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Abstract. By adapting the white noise theory, the quantum analogues
of the (classical) Gross Laplacian and Lévy Laplacian, so called the quan-
tum Gross Laplacian and quantum Lévy Laplacian, respectively, are intro-
duced as the Laplacians acting on the spaces of generalized operators. Then
the integral representations of the quantum Laplacians in terms of quantum
white noise derivatives are studied. Correspondences of the classical Lapla-
cians and quantum Laplacians are studied. The solutions of heat equations
associated with the quantum Laplacians are obtained from a normal-ordered
white noise differential equation.
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1. INTRODUCTION

Infinite-dimensional generalizations of the usual Laplacian were introduced
by Vito Volterra and studied by Paul Lévy [29], [30] who inserted a different type
of Laplacian producing the first example of an essentially infinite-dimensional dif-
ferential operator (i.e. a differential operator which is identically zero on all func-
tions depending only on a finite number of variables: cylindrical functions). Gross
[15] initiated a systematic study of the Volterra Laplacian in the context of abstract
Wiener spaces. Accardi and Smolyanov [7] introduced a countable hierarchy (∆n)
of essentially infinite-dimensional Laplacians with the property that (∆0) is the
usual Laplacian, (∆1) is the Lévy one and the domain of ∆n is contained in the
kernel of ∆n+1.

∗ Supported in part by the Korea Research Foundation Grant funded by the Korean Government
(No. R05-2004-000-11346-0).
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Quantum extensions of the Lévy Laplacian, acting on generalized operators
on appropriate boson Fock spaces, were introduced by Accardi et al. [5] extended
to the framework of Hida distributions by Ji and Obata [22]. A different extension
in the same direction is due to Arveson [8].

These Laplacians have been studied from various points of view by many
authors; see [14] and [35]–[37] and references cited therein. Interesting connec-
tions with different fields of mathematics have emerged, for example: infinite-
dimensional harmonic analysis ([18], [33]), transformation groups ([10], [17]),
differential equations in infinite-dimensional ([10], [28], [26]) stochastic processes
([2], [6], [39], [41]), Poisson noise functionals [40], infinite-dimensional rotation
group [31], and the Cauchy problem [12]. Applications to physics have emerged
in connections with Yang–Mills and Maxwell equations ([3], [27]).

The integral representations of the Volterra–Gross and the Lévy Laplacian
in terms of white noise operators were obtained by Kuo [25] and motivated the
conjecture by Accardi et al. [4] that the Lévy Laplacian should be related to the
square of quantum white noise just as the usual Laplacian is related to the first
order quantum white noise. This conjecture received recently a strong support by
the result of Obata [34].

On the other hand, the main result of Accardi et al. [1] was the identification
of the quantum Brownian motion (QBM) connected with the Lévy Laplacian with
the QBM associated with the usual Volterra–Gross Laplacian whose initial space
as well as the multiplicity space of the associated white noise coincide with the
Cesàro Hilbert space. A consequence of this result is the identification of the Lévy
Laplacian with the Gross Laplacian on an appropriate Fock space.

Our main goal in the present paper is to exploit this identification to find a new
integral representation of the Lévy Laplacian in terms of white noise operators.

This result is new even in the classical case, but we will prove it directly in
the quantum case. Since the above-mentioned identification is heavily based on
quantum probabilistic techniques, a prerequisite for the achievement of this goal is
the development of the analogue of these techniques in a white noise framework.
This was done in [23] by Ji et al., however, in this paper the authors do not consider
the problem of the integral representation of the Lévy Laplacian. Since our paper
heavily relies on the results of [23], we will briefly recall these results.

This paper is organized as follows: In Section 2 we review the basic con-
struction of nuclear riggings and characterization theorems in white noise theory
following [20], [32], [38]. In Section 3, following [25], [26] we recall the defini-
tions of classical Gross and Lévy Laplacians. In Section 4, following [21], [22],
we introduce the quantum white noise derivatives and study their basic properties.
In Section 5 we introduce the quantum Gross and Lévy Laplacians on generalized
operators and study their properties. Our main results, i.e. the integral representa-
tions of the quantum Laplacians in terms of quantum white noise derivatives, are
obtained in Theorems 5.4 and 5.8. In Section 6 we study correspondences of the
classical Laplacians and the quantum Laplacians. In Section 7 we investigate solu-
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tions of the Cauchy problems associated with the quantum Laplacians connecting
with a normal-ordered white noise differential equation.

Acknowledgments. The third-named author would like to express his grati-
tude to Professor L. Accardi for his kind invitation to Volterra Center in February
of 2005; during his stay there this joint work was started.

2. PRELIMINARIES

2.1. Standard construction of Gel’fand triple. Let HR = L2(R, dt) be the
real Hilbert space with the norm | · |0 generated by the inner product ⟨·, ·⟩ and E be
the Schwartz space of rapidly decreasing functions on R. Note that E is a standard
countable Hilbert (nuclear) space constructed from the Hilbert space HR and the
harmonic oscillator A = 1 + t2 − d2/dt2, i.e.,

E = proj lim
p→∞

Ep,

where Ep = Dom(Ap) (p  0) is the Hilbert space corresponding to the domain of
Ap, i.e., Ep = {ξ ∈ HR ; |ξ|p ≡ |Apξ|0 <∞}. Defining E−p to be the completion
of HR with respect to | · |−p ≡ |A−p ·|0 for p  0, we obtain a chain of Hilbert
spaces {Ep ; p ∈ R}. By taking topological isomorphism:

E∗ ∼= ind lim
p→∞

E−p,

and by identifying HR with its dual space, we obtain a real Gel’fand triple:

(2.1) E ⊂ HR ⊂ E∗,

where E and E∗ are mutually dual spaces. Finally, by taking complexification we
have a complex Gel’fand triple:

(2.2) S ⊂ H ⊂ S∗,

where S, H and S∗ are the complexifications of E , HR and E∗, respectively. The
canonical C-bilinear form on S∗ × S which is compatible with the inner product
of H is denoted by ⟨·, ·⟩ again.

2.2. Hida–Kubo–Takenaka space. For each p ∈ R, let Sp be the complexifi-
cation of Ep. The (boson) Fock space over Sp is defined by

Γ(Sp) =
{
ϕ = (fn)

∞
n=0 ; fn ∈ S⊗̂np , ∥ϕ∥2p =

∞∑
n=0

n! |fn|2p <∞
}
.

From a chain of Fock spaces {Γ(Sp) ; p ∈ R}, by setting

(S) = proj lim
p→∞

Γ(Sp) and (S)∗ = ind lim
p→∞

Γ(S−p),
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we have a complex Gel’fand triple:

(S) ⊂ Γ(H) ⊂ (S)∗

which is referred to as the Hida–Kubo–Takenaka space in the white noise theory
(see [16], [25], [33]). It is known that (S) is a countable Hilbert (nuclear) space.
By definition the topology of (S) is defined by the norms

∥ϕ∥2p =
∞∑
n=0

n! |fn|2p , ϕ = (fn), p ∈ R.

On the other hand, for each Φ = (Fn) ∈ (S)∗ there exists p  0 such that
Φ ∈ Γ(S−p) and

∥Φ∥2−p ≡
∞∑
n=0

n! |Fn|2−p <∞.

The canonical C-bilinear form on (S)∗ × (S) is denoted by ⟨⟨·, ·⟩⟩ and we have

⟨⟨Φ, ϕ⟩⟩ =
∞∑
n=0

n! ⟨Fn, fn⟩ , Φ = (Fn) ∈ (S)∗, ϕ = (fn) ∈ (S).

An exponential vector (or a coherent vector) associated with x ∈ S∗ is defined
as follows:

ϕx =

(
1, x,

x⊗2

2!
, . . . ,

x⊗n

n!
, . . .

)
.

Obviously, ϕx ∈ (S)∗ and ϕξ ∈ (S) for all ξ ∈ S. In particular, ϕ0 is called the
vacuum vector. The S-transform of an element Φ ∈ (S)∗ is defined by

SΦ(ξ) = ⟨⟨Φ, ϕξ⟩⟩, ξ ∈ S.

Every element Φ ∈ (S)∗ is uniquely specified by its S-transform SΦ since {ϕξ ;
ξ ∈ S} spans a dense subspace of (S). A complex-valued function F on S is called
a U -functional if F is Gâteaux-entire and there exist constantsC,K  0 and p  0
such that

|F (ξ)| ¬ C exp(K |ξ|2p), ξ ∈ S.

THEOREM 2.1 (Potthoff and Streit [38]). A C-valued function F on S is the
S-transform of an element in (S)∗ if and only if F is a U -functional.

2.3. Characterizations. A continuous linear operator Ξ from (S) into (S)∗ is
called a generalized operator. Let L

(
(S), (S)∗

)
denote the space of all generalized

operators equipped with the topology of bounded convergence. The Wick symbol
of Ξ ∈ L

(
(S), (S)∗

)
is defined by

wΞ(ξ, η) = ⟨⟨Ξϕξ, ϕη⟩⟩ e−⟨ξ, η⟩, ξ, η ∈ S.

Then we have the following characterization of Wick symbols which is an operator
version of the characterization of S-transform (Theorem 2.1). For the proof, we
refer to [32].
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THEOREM 2.2. Let Θ be a C-valued function on S × S. Then Θ is the Wick
symbol of an operator in L

(
(S), (S)∗

)
if and only if Θ is Gâteaux-entire and the

following condition is satisfied:
(O) there exist constant numbers C  0, a  0 and p  0 such that

|Θ(ξ, η)| ¬ C exp
(
a(|ξ|2p + |η|2p)

)
, ξ, η ∈ S.

Let l,m  0 and κ ∈ (S⊗(l+m))∗. Then, applying Theorem 2.2, we prove that
there exists a unique Ξ ∈ L

(
(S), (S)∗

)
such that

wΞ(ξ, η) = ⟨κ, η⊗l ⊗ ξ⊗m⟩, ξ, η ∈ S.

The operator Ξ is called an integral kernel operator and denoted by Ξl,m(κ). In
particular, for each x ∈ S∗, the annihilation operator A(x) and the creation opera-
tor A∗(x) are defined by

A(x) = Ξ0,1(x) and A∗(x) = Ξ1,0(x),

respectively. For notational convenience, we write

at ≡ A(δt), a∗t ≡ A∗(δt), t ∈ R.

Then we sometimes use a formal integral expression:

Ξl,m(κ) =

=
∫

Rl+m

κ(s1, . . . , sl, t1, . . . , tm)a∗s1 . . . a
∗
sl
at1 . . . atmds1 . . . dsldt1 . . . dtm.

Every operator Ξ ∈ L
(
(S), (S)∗

)
admits the following expansion:

(2.3) Ξ =
∞∑
l,m

Ξl,m(κl,m), κl,m ∈ (S⊗(l+m))∗sym(l,m),

which is called the Fock expansion of Ξ (see [32], [33]). In this case, we have
(see [19])

(2.4) wΞ(ξ, η) =
∞∑

l,m=0

⟨κl,m, η⊗l ⊗ ξ⊗m⟩, ξ, η ∈ S.

THEOREM 2.3 (Ji and Obata [20]). A Gâteaux-entire function F : S4 → C is
expressed in the form

F (ξ1, ξ2, ξ3, ξ4) = ⟨⟨Ξ(ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩

with Ξ ∈ L
(
(S)⊗2, (S)∗⊗2

)
if and only if there exist constant numbers C  0 and

p  0 such that

|F (ξ1, ξ2, ξ3, ξ4)|2 ¬ C exp
( 4∑
i=1

|ξi|2p
)

for any ξi ∈ S, i = 1, 2, 3, 4.
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THEOREM 2.4 (Ji and Obata [20]). A Gâteaux-entire function G : S4 → C is
expressed in the form

G(ξ1, ξ2, η1, η2) = ⟨⟨Ξ(ϕξ1 ⊗ ϕξ2), ϕη1 ⊗ ϕη2⟩⟩

with Ξ ∈ L
(
(S)⊗2, (S)⊗2

)
if and only if for any p  0 and ϵ > 0 there existC  0

and q  0 such that

|G(ξ1, ξ2, η1, η2)|2 ¬ C exp
(
ϵ
( 2∑
i=1

|ξi|2p+q +
2∑

j=1

|ηj |2−p
))

for any ξ1, ξ2, η1, η2 ∈ S .

3. LAPLACIANS ON FOCK SPACE

3.1. Gross Laplacian. Let τ be the trace on H , i.e., ⟨τ, ξ ⊗ η⟩ = ⟨ξ, η⟩ for
ξ, η ∈ S . Then τ ∈ (S⊗2)∗ and the integral kernel operator

∆G = Ξ0,2(τ) =
∫
R2

τ(s, t)asatdsdt

is called the Gross Laplacian; see [15], [24], [25], [33]. It is known that ∆G is a
continuous linear operator from (S) into itself.

Let {en}∞n=1 ⊂ E be a complete orthonormal basis for HR. Then the Gross
Laplacian is represented by

(3.1) ∆G =
∞∑
n=1

A(en)A(en),

see [25].
Let us assume that F ∈ C2(S). Then for each ξ ∈ S there exist F ′(ξ) ∈ S∗

and F ′′(ξ) ∈ (S ⊗ S)∗ such that

(3.2) F (ξ + η) = F (ξ) + ⟨F ′(ξ), η⟩+ 1

2
⟨F ′′(ξ), η ⊗ η⟩+ o(|η|2p), η ∈ S,

for some p  0. Moreover, the maps S ∋ ξ 7→ F ′(ξ) ∈ S∗ and S ∋ ξ 7→ F ′′(ξ) ∈
(S ⊗ S)∗ are continuous. For more details, we refer to [13]. By the kernel theorem
we have the canonical isomorphism

(S ⊗ S)∗ ∼= L(S,S∗) ∼= B(S,S)

from which, for notational convenience, we sometimes write

⟨F ′′(ξ), η ⊗ η⟩ = ⟨F ′′(ξ)η, η⟩ = F ′′(ξ)(η, η).
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Note that for each ϕ ∈ (S), Sϕ ∈ C2(S) and

(3.3) S(∆Gϕ)(ξ) = ∆̃G(Sϕ)(ξ) ≡
∞∑
n=1

⟨(Sϕ)′′(ξ), en ⊗ en⟩, ξ ∈ S,

and so the Gross Laplacian can be represented by

∆G = S−1∆̃GS,

see [25].

3.2. Lévy Laplacian. Let {ℓk}∞k=1 be a fixed infinite sequence in E and let
Φ ∈ (S)∗. If the limit

∆̃L(SΦ)(ξ) = lim
N→∞

1

N

N∑
k=1

⟨(SΦ)′′(ξ), ℓk ⊗ ℓk⟩

exists for all ξ ∈ S and the function ∆̃L(SΦ) is a U -functional, then the Lévy
Laplacian ∆L is defined by

∆LΦ = S−1
(
∆̃L(SΦ)

)
.

For the given infinite sequence {ℓk}∞k=1, we denote by L the set of all elements
x ∈ S∗ such that the limit

⟨x⊗ x⟩L ≡ lim
N→∞

1

N

( N∑
k=1

⟨x, ℓk⟩2
)

exists. Then for each x ∈ L we have

∆Lϕx = ⟨x⊗ x⟩Lϕx,

i.e., ϕx is an eigenvector of ∆L corresponding to the eigenvalue ⟨x⊗ x⟩L.

4. QUANTUM WHITE NOISE DERIVATIVES

4.1. Creation and annihilation derivatives. Note that, for each ζ ∈ S, A(ζ)
can be extended to a continuous linear operator (denoted by the same symbol)
from (S)∗ into itself and A∗(ζ) is a continuous linear operator from (S) into itself.
Therefore, for any generalized operator Ξ ∈ L

(
(S), (S)∗

)
and ζ ∈ S the commu-

tators

[A(ζ),Ξ] = A(ζ)Ξ− ΞA(ζ), [A∗(ζ),Ξ] = A∗(ζ)Ξ− ΞA∗(ζ)

are well-defined, i.e., elements of L
(
(S), (S)∗

)
. Then we define

D+
ζ Ξ = [A(ζ),Ξ], D−ζ Ξ = −[A∗(ζ),Ξ].
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The generalized operators D+
ζ Ξ and D−ζ Ξ are called the creation derivative

and annihilation derivative of Ξ, respectively, and both together are the quantum
white noise derivatives of Ξ; see [21], [22]. Then it is obvious that D±ζ becomes
a linear map from L

(
(S), (S)∗

)
into itself. Moreover, the bilinear map (ζ,Ξ) 7→

D±ζ Ξ is continuous from S × L
(
(S), (S)∗

)
into L

(
(S), (S)∗

)
. In particular, for

any ζ ∈ S,

D±ζ ∈ L
(
L
(
(S), (S)∗

)
,L

(
(S), (S)∗

))
.

For the proof, we refer to [22].
For κ ∈ (S⊗n)∗ and f ∈ S⊗m (0 ¬ m ¬ n), the left and rightm-contractions

f ∗m κ, κ ∗m f ∈ (S⊗(n−m))∗ are defined by

⟨f ∗m κ, g⟩ = ⟨κ, f ⊗ g⟩, ⟨κ ∗m f, g⟩ = ⟨κ, g ⊗ f⟩,

where g ∈ S⊗(n−m) (see [33]).

THEOREM 4.1 (Ji and Obata [22]). For each operator Ξ=
∑∞

l,m=0 Ξl,m(κl,m)

in L
(
(S), (S)∗

)
and for any ζ ∈ S we have

D−ζ Ξ =
∞∑

l,m=0

mΞl,m−1(κl,m ∗1 ζ), D+
ζ Ξ =

∞∑
l,m=0

lΞl−1,m(ζ ∗1 κl,m).

4.2. Pointwise creation and annihilation derivatives. We start with the fol-
lowing lemma for which we refer to [23], where we can find a special case and a
different proof.

LEMMA 4.1. Let ζ ∈ S, n ∈ N and Ξ ∈ L
(
(S), (S)∗

)
. Then we have

w
(
(D+

ζ )
nΞ

)
(ξ, η) =

dn

dzn

∣∣∣∣
z=0

wΞ(ξ, η + zζ),(4.1)

w
(
(D−ζ )

nΞ
)
(ξ, η) =

dn

dzn

∣∣∣∣
z=0

wΞ(ξ + zζ, η).(4.2)

P r o o f. We now prove only (4.1). Suppose that Ξ admits the Fock expansion
Ξ =

∑∞
l,m=0 Ξl,m(κl,m); see (2.3). Then, by Theorem 4.10 in [22], we have

(D+
ζ )

nΞ =
∞∑

l,m=0

(l + n)!

l!
Ξl,m(ζ⊗n ∗n κl+n,m).
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Therefore, by (2.4) we have

w
(
(D+

ζ )
nΞ

)
(ξ, η) =

∞∑
l,m=0

(l + n)!

l!
⟨κl+n,m, ζ

⊗n ⊗ η⊗l ⊗ ξ⊗m⟩

=
∞∑

l,m=0

dn

dzn

∣∣∣∣
z=0

⟨κl+n,m, (η + zζ)⊗(l+n) ⊗ ξ⊗m⟩

=
dn

dzn

∣∣∣∣
z=0

wΞ(ξ, η + zζ),

which proves (4.1). �

THEOREM 4.2. Let x ∈ S∗. Then
(1) D+

x is a continuous operator from L
(
(S), (S)

)
into itself;

(2) D−x is a continuous operator from L
(
(S)∗, (S)∗

)
into itself.

Moreover, if x ∈ S, then D±x are continuous operators from L
(
(S)∗, (S)

)
into

itself.

P r o o f. (1) Note that L
(
(S), (S)

) ∼= (S)⊗ (S)∗ by the kernel theorem, i.e.,
for any Ξ ∈ L

(
(S), (S)

)
, ϕ ∈ (S) and Φ ∈ (S)∗

⟨⟨Ξϕ, Φ⟩⟩ = ⟨⟨Ξ, Φ⊗ ϕ⟩⟩.

Therefore, we have

L
(
L
(
(S), (S)

)
,L

(
(S), (S)

)) ∼= (S)⊗ (S)∗ ⊗
(
(S)⊗ (S)∗

)∗(4.3)

∼= (S)⊗ (S)∗ ⊗ (S)∗ ⊗ (S).

On the other hand, by Lemma 4.1 we get

⟨⟨D+
x (ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩ exp(−⟨ξ4, ξ3⟩)

= ⟨⟨D+
x (ϕξ1 ⊗ ϕξ2)(ϕξ4), ϕξ3⟩⟩ exp(−⟨ξ4, ξ3⟩)

= (⟨x, ξ1⟩ − ⟨x, ξ4⟩) exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩ − ⟨ξ4, ξ3⟩)

for any ξi ∈ S, i = 1, 2, 3, 4. Therefore, for any ξi ∈ S , i = 1, 2, 3, 4, we obtain

⟨⟨D+
x (ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩ = (⟨x, ξ1⟩ − ⟨x, ξ4⟩) exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩).

Hence, using Theorem 2.4 with (4.3), we prove that the operator D+
x belongs to

L
(
(S)⊗ (S)∗, (S)⊗ (S)∗

)
.

(2) Similarly, L
(
(S)∗, (S)∗

) ∼= (S)∗ ⊗ (S) and

L
(
L
(
(S)∗, (S)∗

)
,L

(
(S)∗, (S)∗

)) ∼= (S)∗ ⊗ (S)⊗ (S)⊗ (S)∗.
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Also, by Lemma 4.1 we have

⟨⟨D−x (ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩ = (⟨x, ξ2⟩ − ⟨x, ξ3⟩) exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩).

Hence, applying Theorem 2.4, we prove that D−x ∈ L
(
(S)∗ ⊗ (S), (S)∗ ⊗ (S)

)
.

Finally, if x ∈ S, then by Theorem 2.4 we can see that D±x are continuous
operators from L

(
(S)∗, (S)

)
into itself. �

From Theorem 4.2, for each t ∈ R the quantum white noise derivatives D+
δt

and D−δt are well-defined as continuous linear operators acting on L
(
(S), (S)

)
and L

(
(S)∗, (S)∗

)
, respectively. For simple notation, we write D±t =D±δt for any

t∈R. Then D+
t and D−t are called the pointwise creation derivative and pointwise

annihilation derivative, respectively.

5. QUANTUM LAPLACIANS

For each F ∈ C2(S × S), there exist F ′i (ξ1, ξ2) ∈ S∗, F ′′ij(ξ1, ξ2) ∈ (S ⊗ S)∗
for any ξ1, ξ2 ∈ S and i, j = 1, 2 such that

F (ξ1 + η1, ξ2 + η2) = F (ξ1, ξ2) +
2∑

i=1

⟨F ′i (ξ1, ξ2), ηi⟩

+
1

2

2∑
i,j=1

⟨F ′′ij(ξ1, ξ2)ηi, ηj⟩+ o(|η1|2p + |η2|
2
p)

for some p  0. For more study, we refer to [13].

5.1. Quantum Gross Laplacian. For each Ξ∈L
(
(S), (S)∗

)
, wΞ∈C2(S×S).

Define

(5.1) ∆̃Q
G(wΞ)(ξ1, ξ2)

=
∞∑
k=1

⟨(wΞ)′′11(ξ1, ξ2), ek ⊗ ek⟩+
∞∑
k=1

⟨(wΞ)′′22(ξ1, ξ2), ek ⊗ ek⟩

if the limits exist. If ∆̃Q
G(wΞ) is Gâteaux-entire and satisfies the condition (O) in

Theorem 2.2, then there exists a unique operator, denoted by ∆Q
GΞ, inL

(
(S), (S)∗

)
such that

(5.2) w(∆Q
GΞ) = ∆̃Q

G(wΞ).

Then ∆Q
G is called the quantum Gross Laplacian. We denote by Dom(∆Q

G) the set
of all generalized operators Ξ ∈ L

(
(S), (S)∗

)
such that ∆Q

GΞ is well-defined as in
formula (5.2).
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THEOREM 5.1. Let Ξ ∈ L
(
(S), (S)∗

)
. If the series

∞∑
k=1

D−ekD
−
ek
Ξ and

∞∑
k=1

D+
ek
D+

ek
Ξ

exist in L
(
(S), (S)∗

)
, then we have

(5.3) ∆Q
GΞ =

∞∑
k=1

D−ekD
−
ek
Ξ +

∞∑
k=1

D+
ek
D+

ek
Ξ.

P r o o f. By applying (4.1) and (4.2) we prove that

⟨(wΞ)′′11(ξ1, ξ2), ek ⊗ ek⟩ = w(D−ekD
−
ek
Ξ)(ξ, η),

⟨(wΞ)′′22(ξ1, ξ2), ek ⊗ ek⟩ = w(D+
ek
D+

ek
Ξ)(ξ, η).

Therefore, by definition we have

∆̃Q
GwΞ(ξ1, ξ2) =

∞∑
k=1

w(D−ekD
−
ek
Ξ)(ξ, η) +

∞∑
k=1

w(D+
ek
D+

ek
Ξ)(ξ, η)

= w
( ∞∑
k=1

D−ekD
−
ek
Ξ +

∞∑
k=1

D+
ek
D+

ek
Ξ
)
(ξ, η),

which proves (5.3) by assumption. �

PROPOSITION 5.1. Let us assume that Ξ=
∑∞

l,m=0 Ξl,m(κl,m)∈L
(
(S), (S)∗

)
with κl,m ∈ S⊗̂l ⊗ S⊗̂m for any l,m  0. Then we have

(5.4) ∆Q
GΞ =

=
∞∑

l,m=0

(m+2)(m+1)Ξl,m(κl,m+2 ∗ τ)+
∞∑

l,m=0

(l+2)(l+1)Ξl,m(τ ∗κl+2,m).

P r o o f. For any l,m  0, in the sense of Theorem 4.1 we prove that the
series

∞∑
k=1

D−ekD
−
ek
Ξl,m+2(κl,m+2) and

∞∑
k=1

D+
ek
D+

ek
Ξl+2,m(κl+2,m)

exist in L
(
(S), (S)∗

)
and

∞∑
k=1

D−ekD
−
ek
Ξl,m+2(κl,m+2) = (m+ 2)(m+ 1)Ξl,m(κl,m+2 ∗ τ)

and
∞∑
k=1

D+
ek
D+

ek
Ξl+2,m(κl+2,m) = (l + 2)(l + 1)Ξl,m(τ ∗ κl+2,m).

Therefore, by Theorem 5.1 we prove the assertion. In fact, the convergence of the
series in (5.4) can be proved by similar arguments to those in [33]. �
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THEOREM 5.2. The quantum Gross Laplacian ∆Q
G is a continuous linear op-

erator from L
(
(S)∗, (S)

)
into L

(
(S), (S)∗

)
.

P r o o f. By applying Lemma 4.1 and the proof of Theorem 4.2, for any n  1
and ξi ∈ S , i = 1, 2, 3, 4, we obtain

⟨⟨D+
enD

+
en(ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩

= (⟨en, ξ1⟩ − ⟨en, ξ4⟩)2 exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩),
⟨⟨D−enD

−
en(ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩

= (⟨en, ξ2⟩ − ⟨en, ξ3⟩)2 exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩).

Therefore, by Theorem 5.1 we prove that for any ξi ∈ S , i = 1, 2, 3, 4,

⟨⟨∆Q
G(ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩

=
( 4∑
i=1

⟨ξi, ξi⟩ − 2 ⟨ξ1, ξ4⟩ − 2 ⟨ξ2, ξ3⟩
)
exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩).

Since L
(
(S)∗, (S)

) ∼= (S)⊗2 and L
(
(S), (S)∗

) ∼= (S)∗⊗2, by Theorem 2.3 we
prove the assertion. �

Now, motivated by (5.3) we define the quantum Gross Laplacian associated
with the creation derivative and annihilation derivative by

(5.5) ∆Q+
G =

∞∑
k=1

D+
ek
D+

ek
and ∆Q−

G =
∞∑
k=1

D−ekD
−
ek
,

respectively.

THEOREM 5.3. ∆Q±
G are continuous operators acting on L

(
(S), (S)

)
and

L
(
(S)∗, (S)∗

)
, respectively.

P r o o f. The proof is a simple modification of the proof of Theorem 5.2. �

THEOREM 5.4. The quantum Gross Laplacian admits the following integral
representation:

(5.6) ∆Q
G =

∫
R

(
(D+

t )
2 + (D−t )

2
)
dt

on L
(
(S), (S)

)
∩ L

(
(S)∗, (S)∗

)
.
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P r o o f. By using similar arguments to those in the proof of Theorem 5.2 we
can easily show that for any ξi ∈ S, i = 1, 2, 3, 4,

⟨⟨∆Q+
G (ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩

= (⟨ξ1, ξ1⟩ − 2 ⟨ξ1, ξ4⟩+ ⟨ξ4, ξ4⟩) exp(⟨ξ2, ξ4⟩+ ⟨ξ1, ξ3⟩)

=
⟨⟨ ∫

R
(D+

t )
2
dt(ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4

⟩⟩
.

Similarly, we have

⟨⟨∆Q−
G (ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4⟩⟩ =

⟨⟨ ∫
R
(D−t )

2
dt(ϕξ1 ⊗ ϕξ2), ϕξ3 ⊗ ϕξ4

⟩⟩
.

Therefore, we obtain

∆Q+
G =

∫
R
(D+

t )
2dt and ∆Q−

G =
∫
R
(D−t )

2dt

on L
(
(S), (S)

)
and L

(
(S)∗, (S)∗

)
, respectively, which proves (5.6). �

For any x, y ∈ S∗, by applying Theorem 2.2, we prove that

(5.7) Ξ(x, y) ≡
∞∑

l,m=0

1

l!m!
Ξl,m(x⊗l ⊗ y⊗m) ∈ L

(
(S), (S)∗

)
.

Then we have the following

THEOREM 5.5. For any f, g ∈ H, Ξ(f, g) is an eigenvector of the quantum
Gross Laplacian ∆Q

G corresponding to the eigenvalue ⟨f, f⟩+ ⟨g, g⟩ , i.e.,

(5.8) ∆Q
GΞ(f, g) = (⟨f, f⟩+ ⟨g, g⟩) Ξ(f, g).

P r o o f. For any ξ, η ∈ S we have

wΞ(f, g)(ξ, η) = exp(⟨f, η⟩+ ⟨g, ξ⟩).

Therefore, we obtain

w
(
∆Q

GΞ(f, g)
)
(ξ, η) = ∆̃Q

G

(
wΞ(f, g)

)
(ξ, η) = (⟨f, f⟩+ ⟨g, g⟩)wΞ(f, g)(ξ, η),

which proves (5.8). �
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5.2. Quantum Lévy Laplacian. Let {ℓk}∞k=1 be a fixed infinite sequence in E .
For each Ξ ∈ L

(
(S), (S)∗

)
, wΞ ∈ C2(S × S). Define

∆̃Q−
L (wΞ)(ξ1, ξ2) = lim

N→∞

1

N

N∑
k=1

⟨(wΞ)′′11(ξ1, ξ2), ℓk ⊗ ℓk⟩,(5.9)

∆̃Q+
L (wΞ)(ξ1, ξ2) = lim

N→∞

1

N

N∑
k=1

⟨(wΞ)′′22(ξ1, ξ2), ℓk ⊗ ℓk⟩,(5.10)

if the limits exist, and then define

∆̃Q
L (wΞ)(ξ1, ξ2) = ∆̃Q−

L (wΞ)(ξ1, ξ2) + ∆̃Q+
L (wΞ)(ξ1, ξ2).

If ∆̃Q
L (wΞ) is Gâteaux-entire and satisfies the condition (O) in Theorem 2.2, then

there exists a unique operator, denoted by ∆Q
LΞ, in L

(
(S), (S)∗

)
such that

(5.11) w(∆Q
LΞ) = ∆̃Q

L (wΞ).

Then ∆Q
L is called the quantum Lévy Laplacian. We denote by Dom(∆Q

L ) the set
of all generalized operators Ξ ∈ L

(
(S), (S)∗

)
such that ∆Q

LΞ is well-defined as in
formula (5.2).

For κl,m ∈ (S⊗(l+m))∗ we define the left Lévy-contraction τL ∗ κl,m as the
element of (S⊗(l−2+m))∗ given by

⟨τL ∗ κl,m, η1 ⊗ . . .⊗ ηl−2 ⊗ ξ1 ⊗ . . .⊗ ξm⟩

= lim
N→∞

1

N

N∑
k=1

⟨κl,m, ℓk ⊗ ℓk ⊗ η1 ⊗ . . .⊗ ηl−2 ⊗ ξ1 ⊗ . . .⊗ ξm⟩

if the limit exists and is a continuous linear operator on S⊗(l−2+m). Similarly, the
right Lévy-contraction κl,m ∗ τL ∈ (S⊗(l+m−2))∗ is defined.

LEMMA 5.1 (Ji et al. [23]). Let κl,m ∈ (S⊗(l+m))∗ for which both τL ∗ κl,m
and κl,m ∗ τL are defined. Then Ξl,m(κl,m) ∈ Dom(∆Q

L ) and

∆Q
LΞl,m(κl,m) = l(l − 1)Ξl−2,m(τL ∗ κl,m) +m(m− 1)Ξl,m−2(κl,m ∗ τL).

Let LQ = {Ξ(x, y) ; x, y ∈ L}, where L is defined in Subsection 3.2 and
Ξ(x, y) is given as in (5.7). Then we have the following

THEOREM 5.6. For any x, y ∈ L, Ξ(x, y) is an eigenvector of the quantum
Lévy Laplacian ∆Q

L corresponding to the eigenvalue ⟨x⊗ x⟩L + ⟨y ⊗ y⟩L, i.e.,

(5.12) ∆Q
LΞ(x, y) = (⟨x⊗ x⟩L + ⟨y ⊗ y⟩L) Ξ(x, y).

P r o o f. The proof is similar to the proof of Theorem 5.5. �
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THEOREM 5.7. The quantum Lévy Laplacian admits the following represen-
tation:

(5.13) ∆Q
L = lim

N→∞

1

N

N∑
k=1

D−ℓkD
−
ℓk

+ lim
N→∞

1

N

N∑
k=1

D+
ℓk
D+

ℓk

on LQ.

P r o o f. Since for any ζ ∈ S the differential operators D±ζ are continuous
from L

(
(S), (S)∗

)
into L

(
(S), (S)∗

)
, by Theorem 4.1 we can prove that for any

x, y ∈ L

lim
N→∞

1

N

N∑
k=1

D−ℓkD
−
ℓk
Ξ(x, y)

= lim
N→∞

1

N

N∑
k=1

∞∑
l,m=0

D−ℓkD
−
ℓk

(
1

l!m!
Ξl,m(x⊗l ⊗ y⊗m)

)
= ⟨y ⊗ y⟩LΞ(x, y)

and, similarly,

lim
N→∞

1

N

N∑
k=1

D+
ℓk
D+

ℓk
Ξ(x, y) = ⟨x⊗ x⟩LΞ(x, y).

Therefore, by applying Theorem 5.6 we prove (5.13). �

A similar result given as in Theorem 5.7 can be found in [23].
If the given sequence {ℓk}∞k=1 ⊂ E is an orthonormal subset of H , then we

denote by PN the orthogonal projection from H onto the subspace of S generated
by {ℓ1, . . . , ℓN}, i.e.,

PN =
N∑
k=1

|ℓk⟩⟨ℓk|, where |ℓk⟩⟨ℓk| : H ∋ x 7→ ⟨ℓk, x⟩ ℓk ∈ S.

As is clearly seen, PN can be extended to a continuous linear operator from S∗
into S.

THEOREM 5.8. Let {ℓk}∞k=1 ⊂ E be an orthonormal subset of H . Then the
quantum Lévy Laplacian admits the following integral representation:

∆Q
L = lim

N→∞

∫
R
(D+

QN (δt)
D+

QN (δt)
+D−QN (δt)

D−QN (δt)
)dt

on LQ, where QN = (1/
√
N)PN for N  1.
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P r o o f. By direct computation, for any x, y ∈ L we have( ∫
R
D+

QN (δt)
D+

QN (δt)
dt
)
Ξ(x, y) =

( ∫
R
⟨δt, QN (x)⟩2 dt

)
Ξ(x, y)

= ⟨QN (x), QN (x)⟩Ξ(x, y)

=
1

N

N∑
k=1

D+
ℓk
D+

ℓk
Ξ(x, y).

Similarly, we have

( ∫
R
D−QN (δt)

D−QN (δt)
dt
)
Ξ(x, y) =

1

N

N∑
k=1

D−ℓkD
−
ℓk
Ξ(x, y).

Therefore, applying Theorem 5.7 we prove the assertion. �

6. QUANTUM–CLASSICAL CORRESPONDENCE

For Φ ∈ (S)∗ we define a multiplication operator MΦ ∈ L
(
(S), (S)∗

)
by

⟨⟨MΦϕ, ψ⟩⟩ = ⟨⟨Φ, ϕψ⟩⟩, ϕ, ψ ∈ (S),

where ϕψ is the pointwise multiplication; see, e.g., Ji and Obata [19]. Moreover,
Φ 7→ MΦ yields a continuous injection from (S)∗ into L

(
(S), (S)∗

)
, and, obvi-

ously, we haveMΦϕ0 = Φ. Moreover, if ϕ ∈ (S), thenMϕ belongs toL
(
(S), (S)

)
and L

(
(S)∗, (S)∗

)
.

LEMMA 6.1 (Ji et al. [23]). For any ζ ∈ S and Φ ∈ (S)∗ we have

[A(ζ),MΦ] =MA(ζ)Φ, [MΦ, A(ζ)
∗] =MA(ζ)Φ.

THEOREM 6.1. Let ϕ ∈ (S). Then Mϕ ∈ Dom(∆Q
G) and

(6.1) ∆Q−
G Mϕ = ∆Q+

G Mϕ =M∆Gϕ.

In particular,
1

2
∆Q

GMϕ =M∆Gϕ.

P r o o f. Since ϕξϕη = ϕξ+ηe
⟨ξ, η⟩ for any ξ, η ∈ S, we get

(6.2) wMϕ(ξ, η) = ⟨⟨ϕ, ϕξϕη⟩⟩ e−⟨ξ, η⟩ = Sϕ(ξ + η).

Therefore, Mϕ ∈ Dom(∆Q
G) and by Lemma 6.1 we have

∆Q−
G Mϕ =

∞∑
k=1

D−ekD
−
ek
Mϕ = lim

N→∞
MAN

, where AN =
N∑
k=1

A(ek)A(ek)ϕ.
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On the other hand, ∆Gϕ =
∑∞

k=1A(ek)A(ek)ϕ and the map ϕ 7→Mϕ is a contin-
uous injection from (S) into L

(
(S), (S)

)
. Therefore, we have

∆Q−
G Mϕ = lim

N→∞
MAN

=M∆Gϕ.

Similarly, we prove that
∆Q+

G Mϕ =M∆Gϕ.

The last assertion is obvious from (6.1). �

THEOREM 6.2. Let Ξ ∈ Dom(∆Q+
G ). Then we have

(∆Q+
G Ξ)ϕ0 = ∆G(Ξϕ0).

P r o o f. Since Ξ ∈ Dom(∆Q+
G ), we get

(∆Q+
G Ξ)ϕ0 =

( ∞∑
k=1

D+
ek
D+

ek
Ξ
)
ϕ0

=
∞∑
k=1

(
A(ek)

2Ξ− 2A(ek)ΞA(ek) + ΞA(ek)
2
)
ϕ0

=
∞∑
k=1

A(ek)
2Ξϕ0,

which proves the assertion from (3.1). �

REMARK 6.1 (Ji et al. [23]). Let Φ ∈ Dom(∆L). Then MΦ ∈ Dom(∆Q
L )

and
∆Q−

L MΦ = ∆Q+
L MΦ =M∆LΦ.

In particular,
1

2
∆Q

LMΦ =M∆LΦ.

Let Dom(∆Q+
L ) be the set of all Ξ ∈ L

(
(S), (S)∗

)
such that the limit

lim
N→∞

1

N

N∑
k=1

D+
ℓk
D+

ℓk
Ξ

exists in L
(
(S), (S)∗

)
. Then, by Theorem 5.7, LQ ⊂ Dom(∆Q+

L ) and for each
Ξ ∈ Dom(∆Q+

L ) we have

∆Q+
L Ξ = lim

N→∞

1

N

N∑
k=1

D+
ℓk
D+

ℓk
Ξ.

Then, by an argument as in the proof of Theorem 6.2, we prove that

(6.3) (∆Q+
L Ξ)ϕ0 = ∆L(Ξϕ0).
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PROPOSITION 6.1. For each Φ ∈ (S)∗ with MΦ ∈ Dom(∆Q+
L ) we have

∆LΦ = lim
N→∞

1

N

N∑
n=1

A(en)
2Φ.

P r o o f. By (6.3), we see that

∆LΦ=(∆Q+
L MΦ)ϕ0 =

(
lim

N→∞

1

N

N∑
k=1

D+
ℓk
D+

ℓk
MΦ

)
ϕ0= lim

N→∞

1

N

N∑
n=1

A(en)
2Φ,

which proves the assertion. �

7. HEAT EQUATIONS

Now, we consider the following normal-ordered white noise equation:

(7.1)
dΞt

dt
=

(
A(xt) +A∗(yt)

)
⋄ Ξt, Ξ0 = I,

where the maps t 7→ xt ∈ S∗ and t 7→ yt ∈ S∗ are continuous. It is known that
(7.1) has a unique solution in L

(
(S), (S)∗

)
. In fact, the solution of (7.1) is given

by the Wick exponential

(7.2) Ξt =
∞∑
n=0

1

n!

{ t∫
0

(
A(xs) +A∗(ys)

)
ds
}⋄n

the Wick symbol of which is given by

(7.3) wΞt(ξ, η) = exp
{ t∫

0

(⟨xs, ξ⟩+ ⟨ys, η⟩)ds
}
, ξ, η ∈ S,

see [11].

7.1. Heat equation associated with the quantum Gross Laplacian. Let G be
the set of all S∗-valued continuous maps on [0, T ] such that the series

G(x, t) ≡
∞∑
n=1

( t∫
0

⟨xs, en⟩ ds
)2
, t ∈ [0, T ],

converges and the map t 7→ G(x, t) is bounded. The map δ : [0, T ] ∋ t 7→ δt ∈ S∗
is continuous and

G(δ, t) = t, t ∈ [0, T ],

which implies that δ ∈ G. Let f ∈ C([0, T ]) and g ∈ H . We consider theH-valued
continuous function x(t) = f(t)g ∈ H , t ∈ [0, T ]. Then we can easily show that

G(x, t) =
( t∫

0

f(s)ds
)2⟨g, g⟩, t ∈ [0, T ].
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Therefore, x ∈ G and the algebraic tensor product C([0, T ]) ⊗alg H of C([0, T ])
and H belongs to G.

THEOREM 7.1. Let x, y ∈ G and let Ξt (t ∈ [0, T ]) be the solution of (7.1).
Then

(7.4) ∆Q−
G Ξt = G(x, t)Ξt, ∆Q+

G Ξt = G(y, t)Ξt, t ∈ [0, T ].

Moreover, for any t ∈ [0, T ]

∆Q
GΞt =

(
G(x, t) +G(y, t)

)
Ξt.

P r o o f. By (4.1) and (7.3), for any t ∈ [0, T ] and ξ, η ∈ S we have

w(D+
enD

+
enΞt)(ξ, η) =

d2

dz2

∣∣∣∣
z=0

wΞt(ξ, η + zen)

=
( t∫

0

⟨ys, en⟩ ds
)2

exp
{ t∫

0

(⟨xs, ξ⟩+ ⟨ys, η⟩)ds
}
.

Similarly, for any ξ, η ∈ S

w(D−enD
−
enΞt)(ξ, η) =

( t∫
0

⟨xs, en⟩ ds
)2

exp
{ t∫

0

(⟨xs, ξ⟩+ ⟨ys, η⟩) ds
}
.

Therefore, by (5.5), for any t ∈ [0, T ] we get

∆Q+
G Ξt =

∞∑
n=1

( t∫
0

⟨ys, en⟩ ds
)2
Ξt, ∆Q−

G Ξt =
∞∑
n=1

( t∫
0

⟨xs, en⟩ ds
)2
Ξt,

which proves (7.4). The last assertion is immediate from (7.4). �

The above theorem proves that, for any x, y ∈ G, the solution Ξt of the normal-
ordered white noise differential equation (7.1) is an eigenvector of the quantum
Gross Laplacian with eigenvalue G(x, t) +G(y, t). The following result is imme-
diate.

THEOREM 7.2. Let x, y ∈ G and Ξt be the solution of (7.1). Let µ be a finite
measure on [0, 1] and α ∈ C. Define for any t ∈ R

Y +
t =

1∫
0

eαtG(y,s)Ξs µ(ds), Y −t =
1∫
0

eαtG(x,s)Ξs µ(ds),

Yt =
1∫
0

eαt(G(x,s)+G(y,s))Ξs µ(ds).
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Then Y ϵ
t ∈ L

(
(S), (S)∗

)
is a solution to the following Cauchy problem:

∂Y ϵ
t

∂t
= α∆Qϵ

G Y ϵ
t , Y ϵ

0 = Y0 =
1∫
0

Ξsµ(ds),

where ϵ = +,−, or empty.

By Theorems 7.2 and 6.2, the following result is immediate.

COROLLARY 7.1. Let Y +
t be as in Theorem 7.2 and set Φt = Ytϕ0. Then

Φt ∈ (S)∗ is a solution to the following Cauchy problem:

∂Φt

∂t
= α∆GΦt, Φ0 =

1∫
0

Ξsϕ0µ(ds) ∈ (S)∗.

7.2. Heat equation associated with the quantum Lévy Laplacian. Recall that
the Lévy Laplacian depends on the choice of an infinite sequence {ℓk}∞k=1 ⊂ E .
Let L be the set of all S∗-valued continuous maps on [0, T ] such that the limit

L(x, t) ≡ lim
N→∞

1

N

N∑
k=1

( t∫
0

⟨xs, ℓk⟩ ds
)2
, t ∈ [0, T ],

exists and the map t 7→ L(x, t) is bounded. For the given infinite sequence {ℓk}∞k=1
⊂ E , if we assume that the limit

⟨ℓ⟩L(t) ≡ lim
N→∞

1

N

N∑
k=1

(
ℓk(t)− ℓk(0)

)2
, t ∈ [0, T ],

exists and the map t 7→ ⟨ℓ⟩L(t) is bounded, then δ′ ∈ L. In fact, it follows that the
map δ′ : [0, T ] ∋ t 7→ δ′t ∈ S∗ is continuous and for any t ∈ [0, T ]

L(δ′, t) = lim
N→∞

1

N

N∑
k=1

( t∫
0

⟨
δ′(s), ℓk

⟩
ds
)2

= lim
N→∞

1

N

N∑
k=1

(
−

t∫
0

ℓ′k(s)ds
)2

= ⟨ℓ⟩L(t).

Let f ∈ C([0, T ]) and x ∈ L ⊂ S∗. We consider the S∗-valued continuous func-
tion z(t) = f(t)x ∈ S∗, t ∈ [0, T ]. Then we can easily show that

L(z, t) =
( t∫

0

f(s)ds
)2⟨x⊗ x⟩L, t ∈ [0, T ].

Therefore, z ∈ L and the algebraic tensor product C([0, T ]) ⊗alg L of C([0, T ])
and L belongs to L.
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THEOREM 7.3. Let x, y ∈ L and let Ξt (t ∈ [0, T ]) be the solution of (7.1).
Then

∆Q−
L Ξt = L(x, t)Ξt, ∆Q+

L Ξt = L(y, t)Ξt, t ∈ [0, T ].

Moreover, for any t ∈ [0, T ]

∆Q
LΞt =

(
L(x, t) + L(y, t)

)
Ξt.

P r o o f. The proof is a simple modification of the proof of Theorem 7.1. �

The above theorem proves that, for any x, y ∈ L, the solution Ξt of the normal-
ordered white noise differential equation (7.1) is an eigenvector of the quantum
Lévy Laplacian with eigenvalue L(x, t) + L(y, t). The following result is imme-
diate.

THEOREM 7.4. Let x, y ∈ L and Ξt be the solution of (7.1). Let ν be a finite
measure on [0, 1] and α ∈ C. Define for any t ∈ R

Z+
t =

1∫
0

eαtL(y,s)Ξs ν(ds), Z−t =
1∫
0

eαtL(x,s)Ξs ν(ds),

and

Zt =
1∫
0

eαt
(
L(x,s)+L(y,s)

)
Ξs ν(ds).

Then Zϵ
t ∈ L

(
(S), (S)∗

)
is a solution to the following Cauchy problem:

∂Zϵ
t

∂t
= α∆Qϵ

L Zϵ
t , Zϵ

0 = Z0 =
1∫
0

Ξsν(ds),

where ϵ = +,−, or empty.

From Theorem 7.4 and (6.3), the following result is immediate.

COROLLARY 7.2. Let Z+
t be as in Theorem 7.4 and set Ψt = Ztϕ0. Then

Ψt ∈ (S)∗ is a solution to the following Cauchy problem:

∂Ψt

∂t
= α∆LΨt, Ψ0 =

1∫
0

Ξsϕ0ν(ds) ∈ (S)∗.

REMARK 7.1. A relation between heat equation associated with the quantum
Lévy Laplacian and quadratic quantum white noises {a2t , a∗t 2; t ∈ R} has been
discussed in [23]. In fact, a solution to the heat equation associated with the quan-
tum Lévy Laplacian can be obtained from a normal-ordered white noise differential
equation involving the quadratic quantum white noise.
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