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Abstract. This paper studies the random walks S0 +
∑

Xi on the
nonnegative integers, where the Xi’s are independent identically distributed
random variables with generating function of type Φ(z) =

∑
i−s ciz

i,
s a positive integer, with a convergence radius greater than 1. We infer from
a link between the number of zeros of z 7→ 1 − Φ(z) inside the unit disc
and inf Xi a factorisation of the symbol f(θ) = 1 − Φ(eiθ) which allows
a geometrical computation of the potentials associated with these random
walks. Examples illustrate this theory.
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1. INTRODUCTION

1.1. Context. Among works about discrete random walks two threads can be
seen, namely the search of recurrence or transience criteria, and the computation
of potentials. In this case, the domain of the walk may be bounded or unbounded.
If it is bounded, its size can be used as a parameter in asymptotic evaluation of
potentials. Most papers deal with one-dimensional walks. Let us cite Spitzer and
Stone [17] for their proving that potentials on a segment tend to the values of a
Green kernel when the size of the segment tends to infinity. In their case the symbol
f(θ) = 1− Φ(eiθ) associated with the generating function Φ of the random walk
has just a zero of order 2 on the unit circle. Kesten in [7] extends this to random
walks with a generating function admitting a zero of order α with 0 < α < 2.
These two works ([17], [7]) deal with symmetric random walks, that is, jumps of
equal lengths in opposite directions occur with the same probability.

In the same vein, any symbol of the kind of f(θ) = (1 − cos θ)|f1(eiθ)|2,
where f1(z) belongs to a class of holomorphic functions on an open disc contain-
ing the torus T, provides a much finer asymptotic estimation of potentials; see [9]
and [10]. Higher dimension begins to appear within the same theme (potentials
and their limits as a Green kernel and, more generally, their asymptotic behaviour)
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for a rectangular domain (see [4]). On the other hand, a recent result in [5] allows
an investigation in the domain of nonsymmetric random walks: in that work the
number of zeros inside the unit disc of the symbol extended to some part of the
complex plane is evaluated. A simpler version of this result (Theorem 1.1) is given
with its corollary (Theorem 1.2), i.e. the factorisation theorem in Section 1.2. Fun-
damental ideas about random walks are recalled there. Potentials appear as entries
of inverses of Toeplitz matrices; conditions of inversibility of these matrices are
presented in Section 1.3. The main results, Theorems 1.4 and 1.5, deal with ap-
proximation of potentials according to the length of the interval where the random
walk is performed. They are explained in Section 1.4. Examples illustrate these
results. The proofs of Theorems 1.4 and 1.5 are detailed in Sections 3 and 4.

For nonsymmetric random walks on a segment we intend to study here the
asymptotic behaviour of their potentials when the rightmost end of the segment
tends to infinity. Examples are provided.

1.2. Random walks on the integers generated by a left-bounded variable. In
this paper, we study a family of random walks on the integers. First, we give some
notation. A random walk over the positive integers is defined by Sn = S0 +X1 +
. . . + Xn, where Xi’s are independent identically distributed random variables.
The Xi’s have the same distribution as a variable X , the generator of the random
walk, and S0 is an integer-valued random variable distributed on the interval [0, N ],
independent of Xi’s. We denote by Φ the generating function, that is

(1.1) Φ(z) =
∑
k∈Z

P(X = k)zk.

When the random walk occurs on the interval [0, N ], where N ∈ [0,+∞), we put
(as in [16], p. 107): for all k, l ∈ [0, N ]

Q(k, l) = P(X = l − k).

The probability that a “particle” starting from k at time 0 will reach l at time n,
without leaving the interval [0, N ] in the meantime, is Qn

N (k, l) given by:

Q0
N (k, l) =

{
1 if k = l,

0 otherwise
and Qn+1

N (k, l) =
N∑
t=0

Qn
N (k, t)Q(t, l).

The probability that the particle arrives at l at time n is
∑N

t=0Q
n
N (t, l)P(S0 = t).

This admits an algebraic interpretation: Qn
N is the n-th power of the matrix

Q1
N , and if the entries of the 1×(N + 1)-matrix L0 are the probabilities P(S0)= t,

t ∈ [0, N ], the probabilities that the particle comes to l, 0 ¬ l ¬ N , at instant n are
given by the matrix product Ln = L0Q

n
N . This interpretation will be useful in

Proposition 1.1.
For k, l ∈ [0, N ], let NN (k, l) be the number of visits to l of the process Sn

before the particle leaves the interval [0, N ] when S0 = k. We denote by gN (k, l)
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the expectation E
(
NN (k, l)

)
of NN (k, l). These real numbers gN (k, l) are called

potentials. We have

gN (k, l) =

{∑
n0Q

n
N (k, l) if k, l ∈ [0, N ],

0 otherwise.
(1.2)

A proof of (1.2) can be found in [9]. The computation of the numbers gN (k, l) is
fundamental. These potentials indeed allow to compute many interesting proba-
bilistic quantities like those presented in [16] or [9]. Similarly, when the segment
[0, N ] is replaced by the half-line [0,+∞), we denote by N∞(k, l) the number of
visits at l starting from k, before the mobile leaves the half-line, and by g∞(k, l)
the expected value of N∞(k, l). Setting Q0

∞(k, l) = 1 if k = l, Q0
∞(k, l) = 0 if

k ̸= l, and Qn
∞(k, l) =

∑∞
t=0Q

n
∞(k, t)Q(t, l), we get in the same way

(1.3) g∞(k, l) =

{∑
n0Q

n
∞(k, l) if k, l are nonnegative,

0 otherwise.

The potential g∞(k, l) is the limit of gN (k, l) whenN →∞. We give a short proof,
provided by the referee.

LEMMA 1.1. LetX be an integer-valued random variable generating random
walks with potentials gN (k, l) and g∞(k, l). Then, for all k, l ∈ N,

lim
N→∞

gN (k, l) = g∞(k, l).

P r o o f. If τN denotes the time of a first exit from [0, N ] (0 ¬ N ¬ ∞), then
τN increases to τ∞.

Hence E
(∑τN

j=0 1{l}(Sj)|S0 = k
)

converges to E
(∑τ∞

j=0 1{l}(Sj)|S0 = k
)
.

In other words, gN (k, l)→ g∞(k, l) as N →∞. �

The aim of this article is to give an asymptotical estimation of the potentials
of random walks on [0, N ], satisfying the following assumptions:

(1.4)


• There exists s ∈ N such that the variable X is integer-valued and is
distributed on [−s,+∞) and P(X = −s) > 0, so that infX = −s.
• The convergence radius of

∑∞
k=−sP(X = k)zk is greater than 1, and

therefore X has finite expectation and variance.
• gcd{k ∈ [−s,+∞) such that P(X = k) ̸= 0} = 1.

A recent result stated by the authors in [5] gives a relation between the expectation
of the random variable X that generates the random walk and the number ζ of
zeros of the function z 7→ 1− Φ(z) inside the unit disc, where Φ is the generating
function of X . This relation provides a way towards the computation of potentials
as explained later. It is described by the following theorem that comes from [5]
with some simplifications.



122 C. Delorme and J.-M. Rinkel

THEOREM 1.1. LetX be an integer-valued random variable. Let ζ denote the
number of zeros of 1− Φ(z) inside the unit disc. Under the assumptions (1.4), we
have

ζ =

{
− infX if E(X) > 0,

−1− infX if E(X) ¬ 0.

A direct calculation is of course not appropriate to obtain such a result. It can
be obtained by classical complex analysis arguments. From this result we derive a
factorisation of the restriction of 1−Φ to the unit circle (or torus T), that is to say,
we factorise the symbol f(θ) = 1− Φ(eiθ). This factorisation reveals itself useful
in [9].

We have to introduce some notation from functional analysis to describe that
factorisation.

• D denotes the unit open disc and D its closure.
• Let T denote the one-dimensional torus and σ be the Haar measure on T.

Let L2(T) be the space of square-integrable complex-valued functions on T, and
denote by ⟨·, ·⟩ and ∥ · ∥2 the corresponding inner product and norm: ⟨f, g⟩ =∫
T fḡdσ, where for all g ∈ L2(T), ḡ denotes the function on T defined by ḡ(χ) =
g(χ) (see [14]).

• H+ = {h ∈ L2(T) such that ĥ(s) = 0 for s < 0}, where ĥ(s) is the s-th
Fourier coefficient of h and H− denotes the orthogonal complement of H+ in
L2(T). The orthogonal projectors of L2(T) on H+ and H− will be denoted by π+
and π−, respectively.

• H∞ = H+ ∩L∞(T), where L∞(T) is the space of the essentially bounded
measurable functions endowed with distance d∞ associated with the norm || · ||∞.

• χ denotes eiθ (θ ∈ R), P[−N,N ] denotes the vector space Vect{χh, −N ¬
h ¬ N} ⊂ L2(T),P[0,N ] means the vector space Vect{χh, 0 ¬ h ¬ N} ⊂ L2(T)
and πN is the orthogonal projector of L(T) on P[0,N ].

Now we can give a factorisation of the symbol.

THEOREM 1.2 (Factorisation theorem). Let Φ(z) =
∑

k∈ZP(X = k)zk be
the generating function of a random variable X satisfying the assumptions (1.4).
Denote the zeros of 1−Φ inD by x1, . . . , xs whenE(X) > 0 and by x1, . . . , xs−1
when E(X) ¬ 0. Then there exists a function h holomorphic on an open disc with
radius ρ > 1, without zero on D, such that the symbol f(θ) = 1− Φ(χ) satisfies

f(θ) = g1(χ)g2(χ),

where g1(χ) and g2(χ) are given by Table 1.

Theorem 1.2 is a direct consequence of Theorem 1.1. Theorem 1.2 allows the
computation of potentials; the tool is the inversion of truncated Toeplitz operators.
Let us now explain how these things are related.
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Table 1. Decomposition of symbols

g1(χ) g2(χ) condition

(1− χ)h(χ)
∏s

i=1(1− xiχ̄) E(X) > 0

(1− χ)h(χ)
∏s−1

i=1 (1− xiχ̄)(1− χ̄) E(X) = 0

h(χ)
∏s−1

i=1 (1− xiχ̄)(1− χ̄) E(X) < 0

1.3. Truncated Toeplitz operators and potentials. Let f be a function inte-
grable on the one-dimensional torus. The truncated Toeplitz operator associated
with f is the operator TN (f) of P[0,N ] defined for all q ∈ P[0,N ] by TN (f)(q) =

πN (fq). Its matrix in the basis (1, χ, . . . , χN ) is
(
f̂(l − k)

)
0¬k,l¬N denoted in

this paper by
(
TN (f)(k, l)

)
0¬k,l¬N .

It is also said that TN (f) is a Toeplitz operator with symbol f . Let us now de-
scribe the link with random walks. Denote by IN , QN , GN the (N +1)× (N +1)-
matrices whose entries in k-th row and l-th column are, respectively, δ(k, l) (iden-
tity matrix), Q(k, l), gN (k, l) and let f(θ) = 1− Φ(χ), where Φ is the generating
function. Then

(1.5) TN (f) = IN −QN .

PROPOSITION 1.1 (Spitzer [16], Chapter V). If the walk is not the trivial one
(P(X = 0) = 1), in other wordsQN ̸= IN , then TN (f) = IN −QN is invertible.

From now on, only the nontrivial random walks are considered. The potentials
appear in the formula:

(1.6) GN =
∞∑
n=0

Qn
N =

(
TN (f)

)−1
.

A proof of equation (1.6) can be found in [9].
Consequently, instead of the computation of the sum in (1.2) we may per-

form the computation of the inverse of a Toeplitz matrix. In this paper, we expose
a geometrical inversion structure which appears, for example, in [1] and [15] for
positive symbols and has been developed in [12] in a way that allows the estima-
tion of the extremal eigenvalues of Toeplitz operators. Surprisingly, the structure
described in [12] is the most suitable to compute potentials for random walks sat-
isfying the assumptions (1.4). Theorem 1.3 as stated here appeared first in [11] in
order to evaluate the potentials of a random walk in a part of the plane. We empha-
size here the necessity of some regularity of the symbol (namely, equation (1.9)).
This condition was not explicitly stated in [12] because the symbols there satisfy it
obviously.



124 C. Delorme and J.-M. Rinkel

With the previous assumptions and the notation of Theorem 1.2, let us put the
following functions of χ:

(1.7) X̃N,k = π+

(
Φ̃Nπ+

(
χk

g2

))
and ỸN,l = π+

(
Φ̄Nπ+

(
χl

g1

))
,

where
ΦN =

g1
g2
χN+1, Φ̃N =

g2
g1
χ̄N+1,

and g1, g2 are the functions of χ given in Table 1.
The Hankel operators HΦN

and HΦ̃N
are defined by

(1.8)
HΦN

(ψ) = π−(ΦN ψ) for all ψ ∈ H+,

HΦ̃N
(φ) = π+(Φ̃N φ) for all φ ∈ H−.

THEOREM 1.3. Suppose that f(χ) = g1(χ)g2(χ), where g1 and g2 do not
vanish on T, and g1, g−11 , g2, g2

−1 belong to H∞ and satisfy

lim
N→+∞

d∞

(
1

|g2|2
,P[−N,N ]

)
= 0 and d∞

(
1

|g1|2
,P[−N,N ]

)
bounded

(1.9)

or

lim
N→+∞

d∞

(
1

|g1|2
,P[−N,N ]

)
= 0 and d∞

(
1

|g2|2
,P[−N,N ]

)
bounded.

Then the operatorHΦ̃N
HΦN

is bounded on L2(T) with norm (strictly) less than 1.
Furthermore, the matrix TN (f)−1 is given by

(1.10)
(
TN (f)−1

)
(k, l) = T1(k, l)− T2,N (k, l),

where

(1.11) T1(k, l) =

⟨
π+

(
χk

g2

)
, π+

(
χl

g1

)⟩
,

(1.12) T2,N (k, l) = ⟨(I −HΦ̃N
HΦN

)−1X̃N,k, ỸN,l⟩.

This theorem is the one-dimensional counterpart of the inversion theorem
given in [11], p. 76. T1(k, l) and T2,N (k, l) are called there the first term and
the second term of the inversion formula. Let us comment the formula (1.10).
Under sensible assumptions on X including the conditions (1.4), we show that
T2,N (k, l)→0 asN→∞ and estimate the speed of convergence. Since gN (k, l) =
T1(k, l) − T2,N (k, l) (cf. (1.10)), Lemma 1.1 gives then T1(k, l) = g∞(k, l) and
T2,N (k, l) = g∞(k, l) − gN (k, l). Thus under these assumptions, we obtain with
T2,N (k, l) an evaluation of g∞(k, l)− gN (k, l).
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REMARK 1.1. Let us suppose, with the notation of Theorem 1.3, that f has
a factorisation f = g1g2 satisfying the assumptions of this theorem. Then f also
admits the factorisation f = G1G2, where G1 = g1/λ and G2 = λg2, λ being a
nonnull complex. The functionsG1 andG2 satisfy also the same assumptions as g1
and g2 and the inversion formula remains the same no matter what factorisation
f = g1g2 or f = G1G2 is used.

The proof is immediate.

If the symbol f of Theorem 1.3 vanishes on the torus, it is not possible to
just apply the inversion Theorem 1.3 in order to compute potentials. Therefore, we
“regularise” the symbol (see Proposition 2.1). We are now in a position to give the
main theorems of this paper.

1.4. Main results with examples. The estimates of g∞(k, l)− gN (k, l) come
from computations of T2,N (k, l) defined in (1.12). It is given in Theorems 1.4 and
1.5 where the generator X satisfies the conditions (1.4) and extra conditions on
the generating function Φ of X and infX , respectively. In both cases, it turns out
that if E(X) > 0, then g∞(k, l) − gN (k, l) has order xN , where x is the root of
1 − Φ inside D with maximum modulus. In order to justify the terms of the first
assumption of Theorem 1.4, let us state the following lemma.

LEMMA 1.2. Let X be an integer-valued random variable with mean value
E(X) > 0 and infX < 0. If Φ denotes its generating function, then 1−Φ admits
a unique real zero x on the interval (0, 1). If z is another zero of 1− Φ in the unit
open disc, then |z| ¬ x.

P r o o f. Since E(X) > 0, we have (1 − Φ)′(1) < 0. From lim0+(1 − Φ)
= −∞ we infer the existence of a zero, denoted by x, in the interval (0, 1). The
fact that (1 − Φ)′′ < 0 on (0, 1) proves the uniqueness. Now let z be a complex
number such that x < |z| < 1. Then

|1− Φ(z)| 
∣∣1− |Φ(z)|∣∣ > 0.

Indeed,
|Φ(z)| ¬ Φ(|z|) < 1. �

THEOREM 1.4 (Asymptotic 1). Let X be an integer-valued random variable
satisfying the assumptions (1.4) with generating function Φ and such that the roots
of 1 − Φ inside D are simple. With the notation of Theorem 1.2 and Table 1, we
assume also the following:

(i) In the case E(X)  0, the function 1/h is a polynomial without zero in-
side D.

(ii) In the case E(X) < 0, the function h admits a unique zero 1/α outside
D so that g1(χ) = h(χ) = (1− αχ)h̃(χ) and h̃(z) is the inverse of a polynomial
without zero inside D.
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Then there exist constants ck,l such that for N large enough the following
three relations hold:

1. If E(X) > 0, |T2,N (k, l)| ¬ ck,lxN , where x is the largest modulus of the
zeros of 1 − Φ(z) inside D, in other words, x is the positive zero of 1 − Φ(z)
between 0 and 1.

2. If E(X) = 0, |T2,N (k, l)| ¬ ck,l/N .
3. If E(X) < 0, |T2,N (k, l)| ¬ ck,l|α|N .
This theorem will be proved in Section 3. As an illustration of the previous

result, let us consider the random walk generated by X with geometrical distribu-
tion:

(1.13) P(X = k) = qpk+s, p+ q = 1, p > 0, q > 0, k  −s.

The generating function Φ(z) of X satisfies the assumptions of Theorem 1.4. In-
deed,

Φ(z) =
q

zs(1− pz)
and E(X) =

p

q
− s.

A straightforward computation gives

1− Φ(z) = − z − 1

zs(1− pz)
(
zs − q

s∑
i=0

zi
)
.

Theorem 1.1 ensures the existence of s zeros xi inside D for 1 − Φ(z) when
E(X) > 0, that is, p > qs, and in this case we obtain f(θ)=1−Φ(χ)=g1(χ)g2(χ)
with

g1(χ) = p
1− χ
1− pχ

and g2(χ) =
s∏

i=1

(1− xiχ̄).

When E(X) ¬ 0, the function 1 − Φ(z) has s − 1 zeros inside D, denoted
by xi. If E(X) < 0, that is, p < sq, then 1 − Φ has furthermore a unique zero
x > 1. A direct computation gives indeed

1− Φ(z) =
p(1− z)
zs(1− pz)

(
zs − q

s∑
i=0

zi
)
.

Let us put L(z) = zs − q
∑s

i=0 z
i. The other zeros of L are the xi’s. Hence we

obtain the decomposition f(θ) = g1(χ)g2(χ), where

g1(χ) = p
x− χ
1− pχ

and g2(χ) = (1− χ̄)
s−1∏
i=1

(1− xiχ̄).

If E(X) = 0, that is, p = qs, a straightforward computation gives the decomposi-
tion f(θ) = g1(χ)g2(χ) with

g1(χ) = p
1− χ
1− pχ

and g2(χ) = (1− χ̄)
s−1∏
i=1

(1− xiχ̄).
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In order to advertise the method we give here some asymptotic estimation of
the potentials. The proof is straightforward from the inversion formula (1.11) and
Theorem 1.4.

EXAMPLE 1.1 (Potentials for some geometrical distributions). The distribu-
tion of X is given by equation (1.13). Then there exist constants ck,l satisfying:

1. In the case infX = −1, that is, s = 1, we have E(X) = p/q − 1 and
if E(X) = 0,

gN (k, l) =

{
2(1 + l/2) +O(1/N) if k  l,
k + 1 +O(1/N) if k < l;

if E(X) > 0,

gN (k, l) =

{
αk−l(1− α)−1(1− αl+2) +O(αN ) if k  l,
α(1− αk+1)(1− α)−1 +O(αN ) if k < l,

where α = q/p;

if E(X) < 0,

gN (k, l) =

{
q−1

(
1 + p2(q − p)−1(1− βl)

)
+O(βN ) if k  l,

p2[q(q − p)]−1βl−k−1(1− βk+1) +O(βN ) if k < l,

where β = p/q.
2. In the case infX = −2, that is, s = 2, we have E(X) = p/q − 2. Let us

give details for E(X) > 0, i.e. 0 < q < 1
3 :

gN (k, l) =

{
[p(x− y)]−1

(
A(y)−A(x)

)
+O(yN ) if k  l > 1,

q[p(x− y)]−1
(
B(x)−B(y)

)
+O(yN ) if 1 < k < l,

where

x =
q −

√
q(q + 4p)

2p
, y =

q +
√
q(q + 4p)

2p
,

A(t) =
qtk+2 − (1− pt)tk−l+1

1− t
, B(t) =

1− tk+2

1− t
.

We have to make compromises between the assumptions involving the symbol
and those about infX . In Theorem 1.4 no constraint exists on infX , even if it
means restricting the class of the symbols. In Theorem 1.5, however, restrictions
involve infX .

THEOREM 1.5 (Asymptotic 2). Let X be an integer-valued random variable
satisfying the assumptions (1.4) with infX = −1. Then there exist constants ck,l
such that the following two relations hold:

1. If E(X) > 0, |T2,N (k, l)| ¬ ck,lxN , where x is the real positive zero of
1− Φ(z) inside D.

2. If E(X) = 0, |T2,N (k, l)| ¬ ck,l/N.
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REMARK 1.2. The case E(X) < 0 is more intricated and we will keep as-
suming the conditions of Theorem 1.4 in this case.

Theorem 1.5 will be proved in Section 4. As an illustration for it, let us con-
sider a shifted Poissonian random variable X with parameter λ:

(1.14) P(X = k) = e−λ
λ(k+1)

(k + 1)!
with λ > 0 and k  −1.

Here we obtain E(X) = λ − 1,Φ(z) = z−1 exp
(
λ(z − 1)

)
and we get then the

symbol f(θ) = 1 − eλ(χ−1)χ̄. A direct calculation gives the following factorisa-
tion.

(i) When λ > 1, we denote by x the unique zero with modulus less than 1 of
the function z 7→ 1− Φ(z) and we put

h(z) =
z − exp

(
λ(z − 1)

)
(1− z)(z − x)

.

Then:

f(θ) = (1− χ)h(χ)︸ ︷︷ ︸
g1

(1− xχ̄)︸ ︷︷ ︸
g2

.

(ii) When λ = 1, we put h(z) = (z − 1)−2
(
z − exp(z − 1)

)
. Then:

f(θ) = (1− χ)h(χ)︸ ︷︷ ︸
g1

(1− χ̄)︸ ︷︷ ︸
g2

.

By Theorem 1.3 (inversion formula) and Theorem 1.5, the next proposition gives
an example of potentials.

EXAMPLE 1.2. Let the distribution of X be given by equation (1.14). There
exist constants ck,l such that, for λ > 1 andN large enough, the following relations
hold: if k  l, then

gN (k, l) = xk−l(1− x)−1
( l∑
i=0

µix
i − xl+1

l∑
i=0

µi
)
+O(xN ),

and if k < l, then

gN (k, l) =

(1− xk+1)(1− x)−1
l−k∑
i=0

µi+xk+1(1− x)−1
l∑

i=l−k+1

µi(x
i−l−1− 1)+O(xN ),

where µi is the coefficient of order i in the Taylor expansion at 0 of the function
h(z)−1 = (1− z)(z − x)/

(
z − exp(z − 1)

)
.

For simplicity we omit the case λ = 1.
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2. PRELIMINARIES

For a family of complex numbers [a1, . . . , as], let σi,j denote the j-th ele-
mentary symmetric function of the family [a1, . . . , as] with ai removed, so that∏

j ̸=i(1 − ajχ) =
∑s−1

j=0 σi,jχ
j . Furthermore, let µi =

∏
j ̸=i(ai − aj)

−1; then∏s
i=1(1− aiχ)

−1 =
∑s

i=1 µia
s−1
i (1− aiχ)−1.

The goal of the following two lemmas is to provide a list of elementary rela-
tions that will be useful for proving Theorems 1.4 and 1.5.

LEMMA 2.1. Suppose that a, b ∈ D, k ∈ N, j ∈ Z.
(i) We have the equalities

π+

(
χk

1− aχ̄

)
=
χk − ak+1χ̄

1− aχ̄
, π−

(
χk

1− aχ̄

)
= ak+1 χ̄

1− aχ̄
,(2.1)

π+

(
χ̄k

1− aχ

)
= ak

1

1− aχ
.(2.2)

(ii) For a function
∑∞

i=0 αiz
i holomorphic in D(0, ρ), with ρ > 1,

(2.3) π+

(
χ̄k

1− aχ

∞∑
i=0

αiχ
i

)
=

( k−1∑
i=0

αia
k−i +

∞∑
j=0

αj+k χ
j
) 1

1− aχ
.

Furthermore,

(2.4)
⟨

χj

1− aχ
,

1

1− bχ

⟩
=

{
b̄j/(1− ab̄) if j  0,

a−j/(1− ab̄) if j ¬ 0.

Finally, for h ∈ H+

(2.5) π−

(
h(χ)

1− aχ̄

)
= ah(a)

χ̄

1− aχ̄
, π+

(
h(χ̄)

1− aχ

)
=

h(a)

1− aχ
.

P r o o f. These equalities are straightforward. �

LEMMA 2.2. Assume that h ∈ H+, b ∈ D and that a1, a2, . . . , as ∈ D are
distinct. Define P (χ) =

∏s
i=1(1− aiχ). Then

π−

(
h(χ)

P (χ̄)

)
=

1

P (χ̄)

s−1∑
j=0

( s∑
i=1

µia
s
ih(ai)σi,j

)
χ̄j+1,(2.6)

π+

(
h(χ̄)

P (χ)

)
=

1

P (χ)

s−1∑
j=0

( s∑
i=1

µia
s−1
i h(ai)σi,j

)
χj ,(2.7)

π+

(
h(χ)

P (χ̄)

)
=

1

P (χ̄)

(
h(χ)−

s−1∑
j=0

( s∑
i=1

µia
s
ih(ai)σi,j

)
χ̄j+1

)
,(2.8)

bj
s∑

i=1

µia
s−1
i

1− aib
=

⟨
1

1− bχ
,

χj∏s
i=1(1− āiχ)

⟩
.(2.9)
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P r o o f. We give the proof of the first item only. The other proofs are quite
similar. From the decomposition

∏s
i=1(1− aiχ̄)

−1 =
∑s

i=1 µia
s−1
i /(1− aiχ̄) we

deduce, for all k ∈ N,

π−

(
χk

P (χ̄)

)
=

s∑
i=1

µia
s−1
i π−

(
χk

1− aiχ̄

)
=

s∑
i=1

µia
k+s
i

χ̄

1− aiχ̄

(see Lemma 2.1, equation (2.1)). Hence

π−

(
h(χ)

P (χ̄)

)
=

s∑
i=1

µia
s
ih(ai)

χ̄

1− aiχ̄
=

∑s

i=1
µia

s
ih(ai)χ̄

∏
j ̸=i(1− ajχ̄)

P(χ̄)

=
1

P (χ̄)

s−1∑
j=0

( s∑
i=1

µia
s
ih(ai)σi,j

)
χ̄j+1. �

The symbols present in Table 1 have zeros on T. In Table 2, where 0 < r < 1,
we replace these symbols by regularised ones. Let us notice that the regularised
symbol fr = g1,rg2,r satisfies the assumptions of Theorem 1.3.

Table 2. Regularised factorisation

g1,r(χ) g2,r(χ) condition

(1− rχ)h(χ)
∏s

i=1(1− xiχ̄) E(X) > 0

(1− rχ)h(χ)
∏s−1

i=1 (1− xiχ̄)(1− rχ̄) E(X) = 0

h(χ)
∏s−1

i=1 (1− xiχ̄)(1− rχ̄) E(X) < 0

PROPOSITION 2.1. Let f=g1g2 be the symbol from Table 1, and fr=g1,rg2,r
the regularised symbol from Table 2. Assume that for all k and l fixed in {0, . . . , N},
and N fixed, the limit limr→1 TN (fr)

−1(k, l) exists. Then

(2.10) lim
r→1

TN (fr)
−1(k, l) = TN (f)−1(k, l).

P r o o f. Let us consider the case E(X) > 0. Here g2,r(χ) = g2(χ). First, let
us prove that limr→1 TN (f − fr)(k, l) = 0 uniformly with respect to (k, l) and N .
Indeed,

TN (f − fr)(k, l) =
⟨
πN

(
(f − fr)χk

)
, χl

⟩
= (r − 1)⟨πN (χk+1hg2), χ

l⟩
= (r − 1)⟨χk+1hg2, πN (χl)⟩ = (r − 1)⟨χk+1hg2, χ

l⟩

(πN is self-adjoint). Hence |TN (f − fr)(k, l)| ¬ (1− r)∥hg2∥∞. The equality

TN (fr)
−1TN (f)− I = TN (fr)

−1TN (f − fr)
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leads to the following:∣∣(TN (fr)
−1TN (f)− I

)
(k, l)

∣∣ ¬ N∑
t=0

|TN (fr)
−1(k, t)| |TN (f − fr)(t, l)|

¬ (1− r)∥hg2∥∞
N∑
t=0

|TN (fr)
−1(t, l)|

and, consequently,

lim
r→1

∣∣(TN (fr)
−1TN (f)− I

)
(k, l)

∣∣ ¬ lim
r→1

(1− r)
N∑
t=0

lim
r→1

TN (fr)(t, l) = 0.

The two other cases are dealt similarly. �

3. PROOF OF THEOREM 1.4 (ASYMPTOTIC 1)

From now on, N, k, l are nonnegative integers and k ¬ N, l ¬ N .

3.1. CaseE(X)>0. Theorem 1.2 gives the decomposition f(θ)=g1(χ)g2(χ)
with g1(χ) = (1 − χ)h(χ) and g2(χ) =

∏s
i=1(1 − xiχ̄). In order to use Theo-

rem 1.3 we introduce, according to Proposition 2.1, the regularised symbol fr(θ) =
g1,r(χ)g2,r(χ) with g1,r(χ) = (1 − rχ)h(χ) and g2,r(χ) = g2(χ). We need only
to check the existence of limr→1 T2,N,r, and at the same time the asymptotic be-
haviour of T2,N . The formula for limr→1 T1,r is quite easily found with similar
techniques. Since we concentrate on the meaning of the theorem, we do not present
them. T1(k, l) = limr→1 T1,r(k, l) is present only in Examples 1.1 and 1.2.

By assumption, g1,r = (1 − rχ)h(χ), h holomorphic on an open neighbour-
hood of D̄, with

(
h(z)

)−1
=
∑d

i=0 biz
i. Note that if d < l, we can write

(
h(χ)

)−1
=

∑l
i=0 biχ

i with bi = 0 if i > d. We write also h∗(z)−1 =
∑d

i=0 b̄iz
i in order

to have h(χ) = h∗(χ̄). Moreover, g2(χ) =
∏s

i=1(1− xiχ̄) has s simple roots that
can be sorted by their modulus, say 0 < |x1| ¬ . . . ¬ |xs−1| ¬ xs < 1, where xs
is the real zero of 1−Φ on (0, 1) (it was called x in the first point of the assertions
in Theorem 1.4).

E v a l u a t i o n o f ỸN,l,r(χ) a n d X̃N,k,r(χ). From equation (2.1) in Lem-
ma 2.1 we obtain

π+

(
χl

ḡ1

)
=

∑l

i=0
b̄iχ

l−i − χ̄
∑l

i=0
b̄ir

l+1−i

1− rχ̄
.

Then, by definition (see equation (1.7)),

ỸN,l,r(χ) = π+

(
χ̄N+1h(χ)

(∑l

i=0
b̄iχ

l−i − χ̄
∑l

i=0
b̄ir

l+1−i)∏s
i=1(1− x̄iχ)

)
= π+

(
GN,l,r(χ̄)∏s
i=1(1− x̄iχ)

)
,
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where GN,l,r(z) = zN+1−lh∗(z)Pl(z, r) and Pl(z, r) is a polynomial in z and r:
more precisely, Pl(z, r) =

∑l
i=0 b̄iz

i − zl+1
∑l

i=0 b̄ir
l+r−i. Hence, for each i in

{1, 2, . . . , s}, GN,l,r(x̄i) = O(xNs ) uniformly in r ∈ (0, 1) as N →∞. By equa-
tion (2.7) of Lemma 2.2,

ỸN,l,r(χ) =
1∏s

i=1(1− x̄iχ)

s−1∑
j=0

SN,l,j,rχ
j ,

where (with µi and σi,j defined for ai = xi)

SN,l,j,r =
s∑

i=1

µ̄ix̄
s−1
i GN,l,r(x̄i)σ̄i,j = O(xNs )

uniformly in r ∈ (0, 1) as N →∞. Furthermore, the limit of SN,l,j,r as r → 1−

exists. Using equation (2.8) in Lemma 2.2, we get

π+

(
χk

g2

)
=

(
χk −Qk(χ̄)

) 1∏s
i=1(1− xiχ̄)

,

where Q
k
(z) =

∑s−1
j=0

(∑s
i=1 µiσi,jx

k+s
i

)
zj+1 is a polynomial of degree s. Then

X̃N,k,r(χ) = π+

(
Φ̃Nπ+

(
χk

g2

))
= π+

(
χ̄N+1−k − χ̄N+1Qk(χ̄)

h(χ)(1− rχ)

)
.

By assumption, h(z)−1 is a polynomial
∑d

i=0 biz
i with no root in the open unit

disc. Thus [χ̄N+1−k − χ̄N+1Qk(χ̄)]/h(χ) is a polynomial G̃N with indeterminate
χ̄, namely

G̃N (χ̄) =
d∑

i=0

biχ̄
N+1−k−i −Qk(χ̄)

d∑
i=0

biχ̄
N+1−i,

of degree N + 1 + s.
Then by Lemma 2.1, the second equation of (2.5), we have

(3.1) X̃N,k,r(χ) =
G̃N (r)

1− rχ
.

Note that G̃N (r) = rN+1−kRk(r), where Rk(r) = h(1/r)−1
(
1− rkQk(r)

)
and

G̃N (r) is bounded on the interval (0, 1) uniformly with respect to N and has a left
limit at 1.

LEMMA 3.1. It follows that ⟨X̃N,k,r(χ), ỸN,l,r(χ)⟩ = O(xNs ) uniformly in
r ∈ (0, 1) as N →∞.
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P r o o f. Using (2.9) of Lemma 2.2 and, finally, (2.4) of Lemma 2.1, we have

⟨X̃N,k,r(χ), ỸN,l,r(χ)⟩ = G̃N (r)
s−1∑
j=0

S̄N,l,j,r

⟨
1

1− rχ
,

χj∏s
i=1(1− x̄iχ)

⟩
= G̃N (r)

s−1∑
j=0

S̄N,l,j,r

s∑
i=1

µix
s−1
i

⟨
1

1− rχ
,

χj

1− x̄iχ

⟩
= rN+1−kRk(r)

s−1∑
j=0

S̄N,l,j,rr
j

s∑
i=1

µi
xs−1i

1− xir
.

The last equality leads to the conclusion. �

To achieve the proof of the caseE(X) > 0, we introduce the following lemma.

LEMMA 3.2. For N  d, the function X̃k,N,r(χ) is an eigenvector of the op-
erator HΦ̃N

HΦN
, and the corresponding eigenvalue λN,r satisfies λN,r = O(xNs )

uniformly in r ∈ (0, 1) as N →∞. Furthermore, λN,r converges as r → 1−.

P r o o f. We have

HΦN

(
1

1− rχ

)
= π−

(
g1
g2
χN+1 1

1− rχ

)
= UN (χ̄)

1∏s
i=1(1− xiχ̄)

,

where, by equation (2.6) in Lemma 2.2,

UN (z) =
s−1∑
j=1

( s∑
i=1

µix
s+N+1
i h(xi)σi,j

)
zj+1.

Hence, using again the second equation of (2.5) in Lemma 2.1, we obtain at last

HΦ̃N
HΦN

(
1

1− rχ

)
= π+

(
χ̄N+1UN (χ̄)

(1− rχ)h(χ)

)
= π+

(
UN (χ̄)

∑d

i=0
biχ̄

N+1−i

1− rχ

)
=
rN+1UN (r)

(
h(1/r)

)−1
1− rχ

.

Clearly, λN,r=r
N+1UN (r)

(
h(1/r)

)−1. It remains to observe thatUN (r)=O(xNs )
uniformly in r ∈ (0, 1) as N →∞. �

By Lemmas 3.1 and 3.2, we get T2,N,r = (1− λN,r)
−1⟨X̃N,k,r(χ), ỸN,l,r(χ)⟩

= O(xNs ) uniformly in r ∈ (0, 1) as N →∞.
This completes the proof of the case E(X) > 0.
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3.2. Case E(X) = 0. By Proposition 2.1, the regularised symbol fr(θ) can
be written as g1,r(χ)g2,r(χ). According to Table 2, g1,r(χ) = (1 − rχ)h(χ) and
g2,r(χ) = (1− rχ̄)

∏s−1
i=1 (1− xiχ̄). By assumption, 1/h(z) =

∑d
i=0 aiz

i, a poly-
nomial of degree d. Let ε be a real with

(3.2) 0 < ε < 1− max
1¬i¬s−1

|xi|

and consider a regularisation with r ∈ (1 − ε, 1) only and put xs = r. So g2,r(χ)
may be written as

∏s
i=1(1− xiχ̄) as in Subsection 3.1. Evaluating X̃N,k,r, ỸN,l,r

and their inner product as in equation (1.7), we obtain

⟨X̃N,k,r, ỸN,l,r⟩ = rN+1−k(h(1/r))−1(1− rkQk(r)
) s−1∑
j=0

SN,l,j,rr
j

s∑
i=1

µix
s−1
i

1− xir
,

where

Qk(r) =
s−1∑
j=0

( s∑
i=1

µiσi,jx
k+s
i

)
rj+1 =

s∑
i=1

µix
s−1
i r

∏
j ̸=i

(1− xir),

SN,l,j,r =
s∑

i=1

µ̄ix̄
s−1
i GN,l,r(x̄i)σ̄i,j ,

GN,l,r(z) = zN+1−lh̄(z)
( l∑
i=0

b̄iz
i − zl+1

l∑
i=0

b̄ir
l+1−i).

We have

1

1− r
⟨X̃N,k,r, ỸN,l,r⟩

=

(
rN+1−k − rN+1Qk(r)

)(
h(1/r)

)−1
1− r

1∏s
i=1(1− xir)

s−1∑
j=0

SN,l,j,rr
j

=
1∏s

i=1(1− xir)
rN+1−k(1− rkQk(r)

)(
h(1/r)

)−1
1− r2

1

1− r

s−1∑
j=0

SN,l,j,rr
j .

We claim that the above quantity is bounded uniformly in r ∈ (1 − ε, 1) and N
and converges as r → 1−. In fact, we have

1− rkQk(r) =
( s∏
i=1

(1− xir)
s∑

i=1

µix
s−1
i (1− xir)−1

)
− rkQk(r)

=
s∑

i=1

(
µix

s−1
i (1− xk+1

i rk+1)
∏
j ̸=i

(1− xjr)
)
.
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Observe that each summand in the previous sum either contains a factor 1− xsr =
1− r2 (when i < s) or 1− xk+1

s rk+1 = 1− r2k+2 (when i = s). Hence this sum
is divisible by 1− r with a bounded quotient. It follows that also the quantity

(1− r)−1rN+1−k(1− rkQk(r)
)(
h(1/r)

)−1
is bounded uniformly in r ∈ (1− ε, 1) and N and converges as r → 1−.

Let us now study
∑s−1

j=0 SN,l,j,rr
j :

s−1∑
j=0

SN,l,j,rr
j =

s∑
i=1

µ̄ix̄
s−1
i GN,l,r(x̄i)

s−1∑
j=0

σ̄i,jr
j

=
s∑

i=1

µ̄ix̄
s−1
i GN,l,r(x̄i)

∏
j ̸=i

(1− xjr).

When i < s, the corresponding term on the right-hand side contains again a factor
1− xsr = 1− r2. When i = s, we have

GN,l,r(x̄s) = rN+1−lh̄(r)
( l∑
i=0

b̄ir
i − rl+1

l∑
i=0

b̄ir
l+1−i)

= rN+1−lh̄(r)
l∑

i=0

b̄ir
i(1− r2l−2i+2).

The last sum is a polynomial divisible by 1− r. It follows that also the quantity
(1− r)−1

∑s−1
j=0 SN,l,j,rr

j is uniformly bounded in r ∈ (1− ε, 1) and N and has
a limit as r → 1−. Our claim is proved.

LEMMA 3.3. For N  d, the function X̃N,k,r(χ) is an eigenvector of the op-
erator HΦ̃N

HΦN
corresponding to an eigenvalue 0 < λN,r < 1 and λN,r → 1 as

r → 1−. Furthermore, with ε defined as in (3.2), we have

1− r
1− λN,r

= O

(
1

N

)
uniformly in r ∈ (1− ε, 1) as N →∞.

P r o o f. Using the proof of Lemma 3.2, we obtain

HΦ̃N
HΦN

(X̃N,k,r) = λn,rX̃N,k,r,

where λN,r = rN+1UN (r)h(1/r)−1 and

UN (r) =

=
s−1∑
j=0

( s∑
i=1

µix
s+N+1
i h(xi)σi,j

)
rj+1 = r

s∑
i=1

µix
s+N+1
i h(xi)

∏
j ̸=i

(1− xjr)

= r
s−1∑
i=1

µix
s+N+1
i h(xi)

∏
j ̸=i

(1− xir) + rs+N+2h(r)
s−1∏
j=1

1− xjr
r − xj

.
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Therefore, we have 1− λN,r = 1− r2N+3+sAN (r)− (1− r2)BN (r), where

AN (r) = h(r)h(1/r)−1
s−1∏
j=1

1− xjr
r − xj

and

BN (r) = rN+2h(1/r)−1
s−1∑
i=1

µix
s+N+1
i h(xi)

∏
j ̸=i,j ̸=s

(1− xjr).

Both AN (r) and its derivative A′N (r) with respect to r are bounded uniformly in
r ∈ (1− ε, 1) andA(r) tends toA(1) = 1 as r → 1−. AlsoBN (r) is bounded uni-
formly in r ∈ (1− ε, 1) and N  d, and BN (r) has a limit as r → 1−. Therefore,
for some ξr ∈ (1− ε, 1),

1− λN,r

1− r
=

1− r2N+3+sAN (r)

1− r
− (1 + r)BN (r)

= (2N + 3 + s)ξ2N+3+s
r AN (ξr) + ξ2N+3+s

r A′N (ξr)− (1 + r)BN (r),

and the lemma follows. �

The proof of the case E(X) = 0 is a straightforward application of the earlier
results and of the formula

T2,N,r =
1− r

1− λN,r

1

1− r
⟨X̃N,k,r, ỸN,l,r⟩.

3.3. Case E(X) < 0. According to Proposition 2.1, Table 2 provides the ex-
pression of the regularised symbol fr as the product fr(θ) = g1,r(χ)g2,r(χ), where
g1,r = h and g2,r(χ) = (1 − rχ)

∏s−1
i=1 (1 − xiχ̄). By assumption, with the nota-

tion of Theorem 1.4, g1(χ) = h(χ) = (1 − αχ)h̃(χ), where 1/h̃(z) is a poly-
nomial. Let ε be a real defined as in (3.2) and consider a regularisation with
r ∈ (1− ε, 1) only and put xs = r. So, as in the previous subsection, g2,r(χ) will
be

∏s
i=1(1− xiχ̄). Repeating the argument of Subsection 3.1, we obtain the same

expressions for X̃N,k,r and ỸN,l,r as in the other two cases, but with r and h re-
placed by α and h̃, respectively. Now X̃N,k,r and ỸN,l,r depend on r through xs, µi
and σi,j only. Therefore, we have (see the proof of Lemma 3.1):

⟨X̃N,k,r(χ), ỸN,l,r(χ)⟩ = αN+1−kRk(α)
( s−1∑
j=0

SN,l,j,rα
j
)( s∑

i=1

µi
xs−1i

1− xiα

)
,

whereRk(α)=h(1/α)
−1(1−αkQk(α)

)
. Then the quantity ⟨X̃N,k,r(χ), ỸN,l,r(χ)⟩

isO(|α|N ) uniformly in r∈(1−ε, 1). As in Lemma 3.2, X̃N,k,r is an eigenfunction
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of HΦ̃N
HΦN

with eigenvalue λN,α < 1. Note that λN,α depends on r through xs;
however, we have

λN,α =
αN+1

h̃(1/α)

s−1∑
j=0

( s∑
i=1

µix
s+N+1
i h̃(xi)σi,j

)
αj+1

which is O(|α|N ) uniformly in r∈ (1−ε, 1) asN→∞ and has a limit as r→1−.
Hence, (1 − λα,N )−1 is bounded in r ∈ (1 − ε, 1) for N large enough, and
so T2,N,r(k, l) is O(|α|N ) uniformly in r ∈ (1 − ε, 1), and limr→1− T2,N,r(k, l)
exists.

4. PROOF OF THEOREM 1.5 (ASYMPTOTIC 2)

This proof, as well as that of Theorem 1.4, is based on Lemmas 2.1 and 2.2.
The calculations used are quite similar to the previous ones. Therefore, we de-
tail only the succession of the steps involved in the proof. When E(X) > 0, Theo-
rem 1.2 allows us to write f(θ) = g1(χ)g2(χ) with g1(χ) = (1 − χ)h(χ)
and g2(χ) = 1 − xχ̄, and when E(X) = 0, it provides f(θ) = g1(χ)g2(χ) with
g1(χ) = (1− χ)h(χ) and g2(χ) = 1− χ̄. In accordance with Table 2 we consider
the regularisation

(4.1) g1,r(χ) = (1− rχ)h(χ), g2,r(χ) = 1− xχ̄ if E(X) > 0

and

(4.2) g1,r(χ) = (1− rχ)h(χ), g2,r(χ) = 1− rχ̄ if E(X) = 0.

Note that g2,r depends on r only in the case E(X) = 0. The similarity of the two
cases E(X) > 0 and E(X) = 0 allows us to write g2,r and g1,r as in equation
(4.1) and to consider that x = r when E(X) = 0. According to Theorem 1.2, h is
holomorphic in an open disc D(0, ρ) with ρ > 1 and does not vanish in D. Hence,
decreasing ρ if necessary, we may assume that h has no zero in D(0, ρ). Let us put
for |z| < ρ

h(z) =
∞∑
j=0

ajz
j and

1

h(z)
=
∞∑
j=0

bjz
j .(4.3)

This notation is kept in all this section. By Cauchy’s inequality ([3], p. 81) there ex-
ists a constant M such that for all j ∈ N the inequalities ρj |aj | < M and ρj |bj | <
M hold true.

C o m p u t a t i o n o f t h e f u n c t i o n s X̃N,k,r(χ) a n d ỸN,l,r(χ).

LEMMA 4.1. With the notation as above, the following assertions hold:
(i) There exists a holomorphic function VN,k,r on the open discD(0, ρ) whose

restriction to the torus T has a norm in L∞(T) satisfying ∥VN,k,r∥∞ = O(1/ρN )
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uniformly in r ∈ (0, 1) such that

X̃N,k,r(χ) =

∑N−k
j=0

bj(r
N+1−(j+k) − x1+krN+2−j) + VN,k,r(χ)

1− rχ
.

(ii) There exists a polynomial Pl(x, r) independent of N such that

Ỹl,N,r(χ) = xN+1h̄(x)Pl(x, r)
1

1− xχ
.

From now on, we put

βN,k,r(z) =
N−k∑
j=0

bj(r
N+1−(j+k) − x1+krN+2−j) + VN,k,r(z).

For a function δN,r(z) =
∑N+1

j=0 bjr
N+2−j +

∑∞
j=N+2 bjz

N+2−j , holomorphic
on D(0, ρ), we have

HΦ̃N
HΦN

(
β(χ)

1− rχ

)
= xN+2h(x)β(x)

δN,r(χ)

1− rχ

for all functions β holomorphic in D(0, ρ). Hence, for all positive integers p,

(HΦ̃N
HΦN

)p
(
X̃N,k(χ)

)
= xN+2h(x)βN,k,r(x)

(
xN+2h(x)δN,r(x)

)p−1 δN,r(χ)

1− rχ
.

We conclude that

(4.4) T2,N,r(k, l)

= ⟨X̃N,k(χ), ỸN,l(χ)⟩+
xN+2h(x)βN,k,r(x)

1− xN+2h(x)δN,r(x)

⟨
δN,r(χ)

1− rχ
, ỸN,l(χ)

⟩
.

Consider first the caseE(X) > 0. Note that, by Lemma 2.1 and summability of bj ,
⟨(1− rχ)−1δN,r, ỸN,l,r⟩ is bounded uniformly in r ∈ (0, 1) and N and converges
as N → ∞. It follows that T2,N,r(k, l) = O(xN ) as N → ∞ uniformly in r ∈
(0, 1), and taking the limit as r → 1− proves the theorem.

When E(X) = 0, we have the equation (4.4) with x = r and Pl(r, r) is divis-
ible by 1− r. So the quantities

(1− r)−1⟨X̃N,k(χ), ỸN,l(χ)⟩ and (1− r)−1
⟨
δN,r(χ)

1− rχ
, ỸN,l(χ)

⟩
are bounded in r and N . Furthermore, δN,r(r) tends to 1/h(1) as r → 1−, so
that (1 − r)−1

(
1 − rN+2h(r)δN,r(r)

)
is bounded by O(1/N) uniformly in r as

N →∞ as in the previous section.
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