PROBABILITY AND MATHEMATICAL STATISTICS Vol. 32, Fasc. 2 (2012), pp. 227–239

MOMENTS OF POISSON STOCHASTIC INTEGRALS WITH RANDOM INTEGRANDS

Nicolas Privault

Abstract: We show that the moment of order n of the Poisson stochastic integral of a random process $(u_x)_{x \in X}$ over a metric space X is given by the non-linear Mecke identity

$$E\Big[\Big(\int_X u_x(\omega)\omega(dx)\Big)^n\Big]$$

= $\sum_{\{P_1,\dots,P_k\}\in\mathcal{P}_n} E\Big[\int_{X^k} \varepsilon_{\mathfrak{s}_k}^+(u_{s_1}^{|P_1|}\dots u_{s_k}^{|P_k|})\sigma(ds_1)\dots\sigma(ds_k)\Big],$

where the sum runs over all partitions $P_1 \cup \ldots \cup P_k$ of $\{1, \ldots, n\}$, $|P_i|$ denotes the cardinality of P_i , and $\varepsilon_{\mathfrak{s}_k}^+$ is the operator that acts by addition of points at s_1, \ldots, s_k to Poisson configurations. This formula recovers known results in case $(u(x))_{x \in X}$ is a deterministic function on X.

2000 AMS Mathematics Subject Classification: Primary: 60G57; Secondary: 60G55, 60H07.

Keywords and phrases: Poisson stochastic integrals, moment identities, Bell polynomials, Poisson–Skorohod integral.

THE FULL TEXT IS AVAILABLE HERE