indeed, if γ d
=
∫∞
0

f(t)dXt with a nonrandom

measurable function f and a Lévy process {Xt}, then γc,λ
d
= λ−1

∫∞
0

f(t)dXct

= λ−1
∫∞
0

f(t/c)dXt.
Let νγ(dx) := x−1e−xdx, which is the Lévy measure of γ. Let f be a non-

negative nonrandom measurable function and X = {Xt} a subordinator without
drift, i.e. E[exp(izXt)] = exp

{
t
∫
R+

(eizx− 1)νX(dx)
}

, where νX({0}) = 0 and∫
R+

(x ∧ 1)νX(dx) <∞. In this case, in order to prove that
∫∞
0

f(t)dXt is defin-

able and γ
d
=
∫∞
0

f(t)dXt, it is only enough to check that

νγ(B) =
(
ΦL
f (νX)

)
(B)(3.1)

=
∞∫
0

ds
∫

(0,∞)

1B
(
f(s)x

)
νX(dx), B ∈ B

(
(0,∞)

)
,

due to Theorems 2.6 and 3.5 of [19]. Indeed, since γ and X1 are nonnegative
infinitely divisible random variables, γ and X1 have no Gaussian part. Also, νX is
transformed by ΦL

f to the Lévy measure νγ due to (3.1). Furthermore, by (3.1),

(3.2)
∞∫
0

∣∣∣f(s)[ ∫
(0,∞)

x(1 + x2)−1νX(dx)

+
∫

(0,∞)

x
((
1 + f(s)2x2

)−1 − (1 + x2)−1
)
νX(dx)

]∣∣∣ds
=
∞∫
0

ds
∫

(0,∞)

f(s)x
(
1 + f(s)2x2

)−1
νX(dx)

=
∫

(0,∞)

x(1 + x2)−1νγ(dx) <∞,

(3.3) lim
p↓0,q↑∞

q∫
p

f(s)ds
[ ∫
(0,∞)

x(1 + x2)−1νX(dx)

+
∫

(0,∞)

x
((
1 + f(s)2x2

)−1 − (1 + x2)−1
)
νX(dx)

]
=
∞∫
0

ds
∫

(0,∞)

f(s)x
(
1 + f(s)2x2

)−1
νX(dx)

=
∫

(0,∞)

x(1 + x2)−1νγ(dx) <∞.
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These imply that
∫∞
0

f(s)dXs is definable and has no drift since X1 has no drift.
Thus it is only enough to check the condition (3.1).

Now, for two σ-finite measures ρ and η on (0,∞), we define

(ρ~ η)(B) =
∫

(0,∞)2
1B(xy)ρ(dx)η(dy).

Trivially, ρ~ η = η~ ρ and ρ~ δ1 = ρ, where δa is the Dirac measure at a. If two
(0,∞)-valued random variables X and Y are independent, then L(X)~ L(Y ) =
L(XY ). For a σ-finite measure η on (0,∞), define a transformation Υη of a σ-
finite measure ρ on R to a measure Υη(ρ) on R by(

Υη(ρ)
)
(B) :=

∫
(0,∞)

ρ(x−1B)η(dx), B ∈ B(R),

which is called the Upsilon transformation with dilation measure η (cf. [5]). For
σ-finite measures ρ and η on (0,∞), it is easy to see that

Υη(ρ) = ρ~ η = η ~ ρ = Υρ(η).

Let η be a measure on (0,∞) satisfying

(3.4) εη(ξ) := η
(
(ξ,∞)

)
<∞

for all ξ > 0. (It is permitted that εη(0) = η
(
(0,∞)

)
=∞.) Let

ε∗η(t) := inf{ξ > 0: εη(ξ) ¬ t}, t > 0.

Then, εη and ε∗η are nonincreasing càdlàg functions. We have ε∗η(t) ¬ ξ if and only
if εη(ξ) ¬ t, so that

Leb(ε∗η)
−1((ξ,∞)

)
= Leb({t > 0: ε∗η(t) > ξ})(3.5)

= Leb({t > 0: εη(ξ) > t})
= εη(ξ) = η

(
(ξ,∞)

)
, ξ > 0,

where Leb denotes the Lebesgue measure and Leb(ε∗η)
−1 means the image mea-

sure of Leb under ε∗η. Hence we infer that for any σ-finite measure ρ on (0,∞)(
Υη(ρ)

)
(B) =

∫
(0,∞)

η(dx)
∫

(0,∞)

1B(xy)ρ(dy)

=
∫

(0,∞)

Leb(ε∗η)
−1(dx)

∫
(0,∞)

1B(xy)ρ(dy)

=
εη(0)∫
0

ds
∫

(0,∞)

1B
(
ε∗η(s)y

)
ρ(dy)

=
(
ΦL
ε∗η
(ρ)

)
(B), B ∈ B

(
(0,∞)

)
.
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Therefore, if νγ = Υη(νX)(= η ~ νX), then

γ
d
=

εη(0)∫
0

ε∗η(t)dXt,

namely,
(3.6) L(γ) = Φε∗η(µ) with µ̂(z) = exp

{ ∫
(0,∞)

(eizx − 1)νX(dx)
}
,

where γ, νγ , {Xt} and νX are the ones in the previous paragraph.
Also, the fact that νγ = ρ ~ η for some σ-finite measures ρ and η has an-

other meaning. In what follows, ΥηΥρ, ΦL
fΦ

L
g and ΦfΦg mean the composites of

two transformations (or mappings). Proposition 4.1 of [5] implies Υνγ = ΥρΥη =
ΥηΥρ. If η satisfies (3.4) and ρ satisfies (3.4) with the replacement of η by ρ, then,
by the argument above, we have Υη = ΦL

ε∗η
and Υρ = ΦL

ε∗ρ
. Since Υνγ = ΨL, we

have ΨL = ΦL
ε∗ρ
ΦL
ε∗η

= ΦL
ε∗η
ΦL
ε∗ρ

, which suggests in many cases that

Ψ = Φε∗ρΦε∗η = Φε∗ηΦε∗ρ .

On the base of the arguments above, we have the following. Let νγ = ν1 ~ ν2
for some Lévy measures νj , j = 1, 2, on (0,∞) satisfying∫

(0,∞)

(x ∧ 1)νj(dx) <∞.

Denote by {Xj(t)} a subordinator without drift whose Lévy measure at t = 1 is
νj . Then, the following are true:

γ
d
=

εν1(0)∫
0

ε∗ν1(t)dX2(t)
d
=

εν2(0)∫
0

ε∗ν2(t)dX1(t),(3.7)

ΨL = ΦL
ε∗ν1

ΦL
ε∗ν2

= ΦL
ε∗ν2

ΦL
ε∗ν1

.(3.8)

EXAMPLE 3.1. νγ = νγ ~ δ1.

EXAMPLE 3.2. Let −∞ < α < β <∞, ηα(dx) = x−α−1e−xdx and

ηβ,α(dx) =
(
Γ(α− β)

)−1
(1− x)α−β−1x−α−11(0,1)(x)dx.

Write Ψα := Φε∗ηα
and Φβ,α := Φε∗ηβ,α

. These stochastic integral mappings were
introduced by Sato [18] and he proved the following formula about composition of
these mappings:

Ψα = ΨβΦβ,α = Φβ,αΨβ for −∞ < β < α <∞,

which entails that Υηα(ν) = (ΥηβΥηβ,α)(ν) for Lévy measures ν of infinitely di-
visible distributions in the domain of the mapping above. Noting that η0 = νγ , we
have

νγ = Υη0(δ1) = (ΥηβΥηβ,0)(δ1) = ηβ ~ ηβ,0 for β < 0.
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It follows that for β < 0

(3.9) L(γ) = Ψβ(µβ,0)

with µ̂β,0(z) = exp
{(
Γ(−β)

)−1 1∫
0

(eizx − 1)(1− x)−β−1x−1dx
}
,

and

(3.10) L(γ) = Φβ,0(µβ) with µ̂β(z) = exp
{∞∫

0

(eizx − 1)x−β−1e−xdx
}
.

The latter expression has the meaning that

γ
d
=
∞∫
0

εη∗β,α(t)dγ−βN(Γ(−β)t),1,

where {γt,1} and {N(t)} are the processes defined in Corollary 2.1. Also, it fol-
lows that

νγ = ηβ ~ ηβ,0 = Υηβ (δ1)~ ηβ,0 = (Υηβ′Υηβ′,β )(δ1)~ ηβ,0 = ηβ′ ~ ηβ′,β ~ ηβ,0

for β′ < β < 0. Note that ρβ′,β := ηβ′ ~ ηβ,0 is the Lévy measure of a subordinator
by Theorem 3.4 (ii) of [5] and its density is

ρβ′,β(dt) = dt
1∫
0

(ts−1)−β
′−1 exp(−ts−1)s−1

(
Γ(−β)

)−1
(1− s)−β−1s−1ds

=
(
Γ(−β)

)−1
t−β

′−1e−tdt
∞∫
0

x−β−1(x+ 1)β−β
′
e−txdx

= t−(β
′+3)/2e−t/2W(2β−β′+1)/2,−β′/2(t)dt,

where Wa,b is the Whittaker function. Since νγ = ηβ′,β ~ ρβ′,β , we have

L(γ) = Φβ′,β(µ
(1)
β′,β) with µ̂

(1)
β′,β(z) = exp

{∞∫
0

(eizx − 1)ρβ′,β(dx)
}
,

and
L(γ) = Φε∗ρβ′,β

(µ
(2)
β′,β)

with

µ̂
(2)
β′,β(z) = exp

{(
Γ(β − β′)

)−1 1∫
0

(eizx − 1)(1− x)β−β
′−1x−β−1dx

}
.

The latter expression has the meaning that

γ
d
=
∞∫
0

εη∗β,α(t)d
(N(Γ(−β)Γ(−β′)−1t)∑

k=1

X
(−β,β−β′)
k

)
,
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where {N(t)} is a Poisson process with parameter 1 and X
(−β,β−β′)
k , k ∈ N,

are i.i.d. beta random variables with parameters −β and β − β′, independent of
{N(t)}.

EXAMPLE 3.3. Let ρ(dx) = exp(−x2)dx and η(dx) = x−1 exp(−x2)dx.
Then

(ρ~ η)(dt) = dt
∞∫
0

exp
(
−(t/s)2

)
s−1s−1 exp(−s2)ds

= 2−1dt
∞∫
0

exp(−t2u)u−1/2e−1/udu

= π1/2(2te2t)−1dt = π1/22−1νγ(2dt).

Hence

(3.11) νγ = 2π−1/2ρ(2−1·)~ η = ρ~ 2π−1/2η(2−1·).

This also entails that νγ = 2π−1/2δ2 ~ ρ ~ η, that is, Υνγ = Υ2π−1/2δ2
ΥρΥη

(cf. Proposition 4.1 of [5]). Hence

(3.12) ΨL = Υ2π−1/2δ2
GLML = ΦL

ε∗
2π−1/2δ2

GLML,

where Φε∗
2π−1/2δ2

(µ) = L(2X2π−1/2) = L
(
2
∫ 2π−1/2

0
dX

(µ)
t

)
.

EXAMPLE 3.4. Let α < 0. Let ηα(dx) = x−α−11(0,1)(x)dx and let ρα(dx) =
(1− αx−1)e−xdx. Note that

(3.13) ε∗ηα(t) = (1 + αt)−1/α1(0,−1/α)(t).

Define Φα := Φε∗ηα
, which was studied in [9], [18], [12]. It follows that

ηα ~ ρα(dt) = dt
∞∫
t

(t/s)−α−1s−1(1− αs−1)e−sds

= t−α−1dt
∞∫
t

(1− αs−1)sαe−sds.

Since d(tαe−t)/dt = (αt−1 − 1)tαe−t, we have

(3.14) ηα ~ ρα(dt) = t−1e−tdt = νγ(dt).

This also yields

γ
d
=


−1/α∫

0

(1 + αt)−1/αd(γN(t),1 + γ̃−αt,1),

∞∫
0

ε∗ρα(t)d
(N(−α−1t)∑

k=1

X
(−α,1)
k

)
,
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where {γt,1}, {γ̃t,1} and {N(t)} are the processes defined in Corollary 2.1, and
X

(−α,1)
k , k ∈ N, are i.i.d. beta random variables with parameters −α and 1, inde-

pendent of {N(t)}.
We are now ready to prove Proposition 2.1.

P r o o f o f P r o p o s i t i o n 2.1. By (3.13), Φε∗η−1
= U . Hence (3.14) with

α = −1 and (3.6) yield (2.1).
Letting β = −1 in (3.9) and (3.10), we have (2.2) and (2.3), respectively.
Note that ενγ (ξ) = p(ξ), which entails Φε∗νγ

= Ψ. Hence Example 3.1 and
(3.6) yield (2.4).

The measures ρ and η in Example 3.3 satisfy Φε∗ρ = G and Φε∗η =M. There-
fore (3.11) and (3.6) imply (2.5) and (2.6), respectively. �

In the following, we give more expressions of γ and νγ .

EXAMPLE 3.5. Let

ρα,β(dx) = x−α−1 exp(−xβ)dx and η(dx) = 2π−1(1−x2)−1/21(0,1)(x)dx.

Maejima et al. [14] proved that GL = Υ2δ1Υρ−2,2Υη. It follows from (3.12) that

ΨL = Υ2π−1/2δ2
MLΥ2δ1Υρ−2,2Υη = Υ4π−1/2δ2

MLΥρ−2,2Υη.

Hence
νγ = 4π−1/2δ2 ~ ρ0,2 ~ ρ−2,2 ~ η.

Noting that ρ0,2 ~ ρ−2,2 = Υρ−2,2(ρ0,2) and ρ0,2 ~ η = Υη(ρ0,2), we infer by The-
orem 3.4 (ii) of [5] that ρ0,2 ~ ρ−2,2 and ρ0,2 ~ η are Lévy measures on (0,∞)
satisfying

∫
(0,∞)

(x ∧ 1)(ρ0,2 ~ ρ−2,2)(dx) +
∫
(0,∞)

(x ∧ 1)(ρ0,2 ~ η)(dx) < ∞.
Moreover, we get

(ρ0,2 ~ ρ−2,2) (dt) = dt
∞∫
0

(t/s)−1 exp
(
−(t/s)2

)
s−1s exp(−s2)ds

= (2t)−1dt
∞∫
0

u−2e−1/u exp(−t2u)du = K1(2t)dt,

(ρ0,2 ~ η) (dt) = dt
1∫
0

(t/s)−1 exp
(
−(t/s)2

)
s−12π−1(1− s2)−1/2ds

= (πt)−1dt
∞∫
1

exp(−t2u)(u− 1)−1/2u−1du

= (π1/2t)−1dt
∞∫
t2
u−1/2e−udu

= (π1/2t)−12dt
∞∫
t

exp(−v2)dv,
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where K1 is the modified Bessel function of order 1. It also follows that

γ
d
=


2
∞∫
0

ε∗ρ0,2~ρ−2,2
(t)d

(N(4π−1/2t)∑
k=1

Xk

)
,

2
∞∫
0

ε∗ρ0,2~η(t)d
(N(2π−1/2t)∑

k=1

Yk
)
,

where we have used ερ0,2~ρ−2,2(0) =
∫∞
0

K1(2t)dt = ∞, due to the fact that
K1(x) ∼ x−1 as x ↓ 0, and where {N(t)} is a Poisson process with parameter 1,
Xk, k ∈ N, are i.i.d. random variables with arcsine law independent of {N(t)},
and Yk, k ∈ N, are i.i.d. Weibull random variables with parameter 2 independent
of {N(t)}. We also have

γ
d
= 2

1∫
0

cos(2−1πt)dX
(µ)
t

with

µ̂(z) = exp
{
4π−1/2

∞∫
0

(eizx − 1)K1(2x)dx
}
.

EXAMPLE 3.6. Let α ∈ (−∞, 1) ∪ (1, 2) and β > 0. Let ρα,β and ηα be the
ones in Examples 3.5 and 3.4, respectively. Maejima and Ueda [16] proved that
ρα,β = βηα ~ ρα−β,β . On the other hand, by the equalities (3.12), we infer that
νγ = 2π−1/2δ2 ~ ρ−1,2 ~ ρ0,2. Hence

νγ = 8π−1/2δ2 ~ η−1 ~ η0 ~ ρ−3,2 ~ ρ−2,2.

This yields several results as in the examples above.

4. A REMARKABLE CHARACTERIZATION
OF CLASSES OF INFINITELY DIVISIBLE DISTRIBUTIONS

Let I♯(R+) denote the totality of µ ∈ I(R+) without drift. Let Isym,0(R)
be the totality of symmetric µ ∈ I(R) without Gaussian part. We use the sym-
bols U ♯(R+) := U(R) ∩ I♯(R+) and U sym,0(R) := U(R) ∩ Isym,0(R). Also, we
define B♯(R+), Bsym,0(R), L♯(R+), Lsym,0(R), T ♯(R+), T sym,0(R), G♯(R+),
Gsym,0(R), M ♯(R+), M sym,0(R), I♯log(R+) and Isym,0

log (R) in the same way.
The class T (R+) is well known to be the class of generalized gamma convo-

lutions (GGC) (cf. [6]). T ♯(R+) is the totality of generalized gamma convolutions
without drift. James et al. [7] characterized the class T ♯(R+) in the following way.

PROPOSITION 4.1 (James et al. [7]). Let {γt} be a gamma process, which is
a Lévy process with L(γ1) = L(γ). Then

T ♯(R+) =
{
L
(∞∫

0

h(t)dγt
)
: h  0,

∞∫
0

log
(
1 + h(t)

)
dt <∞

}
.
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Also, Aoyama et al. [1] showed a similar proposition about the class B♯(R+)
as follows. For a Lévy process Y = {Yt}, denote by L(0,∞)(Y ) the totality of
locally Y -integrable measurable functions on (0,∞) (cf. [19]), and let

Dom(Y ) :=
{
h ∈ L(0,∞)(Y ) :

∞∫
0

h(t)dYt is definable
}
,

Dom+(Y ) := {h ∈ Dom(Y ) : h  0}.

PROPOSITION 4.2 (Aoyama et al. [1]). Let {N(t)} be a Poisson process with
parameter 1. Then

B♯(R+) =
{
L
(∞∫

0

h(t)dγN(t)

)
: h ∈ Dom+(γN(·))

}
.

Recall Proposition 1.1. Then we have the following:

(4.1)
{
L
(∞∫

0

p∗(t)dX
(µ)
t

)
: µ ∈ I♯log(R+)

}
=

{
L
(∞∫

0

h(t)dγt
)
: h  0,

∞∫
0

log
(
1 + h(t)

)
dt <∞

}
,

(4.2)
{
L
( 1∫

0

log(t−1)dX
(µ)
t

)
: µ ∈ I♯(R+)

}
=

{
L
(∞∫

0

h(t)dγN(t)

)
: h ∈ Dom+(γN(·))

}
.

Let νγ and νγ(N(·)) be the Lévy measures of {γt} and {γN(t)}, respectively. Not-
ing that p(ξ) =

∫∞
ξ

e−uu−1du = νγ
(
(ξ,∞)

)
and that the inverse function of t 7→

log t−1 is ξ 7→ e−ξ = νγ(N(·))
(
(ξ,∞)

)
, we can understand that (4.1) and (4.2)

come from a kind of the commutativity (3.7) of integrands and driving processes
of stochastic integrals which we have considered in the previous section. Using
this method, we can characterize some classes of infinitely divisible distributions
in two ways. One is by fixing an integrand and by taking some possible driving
Lévy processes, and the other is by fixing a driving Lévy process and by taking
some possible integrands.

Let us fix a Lévy measure ν on (0,∞) satisfying
∫
(0,1]

xν(dx) < ∞. We
denote by {Xν(t)} a subordinator without drift whose Lévy measure is ν. Also
{Xsym

ν (t)} denotes a symmetric Lévy process without Gaussian part with Lévy
measure 1(0,∞)(x) ν(dx) + 1(−∞,0)(x)ν(−dx). For j = 1, 2, let

L↓j :=
{
h : h is a nonnegative nonincreasing right-continuous function

satisfying
∞∫
0

(
h(t)j ∧ 1

)
dt <∞

}
.
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Then we have the following:

THEOREM 4.1. (i) We have

Φε∗ν

(
D(Φε∗ν ) ∩ I

♯(R+)
)
=

{
L
(∞∫

0

h(t)dXν(t)
)
: h ∈ Dom+(Xν) ∩ L↓1

}
.

(ii) If the class Φε∗ν

(
D(Φε∗ν ) ∩ I♯(R+)

)
is closed under weak convergence,

then

Φε∗ν

(
D(Φε∗ν ) ∩ I

♯(R+)
)
=

{
L
(∞∫

0

h(t)dXν(t)
)
: h ∈ Dom+(Xν)

}
.

P r o o f. (i) (⊂) Suppose µ ∈ D(Φε∗ν ) ∩ I♯(R+) with Lévy measure νµ. Let
h := ε∗νµ . Then h is a nonnegative nonincreasing càdlàg function satisfying

∞∫
0

(
h(t) ∧ 1

)
dt =

ενµ (0)∫
0

(
ε∗νµ(t) ∧ 1

)
dt

=
∫

(0,∞)

(x ∧ 1)Leb(ε∗νµ)
−1(dx) =

∫
(0,∞)

(x ∧ 1)νµ(dx) <∞,

where we have used (3.5) with the replacement of η by νµ. Hence h ∈ L↓1. Since
µ ∈ D(Φε∗ν ),

∫ εν(0)

0
ε∗ν(t)dX

(µ)
t is definable and its Lévy measure is

(4.3)
εν(0)∫
0

ds
∫

(0,∞)

1B
(
ε∗ν(s)x

)
νµ(dx)

=
∫

(0,∞)

Leb(ε∗ν)
−1(dy)

∫
(0,∞)

1B(xy)νµ(dx)

=
∫

(0,∞)

ν(dy)
∫

(0,∞)

1B(xy)νµ(dx) = (ν ~ νµ)(B),

which satisfies
∫
(0,∞)

(x∧ 1)(ν ~ νµ)(dx) <∞ in view of
∫ εν(0)

0
ε∗ν(t)dX

(µ)
t  0.

Since {X(µ)
t } has no drift, the location parameter of the integral

∫ εν(0)

0
ε∗ν(t)dX

(µ)
t

is
∫
(0,∞)

x(1 + x2)−1 (ν ~ νµ)(dx). Noting that

(4.4)
∞∫
0

ds
∫

(0,∞)

1B
(
h(s)x

)
ν(dx)

=

ενµ (0)∫
0

ds
∫

(0,∞)

1B
(
ε∗νµ(s)x

)
ν(dx) = (νµ ~ ν)(B),

we infer, by similar calculations to (3.2) and (3.3), that h ∈ Dom+(Xν) and that∫∞
0

h(t)dXν(t)
d
=
∫ εν(0)

0
ε∗ν(t)dX

(µ)
t .
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(⊃) Suppose h ∈ Dom+(Xν) ∩ L↓1. Let

(4.5) h∗(x) := inf{t > 0: h(t) ¬ x}, x > 0.

Then, h is a nonincreasing càdlàg function satisfying h∗(∞) = 0. We have h∗(x)¬
t if and only if h(t) ¬ x, and hence

Lebh−1
(
(x,∞)

)
= Leb

(
{t > 0: h(t) > x}

)
= Leb

(
{t > 0: h∗(x) > t}

)
= h∗(x) = −

∞∫
x

dh∗(y), x > 0.

Hence

−
∞∫
0

(x ∧ 1)dh∗(x) =
∫

(0,∞)

(x ∧ 1)Lebh−1(dx)

=
h∗(0)∫
0

(
h(t) ∧ 1

)
dt =

∞∫
0

(
h(t) ∧ 1

)
dt <∞.

Let µ ∈ I♯(R+) with Lévy measure νµ(dx) = −dh∗(x). Then ενµ = h∗, and
hence ε∗νµ = h. Since h ∈ Dom+(Xν),

∫∞
0

h(t)dXν(t) is definable and its
Lévy measure is (4.4), which satisfies

∫
(0,∞)

(x ∧ 1)(ν ~ νµ)(dx) < ∞ in view

of
∫∞
0

h(t)dXν(t)  0. Since {Xν(t)} has no drift, the location parameter of the
integral

∫∞
0

h(t)dXν(t) is
∫
(0,∞)

x(1 + x2)−1(ν ~ νµ)(dx). By (4.3) and similar

calculations to (3.2) and (3.3), we infer that µ ∈ D(Φε∗ν ) and that
∫∞
0

h(t)dXν(t)
d
=∫ εν(0)

0
ε∗ν(t)dX

(µ)
t .

(ii) (⊂) This follows from (i).

(⊃) It follows from (i) that

L
(
Xν(1)

)
= L

(∞∫
0

1(0,1)(t)dXν(t)
)
∈ Φε∗ν

(
D(Φε∗ν ) ∩ I

♯(R+)
)
,

since 1(0,1) ∈ Dom+(Xν) ∩ L↓1. Then, by the definition of stochastic integrals,
∞∫
0

h(t)dXν(t) ∈ Φε∗ν

(
D(Φε∗ν ) ∩ I

♯(R+)
)

for any h ∈ Dom+(Xν)

if Φε∗ν

(
D(Φε∗ν )∩ I♯(R+)

)
is closed under weak convergence. �

About the symmetric cases, we have the following.

THEOREM 4.2. (i) We have

Φε∗ν

(
D(Φε∗ν ) ∩ I

sym,0(R)
)
=

{
L
(∞∫

0

h(t)dXsym
ν (t)

)
: h ∈ Dom+(X

sym
ν ) ∩ L↓2

}
.

(ii) If the class Φε∗ν

(
D(Φε∗ν ) ∩ I

sym,0(R)
)

is closed under weak convergence,
then

Φε∗ν

(
D(Φε∗ν ) ∩ I

sym,0(R)
)
=

{
L
(∞∫

0

h(t)dXsym
ν (t)

)
: h ∈ Dom+(X

sym
ν )

}
.
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P r o o f. (i) (⊂) Suppose µ ∈ D(Φε∗ν ) ∩ Isym,0(R) with Lévy measure νµ.
Note that νµ(B) = νµ(−B) and that the location parameter of µ is 0. Let ν+µ :=
νµ|B((0,∞)), which is the restriction of νµ on B

(
(0,∞)

)
, and let h := ε∗

ν+µ
. Then h

is a nonnegative nonincreasing càdlàg function satisfying

∞∫
0

(
h(t)2 ∧ 1

)
dt =

ε
ν+µ

(0)∫
0

(
ε∗
ν+µ

(t)2 ∧ 1
)
dt

=
∫

(0,∞)

(x2 ∧ 1)Leb(ε∗
ν+µ

)−1(dx) =
∫

(0,∞)

(x2 ∧ 1)νµ(dx) <∞,

where we have used (3.5) with the replacement of η by ν+µ . Hence h ∈ L↓2. Since

µ ∈ D(Φε∗ν ),
∫ εν(0)

0
ε∗ν(t)dX

(µ)
t is definable and its Lévy measure is

(4.6)
εν(0)∫
0

ds
∫
R
1B

(
ε∗ν(s)x

)
νµ(dx) =

∫
(0,∞)

Leb(ε∗ν)
−1(dy)

∫
R
1B(xy)νµ(dx)

=
∫

(0,∞)

ν(dy)
∫
R
1B(xy)νµ(dx)

=
∫

(0,∞)

ν(dy)
( ∫
(0,∞)

1B(xy)νµ(dx) +
∫

(0,∞)

1B(−xy)νµ(dx)
)

= (ν ~ ν+µ )
(
B ∩ (0,∞)

)
+ (ν ~ ν+µ )

(
(−B) ∩ (0,∞)

)
, B ∈ B

(
R \ {0}

)
.

Since {X(µ)
t } is symmetric without Gaussian part, so is

∫ εν(0)

0
ε∗ν(t)dX

(µ)
t . Note

that for any symmetric Lévy process Y = {Yt} without Gaussian part having Lévy
measure νY and for any measurable function f : (0,∞) → R, a necessary and
sufficient condition for L(Y1) ∈ D(Φf ) is that

∫∞
0

dt
∫
R 1B

(
f(t)x

)
νY (dx),

B ∈ B(R \ {0}), is a Lévy measure (cf. Theorems 2.6 and 3.5 of [19]). Note that

(4.7)
∞∫
0

ds
∫
R
1B

(
h(s)x

) (
1(0,∞)(x)ν(dx) + 1(−∞,0)(x)ν(−dx)

)
=

ε
ν+µ

(0)∫
0

ds
∫
R
1B

(
ε∗
ν+µ

(s)x
) (

1(0,∞)(x)ν(dx) + 1(−∞,0)(x)ν(−dx)
)

=
∫

(0,∞)

ν+µ (dy)
∫
R
1B(xy)

(
1(0,∞)(x)ν(dx) + 1(−∞,0)(x)ν(−dx)

)
=

∫
(0,∞)

ν+µ (dy)
∫

(0,∞)

1B(xy)ν(dx) +
∫

(0,∞)

ν+µ (dy)
∫

(0,∞)

1B(−xy)ν(dx)

= (ν ~ ν+µ )
(
B ∩ (0,∞)

)
+ (ν ~ ν+µ )

(
(−B) ∩ (0,∞)

)
, B ∈ B(R \ {0}),

which is equal to the Lévy measure (4.6) of
∫ εν(0)

0
ε∗ν(t)dX

(µ)
t . Consequently, we

have h ∈ Dom+(X
sym
ν ) and

∫∞
0

h(t)dXsym
ν (t)

d
=
∫ εν(0)

0
ε∗ν(t)dX

(µ)
t .
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(⊃) Suppose h ∈ Dom+(X
sym
ν ) ∩ L↓2. Define h∗ by (4.5). Then

−
∞∫
0

(x2 ∧ 1)dh∗(x) =
∫

(0,∞)

(x2 ∧ 1)Lebh−1(dx)

=
h∗(0)∫
0

(
h(t)2 ∧ 1

)
dt =

∞∫
0

(
h(t)2 ∧ 1

)
dt <∞.

Let µ ∈ Isym,0(R) with Lévy measure

νµ(B) = −
∫

B∩(0,∞)

dh∗(x)−
∫

(−B)∩(0,∞)

dh∗(x), B ∈ B(R \ {0}).

Then εν+µ = h∗, and thus ε∗
ν+µ

= h. Since h ∈ Dom+(X
sym
ν ),

∫∞
0

h(t)dXsym
ν (t)

is definable and its Lévy measure is (4.7). Due to (4.6), which is equal to (4.7), we
have µ ∈ D(Φε∗ν ) and

∫∞
0

h(t)dXsym
ν (t)

d
=
∫ εν(0)

0
ε∗ν(t)dX

(µ)
t .

(ii) (⊂) This follows from (i).
(⊃) It follows from (i) that

L
(
Xsym

ν (1)
)
= L

(∞∫
0

1(0,1)(t)dX
sym
ν (t)

)
∈ Φε∗ν

(
D(Φε∗ν ) ∩ I

sym,0(R)
)
,

since 1(0,1) ∈ Dom+(X
sym
ν ) ∩ L↓2. Then, by the definition of stochastic inte-

grals,
∫∞
0

h(t)dXsym
ν (t) ∈ Φε∗ν

(
D(Φε∗ν ) ∩ I

sym,0(R)
)

for any h ∈ Dom+(X
sym
ν )

if Φε∗ν

(
D (Φε∗ν ) ∩ I

sym,0(R)
)

is closed under weak convergence. �

In the following, we give some new stochastic integral characterizations of
well-known classes of infinitely divisible distributions.

EXAMPLE 4.1. Let ν = νγ . Then Proposition 1.1 and Theorem 4.1 (ii) yield

T ♯(R+) = Ψ
(
I♯log(R+)

)
=

{
L
(∞∫

0

h(t)dγt
)
: h ∈ Dom+(γ)

}
.

Also, h ∈ Dom+(γ) iff h  0 and
∫∞
0

dt
∫∞
0

h(t)x
(
h(t)x + 1

)−1
νγ(dx) < ∞.

The integrability condition
∫∞
0

dt
∫∞
0

h(t)x
(
h(t)x+ 1

)−1
νγ(dx) <∞ is equiva-

lent to
∫∞
0

log
(
1+h(t)

)
dt <∞. Thus, for h with h  0 and

∫∞
0

log
(
1+h(t)

)
dt

<∞, we have
∞∫
0

dt
∞∫
0

h(t)x
(
h(t)x+ 1

)−1
νγ(dx) =

∞∫
0

dt
∞∫
0

h(t)
(
h(t)x+ 1

)−1
e−xdx

¬
∞∫
0

dt
[ 1∫

0

h(t)
(
h(t)x+ 1

)−1
dx+

∞∫
1

h(t)
(
h(t) + 1

)−1
e−xdx

]
=
∞∫
0

[
log

(
1 + h(t)

)
+ h(t)

(
h(t) + 1

)−1
e−1

]
dt

¬ (1 + e−1)
∞∫
0

log
(
1 + h(t)

)
dt <∞.



116 T. Aoyama et al.

Conversely, for h with h  0 and
∫∞
0

dt
∫∞
0

h(t)x
(
h(t)x+1

)−1
νγ(dx) <∞, we

have

∞∫
0

log
(
1 + h(t)

)
dt =

∞∫
0

dt
1∫
0

h(t)
(
h(t)x+ 1

)−1
dx

¬
∞∫
0

dt
1∫
0

h(t)x
(
h(t)x+ 1

)−1
x−1e1−xdx

¬ e
∞∫
0

dt
∞∫
0

h(t)x
(
h(t)x+ 1

)−1
νγ(dx) <∞.

Hence

T ♯(R+) =
{
L
(∞∫

0

h(t)dγt
)
: h  0,

∞∫
0

log
(
1 + h(t)

)
dt <∞

}
.

This is another proof of Proposition 4.1.

EXAMPLE 4.2. Let ν = νγ(N(·)). Then Proposition 1.1 and Theorem 4.1 (ii)
yield

B♯(R+) = Υ
(
I♯(R+)

)
=

{
L
(∞∫

0

h(t)dγN(t)

)
: h ∈ Dom+(γN(·))

}
=

{
L
(∞∫

0

h(t)dγN(t)

)
: h  0,

∞∫
0

(
h(t) ∧ 1

)
dt <∞

}
.

EXAMPLE 4.3. Let ν(dx) = 1(0,1)(x)dx, that is, Xν(t) =
∑N(t)

k=1 Yk, where
{N(t)} is a Poisson process with parameter 1 and Yk, k ∈ N, are i.i.d. uniform
random variables on (0, 1) independent of {N(t)}. Then Proposition 1.1 and Theo-
rem 4.1 (ii) yield

U ♯(R+) = U
(
I♯(R+)

)
=

{
L
(∞∫

0

h(t)dXν(t)
)
: h ∈ Dom+(Xν)

}
=

{
L
(∞∫

0

h(t)dXν(t)
)
: h  0,

∞∫
0

1{h(t)>0}
{
1−

(
2h(t)

)−1}
dt <∞

}
.

EXAMPLE 4.4. Let ν(dx) = x−11(0,1)(x)dx, which is the Lévy measure of
a building-block of L(R+). Then Proposition 1.1 and Theorem 4.1 (ii) yield

L♯(R+) = Φ
(
I♯log(R+)

)
=

{
L
(∞∫

0

h(t)dXν(t)
)
: h ∈ Dom+(Xν)

}
=

{
L
(∞∫

0

h(t)dXν(t)
)
: h  0,

∞∫
0

log
(
1 + h(t)

)
dt <∞

}
.
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EXAMPLE 4.5. Let ν(dx) = exp(−x2)dx, i.e.,

Xsym
ν (t) = 2−1/2B

(
N(π1/2t)

)
,

where {B(t)} is a Brownian motion independent of a Poisson process {N(t)}with
parameter 1. Then Proposition 1.1 and Theorem 4.2 (ii) yield

Gsym,0(R) = G
(
Isym,0(R)

)
=

{
L
(∞∫

0

h(t)dXsym
ν (t)

)
: h ∈ Dom+(X

sym
ν )

}
=

{
L
(∞∫

0

h(t)dXsym
ν (t)

)
: h  0,

∞∫
0

dt
∞∫
0

(
|h(t)x|2 ∧ 1

)
exp(−x2)dx <∞

}
.
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