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Abstract. We investigate a Bahadur–Kiefer type representation for the
pn-th empirical quantile corresponding to a sample of n i.i.d. random vari-
ables when pn ∈ (0, 1) is a sequence which, in particular, may tend to zero
or one, i.e., we consider the case of intermediate sample quantiles. We ob-
tain an ‘in probability’ version of the Bahadur–Kiefer type representation
for a kn-th order statistic when rn = kn ∧ (n− kn)→∞, n→∞, with-
out any restrictions of the rate at which rn tends to infinity. We give a bound
for the remainder term in the representation with probability 1−O(r−c

n ) for
arbitrary c > 0. We obtain also an ‘almost sure’ version under the additional
assumption that log n/rn → 0 as n→∞.

Finally, we establish a Bahadur–Kiefer type representation for the sum
of order statistics lying between the population pn-quantile and the corre-
sponding intermediate sample quantile by a von Mises type statistic approx-
imation, especially useful in establishing second order approximations for
slightly trimmed sums.
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1. INTRODUCTION

Consider a sequence X1, X2, . . . of independent identically distributed (i.i.d.)
real-valued random variables (r.v.) with common distribution function (df ) F , and
for each integer n  1 let X1:n ¬ . . . ¬ Xn:n denote the order statistics based on
the sample X1, . . . , Xn. Let F−1(u) = inf{x : F (x)  u}, 0 < u ¬ 1, F−1(0)=
F−1(0+), denote the left-continuous inverse function of df F , and Fn, F−1n stand
for the empirical df and its inverse, respectively. Denote by f = F ′ a density of
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the underlying distribution when it exists. Let ξp = F−1(p) and ξpn:n = F−1n (p)
denote the p-th population and sample quantile, respectively.

For a fixed p ∈ (0, 1), assuming that F has at least two continuous derivatives
in a neighborhood of ξp and f(ξp) > 0, Bahadur [1] was the first to establish the
almost sure result:

(1.1) ξpn:n = ξp −
Fn(ξp)− p

f(ξp)
+Rn(p),

where Rn(p) = Oa.s.
(
n−3/4(log n)1/2(log log n)1/4

)
(a sequence of random vari-

ables Rn is said to be Oa.s.(τn) if Rn/τn is almost surely bounded). Kiefer [16]–
[18] proved that if f ′ is bounded in a neighborhood of p and f(ξp) > 0, then

lim sup
n→∞

±n3/4(log log n)−3/4Rn(p) =
25/43−3/4

(
p(1− p)

)1/4
f(ξp)

a.s.

for either choice of sign.
Sample quantiles are closely related to empirical processes, and nowadays

there is a well-developed theory of empirical processes; see, e.g., Shorack and
Wellner [21], Einmahl and Mason [9], Deheuvels and Mason [8], Deheuvels [6].

In this paper we investigate the asymptotic behavior of the so-called interme-
diate sample quantile, i.e., of the kn-th order statistic, 1 ¬ kn ¬ n, when rn : =
kn ∧ (n− kn)→∞, pn : = kn/n→ 0 (or pn → 1) as n→∞.

Part of our results can be compared with earlier results obtained by Chanda
[4] and Watts [23], who established the ‘almost sure’ versions of a Bahadur–Kiefer
representation for intermediate kn-th order statistics under the following somewhat
restrictive assumptions: na/kn→0 for some a>0 (cf. [4]) and (log n)3/rn→0,
n→∞ (cf. [23]), respectively. In addition, these authors assume that some strong
regularity conditions on F are satisfied. An explicit ‘almost sure’ limit for the
remainder term in the Bahadur–Kiefer representation for the uniform empirical
processes under the condition (log n)/rn → 0, n→∞, was obtained by Einmahl
and Mason [9] (cf. Theorem 5 and Remark 3 therein).

In contrast, we obtain an ‘in probability’ version of the Bahadur–Kiefer type
representations for intermediate sample quantiles without any assumptions on the
rate at which rn tends to infinity and under a mild regularity condition on F . For
any fixed c>0 we give a bound on the remainder term with probability 1−O(r−cn ),
under the additional assumption that (log n)/rn → 0, n → ∞; the bound holds
true with probability 1−O(n−c). We obtain an almost sure version as well.

In this paper we establish not only a Bahadur–Kiefer type representation for
intermediate sample quantiles, but also derive a Bahadur–Kiefer representation for
the sum of order statistics lying between the population pn-th quantile and the
corresponding intermediate sample quantile by a von Mises type statistic approxi-
mation.

Our interest in Bahadur–Kiefer type representations for intermediate empirical
quantiles was first motivated by its uses in the second order asymptotic analysis of



On a Bahadur–Kiefer representation of von Mises statistic type 257

trimmed sums. It turns out (see Gribkova and Helmers [10]–[12]) that the Bahadur–
Kiefer properties provide a very useful tool in the study of the asymptotic behavior
of the distributions of trimmed sums of i.i.d. r.v.’s, slightly trimmed sums and their
Studentized versions. In particular, the Bahadur–Kiefer representation allows us
to construct a U -statistic type stochastic approximation for these statistics, which
will enable us to establish Berry–Esseen type bounds and Edgeworth expansions
for normalized and Studentized slightly trimmed sums.

We would like to emphasize that the Bahadur–Kiefer type representation which
we obtain for a sum of order statistics lying between the pn-th population quantile
and the corresponding intermediate empirical quantile (cf. Theorem 2.2) is espe-
cially useful in the construction of a U -statistic type approximation for a (slightly)
trimmed sum, as it provides a quadratic term of the desired U -statistic (cf. [10]–
[12]). Note also that formally the representation (2.7) (cf. Theorem 2.2) can be
obtained by integrating the corresponding Bahadur–Kiefer process on the interval
[ξpnn:n, ξpn); however, we derive representation (2.7) rigorously for intermediate
order statistics, i.e., when pn → 0 (or pn → 1). The remainder terms in our repre-
sentations are shown to be of a suitable negligible order of magnitude.

We conclude this introduction by noting that some extensions of Bahadur’s
representation to dependent random variables have been obtained by Sen [20] and
Wu [24]. The validity of Bahadur’s representation for a bootstrapped p-quantile
was proved (as an auxiliary result) in Gribkova and Helmers [11]. Deheuvels [7]
established a multivariate Bahadur–Kiefer representation for the empirical copula
process. The Bahadur–Kiefer theorems for uniform spacings processes were ob-
tained by Beirlant et al. [2].

2. STATEMENT OF RESULTS

Assume that kn is a sequence of integers such that 0 ¬ kn ¬ n, and rn =
kn ∧ (n− kn)→∞ as n→∞. Set pn=kn/n, and let ξpn =F−1(pn) and ξpn n:n =
F−1n (pn) denote the pn-th population and empirical quantile, respectively.

Define two numbers

(2.1) 0 ¬ a1 = lim inf
n→∞

pn ¬ a2 = lim sup
n→∞

pn ¬ 1.

We will assume throughout this paper that the following smoothness condition is
satisfied.

[A1] The function F−1 is differentiable in some open set U ⊂ (0, 1), i.e. the density
f = F ′ exists and is positive in F−1(U); moreover,

(2.2)

U⊃


(0, ε) if 0 = a1 = a2,

(0, a2] if 0 = a1 < a2,

[a1, a2] if 0 < a1 ¬ a2 < 1,

U⊃


(1− ε, 1) if a1 = a2 = 1,

[a1, 1) if 0 < a1 < a2 = 1,

(0, 1) if a1 = 0, a2 = 1,

for some 0 < ε ¬ 1 in the cases given in the first line of (2.2).
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We will also need the following assumption to establish our ‘almost sure’
results:

[A2] r−1n log n→ 0 as n→∞.

Let h be a real-valued function defined on the set F−1(U) (cf. (2.2)). Take an
arbitrary 0 < C <∞ and for all sufficiently large n define

Ψpn,h(C) = sup
|t|¬C

∣∣∣∣h ◦ F−1(pn + t

√
rn log rn

n2

)
− h ◦ F−1

(
pn

)∣∣∣∣,(2.3)

where h ◦ F−1(u) = h
(
F−1(u)

)
. Note that

pn + t

√
rn log rn

n2
= pn + t

rn
n

√
log rn
rn

= pn + t
rn
n

o(1) as n→∞.

In particular, this implies that the function introduced in (2.3) is well-defined for
all sufficiently large n.

Next we define a function Ψ̂pn,h(C) which is equal to Ψpn,h(C), where log rn
is replaced by log n. As before we show that this function is well-defined for all
sufficiently large n if the condition [A2] holds true.

We will obtain the Bahadur–Kiefer type representations for some smooth func-
tion of the empirical quantile, as it turned out (cf. [10]–[12]) that these extensions
are very useful in the construction of the U -statistic type stochastic approximations
for the Studentized (slightly) trimmed sums.

Let G(x), x ∈ R, be a real-valued function, g = G′ its derivative when it ex-
ists, and let (g/f)(x) and (|g|/f)(x) denote the ratios g(x)/f(x) and |g(x)|/f(x),
respectively.

THEOREM 2.1. (i) Suppose that rn →∞ as n→∞, the condition [A1] holds
true, and G is differentiable on the set F−1(U). Then

(2.4) G(ξpnn:n)−G(ξpn) = −[Fn(ξpn)− F (ξpn)]
g

f
(ξpn) +Rn(pn),

where for each c > 0

(2.5) P
(
|Rn(pn)| > ∆n

)
= O(r−cn )

with

∆n = A
(
pn(1− pn)

)1/4( log rn
n

)3/4 |g|
f
(ξpn)

+B
(
pn(1− pn)

)1/2( log rn
n

)1/2

Ψpn,g/f (C),

where A, B, and C are some positive constants which depend only on c.
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(ii) Moreover, if in addition the condition [A2] is also satisfied, then (2.4)
holds true, with

(2.6) P
(
|Rn(pn)| > ∆̂n

)
= O(n−c)

for each c > 0, where

∆̂n = A
(
pn(1− pn)

)1/4( log n

n

)3/4 |g|
f
(ξpn)

+B
(
pn(1− pn)

)1/2( log n

n

)1/2

Ψ̂pn,g/f (C)

for some positive constants A, B, and C which depend only on c.

Theorem 2.1 is a Bahadur–Kiefer type result. For the special case when 0 <
p < 1 is fixed it is stated in Lemma 3.1 in [10] (cf. also Lemma 4.1 in [11]).

REMARK 2.1. It is easy to see that if one compares the first term on the right-
hand side of (2.4) and the orders of magnitude of the quantities ∆n, ∆̂n given in
(2.5) and (2.6), the relation (2.4) provides a representation with a remainder term
Rn(pn) of smaller order than the first term if and only if

Ψpn,g/f (C) = o

(
|g|
f
(ξpn)

)
and Ψ̂pn,g/f (C) = o

(
|g|
f
(ξpn)

)
for every fixed C > 0, as n→∞. The same remark also applies to the two asser-
tions stated in Theorem 2.2 below.

We give the proofs of our results in Sections 3–5.

THEOREM 2.2. (i) Suppose that rn→∞ as n→∞, the condition [A1] holds
true, and G is differentiable on the set F−1(U). Then

(2.7)
ξpn∫

ξpnn:n

(
G(x)−G(ξpn)

)
dFn(x) = −

1

2
[Fn(ξpn)− F (ξpn)]

2 g

f
(ξpn) +Rn(pn),

where

(2.8) P
(
|Rn(pn)| > ∆n

)
= O(r−cn )

for each c > 0 with

∆n = A
(
pn(1− pn)

)3/4( log rn
n

)5/4 |g|
f
(ξpn)+B pn(1− pn)

log rn
n

Ψpn,g/f (C),

where A, B, and C are some positive constants which depend only on c.
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(ii) Moreover, if in addition the condition [A2] is also satisfied, then (2.7)
holds true, with

(2.9) P
(
|Rn(pn)| > ∆̂n

)
= O(n−c)

for each c > 0, where

∆̂n = A
(
pn(1− pn)

)3/4( log n

n

)5/4 |g|
f
(ξpn) +B pn(1− pn)

log n

n
Ψ̂pn,g/f (C)

for some positive constants A, B, and C which depend only on c.

Theorem 2.2 is our main result; the relation (2.7) provides us with a Bahadur–
Kiefer type representation of von Mises type for a sum of order statistics (cf. the
left-hand side of (2.7)). Theorem 2.2 also extends Lemma 4.3 from [11] (cf. also
Lemma 3.2 in [10]), where (2.7) was established for a fixed p, to the more gen-
eral case where pn is a sequence which may tend to zero or one, as n gets large.
Note also that if both the conditions [A1] and [A2] are satisfied, then Theorems 2.1
and 2.2 and an application of the Borel–Cantelli lemma imply an almost sure result,
i.e. Rn(pn) = Oa.s.(∆̂n) as n→∞.

Next we will state some consequences of Theorems 2.1 and 2.2 where the re-
mainder terms are given in a simpler form. Our first two corollaries concern Baha-
dur–Kiefer type representations for central (not intermediate) order statistics.

COROLLARY 2.1. Suppose that 0 < a1 ¬ a2 < 1, the condition [A1] holds
true, and the functions f = F ′ and g = G′ satisfy a Hölder condition of order
α  1/2 on the set F−1(U). Then (2.4) is valid and

P
(
|Rn(pn)| > A(log n/n)3/4

)
= O(n−c)

for each c > 0, where A > 0 is some constant not depending on n.

COROLLARY 2.2. Suppose that the conditions of Corollary 2.1 are satisfied.
Then (2.7) is valid and

P
(
|Rn(pn)| > A(log n/n)5/4

)
= O(n−c)

for each c > 0, where A > 0 is some constant not depending on n.

To prove Corollaries 2.1 and 2.2 it suffices to note that the condition 0 < a1 ¬
a2 < 1 implies that [A2] is automatically satisfied. Moreover, due to the condition
[A1] the density f is bounded away from zero on the set F−1([a1− δ, a2 + δ]) with
some δ > 0, and hence the ratio g/f satisfies a Hölder condition of order α  1/2
on this set. Then, an application of Hölder’s condition to the function Ψpn,g/f (C)
(cf. (2.3)) proves both corollaries.

Next we state several corollaries for the intermediate sample quantiles pro-
vided some regularity conditions are satisfied.
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Note that the second terms of ∆n and ∆̂n in (2.5) and (2.6), and in (2.8)
and (2.9), involving the functions Ψpn,g/f (C) and Ψ̂pn,g/f (C), depend on the
asymptotic properties of the ratio g/f , and we can describe some sets of conditions
which enable us to absorb these second terms in the first ones. We will need the
following conditions:

(2.10)
(i) Ψpn,g/f (C) = O

((
log rn
rn

)1/4 |g|
f
(ξpn)

)
,

(ii) Ψ̂pn,g/f (C) = O

((
log n

rn

)1/4 |g|
f
(ξpn)

)
.

Before describing some useful corollaries of Theorems 2.1 and 2.2 we state
the following Theorems 2.3 and 2.4 which can be seen as simple consequences of
those theorems, whenever the condition (2.10) is satisfied.

THEOREM 2.3. Suppose that rn → ∞ as n → ∞, the condition [A1] holds
true, and G is differentiable on the set F−1(U). Assume, in addition, that the
condition (i) in (2.10) holds true. Then the representation (2.4) and the relation
(2.5) are valid together with

∆n = A
(
pn(1− pn)

)1/4( log rn
n

)3/4 |g|
f
(ξpn),

where A is some positive constant not depending on n.
Moreover, if in addition the condition [A2] and the relation (ii) in (2.10) are

also satisfied, then (2.4) and (2.6) are valid with

∆̂n = A
(
pn(1− pn)

)1/4( log n

n

)3/4 |g|
f
(ξpn).

THEOREM 2.4. Suppose that rn → ∞ as n → ∞, the condition [A1] holds
true, and G is differentiable on the set F−1(U). Assume, in addition, that the
condition (i) in (2.10) holds true. Then the representation (2.7) and the relation
(2.8) are valid together with

∆n = A
(
pn(1− pn)

)3/4( log rn
n

)5/4 |g|
f
(ξpn),

where A is some positive constant not depending on n.
Moreover, if in addition the condition [A2] and the relation (ii) in (2.10) are

also satisfied, then (2.7) and (2.9) are valid with

∆̂n = A
(
pn(1− pn)

)3/4( log n

n

)5/4 |g|
f
(ξpn).
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Now we present certain sets of conditions sufficient for the relations (2.10) to
hold and, consequently, obtain some useful corollaries of Theorems 2.3 and 2.4.

Let SRV +∞
ρ (SRV −∞ρ ) be a class of functions regularly varying in +∞

(−∞) defined as follows: g ∈ SRV +∞
ρ (g ∈ SRV −∞ρ ) if and only if

(i) g(x) = ±|x|ρ L(x) for |x| > x0, with some x0 > 0 (x0 < 0), ρ ∈ R, and
L(x) is a positive slowly varying function at +∞ (−∞);

(ii) the following second order regularity condition on the tails is satisfied:

(2.11) |g(x+△x)− g(x)| = O

(
|g(x)|

∣∣∣∣△xx
∣∣∣∣1/2)

when△x = o(|x|) as x→ +∞ (x→ −∞).
Note that (2.11) holds true for g if∣∣∣∣L(x+△x)

L(x)
− 1

∣∣∣∣ = O

(∣∣∣∣ △xx
∣∣∣∣1/2) as x→ +∞ (x→ −∞),

where L is the corresponding slowly varying function, and it is also satisfied (even
with degree 1 instead of 1/2) if L is continuously differentiable for sufficiently
large |x| and |L′(x)| = O

(
L(x)/|x|

)
as x→ +∞ (x→ −∞), which is valid, for

instance, when L is some power of the logarithm.

COROLLARY 2.3. Suppose that pn → 0 (pn → 1), the condition [A1] is satis-
fied, f ∈ SRV −∞ρ (f ∈ SRV +∞

ρ ), where ρ = −(1+ γ), γ > 0, and g ∈ SRV −∞ρ

(g ∈ SRV +∞
ρ ), where ρ ∈ R. Then the condition (i) in (2.10) is satisfied, and if

in addition [A2] holds true, then the condition (ii) in (2.10) is also satisfied. Hence,
both the assertions stated in Theorems 2.3 and 2.4 are valid.

We postpone the proof of Corollary 2.3 to Section 5.
Our final corollary concerns the case when the df F and the function G are

twice differentiable.
Let us define the function v (u) := (g/f) ◦ F−1(u), u ∈ (0, 1).

COROLLARY 2.4. Suppose that pn → 0 (pn → 1), the condition [A1] is satis-
fied, and assume that the functions f and g are differentiable on the set F−1(U).
In addition, suppose that

(2.12) sup
u∈U

∣∣∣∣ν ′(u) [u ∧ (1− u)]

ν(u)

∣∣∣∣ <∞,

and that

(2.13) lim sup
u↓0 (u↑1)

∣∣∣∣ν
(
u+ [u ∧ (1− u)]o(1)

)
ν(u)

∣∣∣∣ <∞,

where o(1) denotes any function tending to zero when u ↓ 0 (u ↑ 1).
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Then the condition (i) in (2.10) is satisfied, and if, in addition, [A2] holds true,
then the condition (ii) in (2.10) is also satisfied. Hence, both the assertions stated
in Theorems 2.3 and 2.4 are valid.

P r o o f. The proof of Corollary 2.4 is straightforward. Let us take an arbitrary
C > 0, fix t such that |t| < C, and put α(n) =

√
(log rn)/rn when we prove the

relation (i) of (2.10), and α(n) =
√

(log n)/rn when we prove the relation (ii)
of (2.10) (under the additional condition [A2]). In both cases we have α(n) → 0
as n→∞. Consider now the quantity

∣∣v (pn + t[pn ∧ (1− pn)]α(n)
)
− v (pn)

∣∣.
Since, for all sufficiently large n, pn and pn + t[pn ∧ (1 − pn)]α(n) take their
values in the set U , the latter quantity is equal to

(2.14) |v (pn)|
∣∣∣∣v ′

(
pn + θt[pn ∧ (1− pn)]α(n)

)
v
(
pn + θt[pn ∧ (1− pn)]α(n)

) t [pn ∧ (1− pn)]α(n)

∣∣∣∣
×
∣∣∣∣v

(
pn + θt[pn ∧ (1− pn)]α(n)

)
v (pn)

∣∣∣∣ = O
(
|v (pn)|α(n)

)
for some 0 < θ < 1, which, because of the conditions (2.12) and (2.13), directly
yields (2.10). Thus the corollary is proved. �

REMARK 2.2. It should be noted that under the conditions of Corollary 2.4
we in fact have obtained somewhat stronger relations, namely:

Ψpn,g/f (C) = O

((
log rn
rn

)1/2

· |g|
f
(ξpn)

)
and

Ψ̂pn,g/f (C) = O

((
log n

rn

)1/2

· |g|
f
(ξpn)

)
(cf. (2.14)), which of course directly imply (2.10).

The following examples show that the conditions (2.12) and (2.13) hold true
in a number of interesting cases.

EXAMPLE 2.1 (Gumbel). Consider the distribution F (x)=exp
(
− exp(−x)

)
,

x ∈ R, and let g(x) = xk, where k ∈ Z = {0,±1,±2, . . .}. In this situation we
have f(x) = exp(−x) exp

(
− exp(−x)

)
, while the inverse function is equal to

F−1(u) = − log(− log u), u ∈ (0, 1), whereas

f
(
F−1(u)

)
= −u log u, and v (u) =

[− log(− log u)]k

−u log u
.

After some simple computations we see that
(2.15)

v ′(u) [u ∧ (1− u)]

v (u)
= −k u ∧ (1− u)

− log(− log u) u log u
+

u ∧ (1− u)

−u log u
(1 + log u).
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If u→ 0, the first term on the right-hand side of (2.15) tends to zero and the second
term tends to −1. When u→ 1, the first term is equivalent to

−k 1− u

− log(− log u) log
(
1 + (u− 1)

) ∼ k
1

log(− log u)
= o(1),

whereas, similarly, the second term is equivalent to

−1− u

log u
=

u− 1

log
(
1 + (u− 1)

) = 1 ∗ o(1).

Thus, (2.12) is satisfied in both cases, i.e. U = [0, ε] (pn → 0) and U = [1− ε, 1]
(pn → 1).

To check (2.13) we write

v
(
u+ [u ∧ (1− u)]o(1)

)
v (u)

=

[
log

(
− log(u+ [u ∧ (1− u)]o(1))

)
log(− log u)

]k

× u

u+ [u ∧ (1− u)]o(1)

log u

log
(
u+ [u ∧ (1− u)]o(1)

) ,
and arguing as before we see that the latter quantity is 1 + o(1), as u→ 0 and as
u→ 1 as well.

EXAMPLE 2.2. Let F (x) =
(
1 − exp(−xγ)

)
1(x  0), γ > 0, and let g(x)

= xρ, ρ ∈ R. Now we get

F−1(u) = [− log(1− u)]1/γ , u ∈ (0, 1),

and

v (u) =
[− log(1− u)]ρ/γ

γ[− log(1− u)](γ−1)/γ(1− u)
=

1

γ
[− log(1− u)](ρ+1)/γ−1 1

1− u
.

Then we obtain

(2.16)
v ′(u) [u ∧ (1− u)]

v (u)
=

ρ+ 1− γ

γ

u ∧ (1− u)

−(1− u) log(1− u)
+

u ∧ (1− u)

1− u
.

The first term on the right-hand side in (2.16) tends to the constant (ρ+ 1− γ)/γ
as u→ 0 and it tends to zero as u→ 1, the second term tends to zero as u→ 0 and
it tends to one as u→ 1. Thus, (2.12) is satisfied in both cases as in the previous
example.

To check (2.13) we write

v
(
u+ [u ∧ (1− u)]o(1)

)
v (u)

=

[
log

(
1− u− [u ∧ (1− u)]o(1)

)
log(1− u)

](ρ+1)/γ−1

× 1− u

1− u− [u ∧ (1− u)]o(1)
.
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Some simple computations now show that both factors appearing in the latter quan-
tity tend to one as u→ 0 or as u→ 1.

EXAMPLE 2.3 (Weibull). Let F (x) = exp(−x−γ)1(x  0), γ > 0, and let
g(x) = xρ, ρ ∈ R. Here we get

F−1(u) = [− log u]−1/γ , u ∈ (0, 1), f
(
F−1(u)

)
= γ(− log u)(γ+1)/γ u,

and

v (u) =
[− log u]−ρ/γ

γ[− log u](γ+1)/γ u
=

1

γ
[− log(1− u)]−(ρ+γ+1)/γ 1

u
.

Then we obtain

(2.17)
v ′(u) [u ∧ (1− u)]

v (u)
= −ρ+ γ + 1

γ

u ∧ (1− u)

u log u
− u ∧ (1− u)

u
.

If u→ 0, the first term on the right-hand side in (2.17) tends to zero and the second
one tends to −1, and if u→ 1, the first term tends to the constant (ρ+ γ + 1)/γ
and the second one tends to zero. Thus, (2.12) is satisfied in both cases, i.e. u→ 0
and u→ 1. To check (2.13) we write

v
(
u+ [u ∧ (1− u)]o(1)

)
v (u)

=

[
log u

log
(
u+ [u ∧ (1− u)]o(1)

)](ρ+γ+1)/γ

× u

u+ [u ∧ (1− u)]o(1)
,

and simple evident arguments show that both factors here tend to one as u→ 0 and
as u→ 1.

EXAMPLE 2.4. Let f(x) = Cγ exp(−|x|γ), γ > 0, where Cγ is a constant
depending only on γ, and let g(x) = ±|x|ρ, ρ ∈ R. It is clear that the asymptotic
behavior of the functions on the left-hand side of the conditions (2.12) and (2.13)
is similar to that in Example 2.2 (u→ 1). Thus, these conditions are also satisfied.
Note that if γ = 2, we are dealing with a normal law in this example.

EXAMPLE 2.5. Here we consider an example of a distribution with super
heavy tails having no finite moments. In contrast to Examples 2.1–2.4, in this
case Corollary 2.4 cannot be applied. In this situation, clearly outside the scope
of Corollary 2.4, it is easily checked that the assumption (2.12) obviously fails to
hold, whereas the condition (2.13) is also typically not satisfied either (the only ex-
ception would be the case where the term o(1)/(1− u) appearing in (2.19) remains
bounded as u tends to one). Nevertheless, the conditions of Theorems 2.3 and 2.4
hold true under the additional assumption (2.20) about the rate at which rn tends
to infinity, and the Bahadur–Kiefer representations (2.4)–(2.7) are still valid for the
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intermediate sample quantiles. We refer to Example 1 in Griffin and Pruitt [13] for
a closely related discussion.

Let F (x) = 1 − C/log x for x  x0 > 0, where C > 0 is some constant.
Suppose for ease of presentation that pn → 1 as n→∞, while rn = n− kn →∞,
and let us assume that g(x) = xρ, ρ ∈ R. In this case

F−1(u) = exp

(
C

1− u

)
,

f
(
F−1(u)

)
=

(1− u)2

C
exp

(
− C

1− u

)
,

v (u) = exp

(
(ρ+ 1)

C

1− u

)
C

(1− u)2
.

Since pn → 1, we are interested only in the case u→ 1, so u ∧ (1− u) = 1− u,
and after simple computations we obtain

(2.18)
v ′(u) (1− u)

v (u)
=

C(ρ+ 1)

1− u
+ 2,

which is not bounded as u→ 1, and therefore (2.12) is clearly not satisfied. A sim-
ple analysis of the quantity on the left-hand side in (2.13) yields

(2.19)
v
(
u+ [u ∧ (1− u)]o(1)

)
v (u)

= exp

(
C(ρ+ 1)

o(1)

1− u

)(
1 + o(1)

)
.

We infer that (2.13) is satisfied only if o(1)/(1− u) remains bounded as u→ 1.
However, despite the fact that the conditions (2.12) and (2.13) are not satisfied in
the present example, the relation (2.10) still holds true provided a stronger restric-
tion on the rate at which rn tends to infinity is imposed. Indeed, observe that in
fact (cf. the proof of Corollary 2.4) we evaluate the functions appearing in (2.12)
and (2.13) at the value u = pn and choose o(1) = α(n) =

√
(log rn)/rn, where

in the present example rn = n − kn for all sufficiently large n, since we assume
that pn → 1. Then we see that (2.14), (2.18), and (2.19) together imply that (2.10)
is satisfied whenever

α(n)

1− pn
= O

((
log rn
rn

)1/4)
.

Observe that
α(n)

1− pn
=

n

rn

(
log rn
rn

)1/2

,

and the latter quantity is of order O
((

(log rn)/rn
)1/4), whenever the quantity

n

rn

(
log rn
rn

)1/4

=
n (log rn)

1/4

r
5/4
n
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remains bounded as n→∞. Hence we can conclude that the conditions of Theo-
rems 2.3 and 2.4 are satisfied provided

(2.20) lim sup
n→∞

n4/5(log rn)
1/5

rn
<∞.

Note that [A2] is satisfied automatically whenever (2.20) holds true.
Similarly, we see that a weaker relation (than (2.10)):

Ψpn,g/f (C) = o

(
|g|
f
(ξpn)

)
(for every fixed C > 0), is satisfied provided n2/3(log rn)

1/3/rn → 0 as n→∞,
and this implies only the fact that (2.4) and (2.7) yield the representations (cf. Re-
mark 2.1) with remainder terms of negligible order.

To conclude this section define a binomial random variable Np = ♯{i : Xi ¬
ξp}, 0 < p < 1. Our proof of Theorems 2.1 and 2.2 uses the following fact: condi-
tionally on Np the order statistics X1:n, . . . , XNp:n are distributed as order statis-
tics corresponding to a sample of Np i.i.d. r.v.’s with distribution function F (x)/p,
x ¬ ξp. Though this fact is essentially known (cf., e.g., Theorem 12.4 in [15],
and also [11]), we give a brief proof of it in Section 6.

3. PROOF OF THEOREM 2.1

We can assume without loss of generality that a2 ¬ 1/2. Then kn ¬ n − kn
for all sufficiently large n, and so it is enough to prove (2.4) with

(3.1) ∆n = Ap1/4n

(
log kn
n

)3/4 |g|
f
(ξpn) +B p1/2n

(
log kn
n

)1/2

Ψpn,g/f (C).

We begin with the proof of the first assertion of the theorem, where there is no
restriction on the rate at which kn approaches infinity.

Let U1, . . . , Un denote a sample of independent uniformly (0, 1) distributed
r.v.’s, and U1:n ¬ . . . ¬ Un:n stand for the corresponding order statistics. Put

(3.2) Nx
pn = ♯{i : Xi ¬ ξpn}, Npn = ♯{i : Ui ¬ pn},

and note that ξpnn:n = Xkn:n (because pn = kn/n).
We have to prove that P

(
|Rn(pn)| > ∆n

)
= O (k−cn ) for each c > 0 (cf.

(2.4)), and since the joint distribution of Xkn:n, Nx
pn coincides with joint distri-

bution of F−1(Ukn:n), Npn , it is sufficient to verify it for a remainder given by

Rn(pn) = G
(
F−1(Ukn:n)

)
−G

(
F−1(pn)

)
+

Npn − pnn

n

g

f
(ξpn).
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By Bernstein’s inequality, P(Ukn:n /∈ U) = O
(
exp(−δn)

)
for some δ > 0 not

depending on n (where U is the set defined in (2.2)), so we can rewrite Rn(pn) for
all sufficiently large n as

(3.3)
g

f
(ξpn)Rn,1 +Rn,2,

where

(3.4) Rn,1 = Ukn:n − pn +
Npn − pnn

n
,

and

(3.5) Rn,2 =

[
g

f

(
F−1

(
pn + θ(Ukn:n − pn)

))
− g

f

(
F−1(pn)

) ]
(Ukn:n − pn),

0 < θ < 1. Fix an arbitrary c > 0 and note that we can estimate Rn,j , j = 1, 2, on
the set

(3.6) E = {ω : |Npn − pnn| < A0(pn n log kn)
1/2},

where A0 is a positive constant depending only on c, because by Bernstein’s in-
equality P(Ω \ E) = O(k−cn ) (in fact, we can take every A0 such that A2

0 > 2c).
We will prove that

(3.7) P
(
|Rn,1| > A1( pn )

1/4
(
(log kn)/n

)3/4)
= O(k−cn )

and that

(3.8) P
(
|Rn,2| > A2 pnΨpn,g/f (C)

(
(log kn)/kn

)1/2)
= O(k−cn ).

Here and elsewhere Ai , i = 1, 2, . . ., and C denote some positive constants de-
pending only on c. The relations (3.3)–(3.8) imply (2.4) with ∆n given in (3.1).

First we prove (3.7), using a similar argument conditioning on Npn to that in
the proof of Lemmas 4.1 and 4.3 in [11].

C a s e 1. First let kn ¬ Npn . Then conditionally on Npn the order statistic
Ukn:n is distributed as the kn-th order statistic U ′kn:Npn

of the sample U ′1, . . . , U
′
Npn

of independent (0, pn) uniformly distributed r.v.’s (cf. Lemma 6.1 in the Appendix).
Its expectation is of the form

E(Ukn:n | Npn , kn ¬ Npn) = pn
kn

Npn + 1
,

and the conditional variance equals

V 2
kn =

p2n
Npn + 2

kn
Npn + 1

(
1− kn

Npn + 1

)
,
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and on the set E we have an estimate V 2
kn
¬ A0(pn)

1/2 n−3/2 log1/2 n. Then rewrite
Rn,1 (whenever kn ¬ Npn) as

(3.9) Ukn:n − pn
kn

Npn + 1
+R′n,1,

where R′n,1 equals

pn
kn

Npn + 1
− pn +

Npn − pnn

n
=

(Npn − kn)
2

n(Npn + 1)
+

Npn − kn
n(Npn + 1)

− kn
n(Npn + 1)

,

and on the set E the latter quantity is of order O
(
(log kn)/n

)
. Since (log kn)/n =

o
(
p
1/4
n

(
(log kn)/n

)3/4), the remainder term R′n,1 is of negligible order for our
purposes. For the first two terms in (3.9) we have

(3.10)

P
( ∣∣∣∣Ukn:n − pn

kn
Npn + 1

∣∣∣∣ > A1(pn)
1/4

(
log kn
n

)3/4 ∣∣Npn : kn ¬ Npn

)
= P

( ∣∣∣∣U ′kn:Npn
− pn

kn
Npn + 1

∣∣∣∣ > A1(pn)
1/4

(
log kn
n

)3/4)
= P1 + P2,

where Npn is fixed, kn ¬ Npn , A1 is a constant which will be chosen later, and

(3.11)
P1 = P

(
U ′kn:Npn

> pn
kn

Npn + 1
+A1(pn)

1/4

(
log kn
n

)3/4)
,

P2 = P
(
U ′kn:Npn

< pn
kn

Npn + 1
−A1(pn)

1/4

(
log kn
n

)3/4)
.

We evaluate P1, the treatment for P2 is similar. Consider a binomial r.v.

S′n=
Npn∑
i=1

1Di , where Di=

{
U ′i:Npn

¬pn
kn

Npn + 1
+A1(pn)

1/4

(
log kn
n

)3/4}
,

with parameter (qn, Npn), and

qn = min

(
1,

kn
Npn + 1

+ tn

)
, tn = A1

(
log kn
kn

)3/4

.

If qn = 1, then P1 = 0 and the inequality we need is valid trivially. Let qn < 1 and
let S′n denote the average S′n/Npn . Then the probability P1 is equal to

(3.12) P(S′n < kn) = P
(
S′n − qn <

kn
Npn

− kn
Npn + 1

− tn

)
.
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Note that
kn
Npn

− kn
Npn + 1

=
kn

Npn(Npn + 1)
<

1

Npn

,

and since the latter quantity is of order o(tnk
−1/4
n ) = o(tn) on the set E, for our

purposes this term can be omitted on the right-hand side of (3.12) in our analysis.
To evaluate P(S′n − qn < −tn) we note that qn − tn = kn/(Npn + 1) ∈ (0, 1),
and that qn > 1/2 for all sufficiently large n (and hence kn and Npn) on the
set E. So, we may apply the inequality (2.2) of Hoeffding [14] with µ = qn and
with g(µ) = 1/

(
2µ(1− µ)

)
. Then we obtain

(3.13)

P(S′n < kn) ¬ exp
(
−Npnt

2
ng(qn)

)
= exp

(
−

NpnA
2
1

(
(log kn)/kn

)3/2
2qn(1− qn)

)
.

Finally, we note that

1− qn = 1− kn
Npn + 1

−A1

(
log kn
kn

)3/4

¬ Npn + 1− kn
Npn + 1

,

and on the set E the latter quantity is not greater than

A0(kn log kn)
1/2

Npn

.

Then we can get a lower bound for the ratio on the right-hand side in (3.13):

NpnA
2
1

(
(log kn)/kn

)3/2
2qn(1− qn)


A2

1N
2
pn

(
(log kn)/kn

)3/2
2A0(kn log kn)1/2

=
A2

1

2A0
log kn

(
Npn

kn

)2

=
A2

1

2A0
log kn

(
1 + o(1)

)
.

This bound and (3.13) together yield that when A2
1/(2A0)  c, the desired relation

P1 = O(k−cn ) holds true. The same argument is valid for P2.
We note in passing that an application of a refinement of Hoeffding’s inequal-

ity due to Talagrand [22] (cf. also Leon and Perron [19]) does not allow us to
weaken the condition A2

1/(2A0)  c which was needed to establish the desired
estimates.

C a s e 2. In case Npn < kn we use the fact that conditionally on Npn the order
statistic Ukn:n is distributed as the (kn −Npn)-th order statistic U ′′kn−Npn :n−Npn

of
a sample U ′′1 , . . . , U

′′
n−Npn

from (1 − pn, 1) uniform distribution, its expectation
is pn + (kn −Npn)/(n−Npn + 1), and for the conditional variance we have the
following upper bound:

V 2
kn−Npn

¬ A0(pn log kn )
1/2 n−3/2.
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In this case we use a representation for Rn,1 = R′′n,1 +R′′n,2, where

R′′n,1 = Ukn:n − pn −
kn −Npn

n−Npn + 1
(1− pn),

and
R′′n,2 =

Npn − pn n

n
+

kn −Npn

n−Npn + 1
(1− pn).

As in the first case we have that R′′n,2 = O
(
(log kn)/n

)
with probability

1 − O(k−cn ), and this term is of negligible order for our purposes. Using Hoeffd-
ing’s inequality we obtain for R′′n,1 a similar bound to that for R′n,1. So (3.7) is
proved.

It remains to prove (3.8). First note that by (3.7) on the set E with probability
1−O(k−cn ) we have

|Ukn:n − pn| ¬ A0
(kn log kn)

1/2

n
+A1pn

(
log kn
kn

)3/4

= A0

(
pn

log kn
n

)1/2(
1 + o(1)

)
.

Thus, there exists A2, depending only on c, such that

|Rn,2| ¬ A2

(
pn

log kn
n

)1/2

Ψpn,g/f (A2)

with probability 1−O(k−cn ). This implies (3.8). Thus, the first assertion of Theo-
rem 2.1 is proved.

To prove the second assertion, it is sufficient to repeat our previous arguments
replacing log kn by log n throughout the proof, and applying the assumption [A2]
instead of using the elementary fact that (log kn)/kn → 0 used before. Moreover,
we should now use the function Ψ̂pn,h(C) instead of Ψpn,h(C). These changes lead
to bounds with probability 1 − O(n−c) for each c > 0. This completes the proof
of the theorem. �

4. PROOF OF THEOREM 2.2

We give a detailed proof of the first assertion of Theorem 2.2. To prove the
second assertion it clearly suffices to make similar changes to those given in the
proof of the corresponding part of Theorem 2.1, so we omit the proof of part (ii) of
Theorem 2.2.

Let Nx
pn and Npn be given as in (3.2). Then we can rewrite the integral on the

left-hand side of (2.7) as

sgn(Nx
pn − kn)

n

kn∨Nx
pn∑

i=(kn∧Nx
pn)+1

(
G(Xi:n)−G(ξpn)

)
,
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where sgn(x) = x/|x|, sgn(0) = 0. Let us adopt the following notation: for any
integer k and m define a set

I(k,m) := {i : (k ∧m) + 1 ¬ i ¬ k ∨m}

and let ∑
i∈I(k,m)

(·)i := sgn(m− k)
k∨m∑

i=(k∧m)+1

(·)i.

Then we have to estimate

Rn(pn) =
1

n

∑
i∈I(kn,Nx

pn )

(
G(Xi:n)−G(ξpn)

)
+

(Nx
pn − pnn)

2

2n2

g

f
(ξpn)

(cf. (2.7)), and as in the proof of Theorem 2.1 we can note that Rn(pn) is dis-
tributed as

(4.1)
1

n

∑
i∈I(kn,Npn )

(
G ◦ F−1(Ui:n)−G ◦ F−1(pn)

)
+
(Npn − pnn)

2

2n2

g

f
(ξpn)

=
g

f
(ξpn)Rn,1 +Rn,2,

where

Rn,1 =
1

n

∑
i∈I(kn,Npn )

(Ui:n − pn) +

(
Npn − pnn

)2
2n2

,

Rn,2 =
1

n

∑
i∈I(kn,Npn )

[
g

f
◦F−1

(
pn + θi(Ui:n− pn)

)
− g

f
◦F−1(pn)

]
(Ui:n− pn),

0 < θi < 1, i ∈ I(kn,Npn )
. As before (cf. the proof of Theorem 2.1) we can assume

without loss of generality that a2 ¬ 1/2. Then we need to prove (2.7) with

(4.2) ∆n = Ap3/4n

(
log kn
n

)5/4 |g|
f
(ξpn) +B pn

log kn
n

Ψpn,g/f (C).

Fix an arbitrary c > 0 and prove that

(4.3) P
(
|Rn,1| > A1( pn)

3/4

(
log kn
n

)5/4)
= O(k−cn ),

(4.4) P
(
|Rn,2| > A2 pn

log kn
n

Ψpn,g/f (A2)

)
= O(k−cn ),
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where Ai > 0, i = 1, 2, . . ., are some constants depending only on c. The relations
(4.1), (4.3) and (4.4) imply (2.7) with ∆n as in (4.2). As in the proof of Theorem 2.1
it is enough to estimate Rn,j , j = 1, 2, on the set

E = {ω : |Npn − pnn| < A0(pn n log kn)
1/2},

where A0 > 0 is a constant, depending only on c, such that P(Ω \ E) = O(k−cn ).
First we consider Rn,2. Note that

max
i∈I(kn,Npn )

|Ui:n − pn| = |Ukn:n − pn| ∨ |UNpn :n − pn| ∨ |UNpn+1:n − pn|,

P
(
|Ukn:n − pn| > A0

(
(pn log kn)/n

)1/2)
= O(k−cn )

(cf. the proof of Theorem 2.1), and for j = Npn:n , Npn:n + 1 simultaneously we
have

P
(
|Uj:n − pn

∣∣ > A1
log kn
n

)
¬ P

(
UNpn+1:n − UNpn :n > A1

log kn
n

)
= P

(
U1:n > A1

log kn
n

)
=

(
1−A1

log kn
n

)n

= O(k−cn )

for A1 > c. Since (log kn)/n = o
(
(pn log kn)/n

)1/2, on the set E we obtain

|Rn,2| ¬
1

n
Ψpn,g/f (A0)A

2
0(pn n log kn)

1/2

(
pn log kn

n

)1/2

= A2pn
log kn
n

Ψpn,g/f (A0)

with probability 1−O(k−cn ), and (4.4) is proved.
Finally, consider Rn,1. Note that conditionally on Npn , kn < Npn , the order

statistics Ui:n, kn ¬ i ¬ Npn , are distributed as the order statistics U ′i:Npn
from

the uniform (0, pn) distribution (cf. the proof of Theorem 2.1), their conditional
expectations are equal to pn[i/(Npn + 1)]. Then in the case kn < Npn (the proof
for the case Npn  kn with respect to the interval (1− pn, 1) is similar to the proof
of Theorem 2.1, and we omit the details) we rewrite Rn,1 as

(4.5) Rn,1 =
1

n

Npn∑
i=kn+1

(
Ui:n − pn

i

Npn + 1

)
+R′n,1,
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where

R′n,1 =
1

n

Npn∑
i=kn+1

pn

(
i

Npn + 1
− 1

)
+

(Npn − pn n)
2

2n2

= −kn
n2

(Npn − kn)(Npn − kn − 1)

2 (Npn + 1)
+

(Npn − kn)
2

2n2

=
(Npn − kn)

2(Npn + 1− kn)

2 (Npn + 1)n2
− kn(Npn − kn)

2(Npn + 1)n2
,

and on the set E the latter quantity is of the order

O

(
k
1/2
n (log kn)

3/2

n2

)
= o

(
(pn)

3/4

(
log kn
n

)5/4)
,

i.e. R′n,1 is of negligible order (cf. (4.3)) for our purposes.
It remains to evaluate the dominant first term on the right-hand side in (4.5).

Fix an arbitrary c1 > c + 1/2, and note that conditionally on Npn the variance of
Ui:n (kn + 1 ¬ i ¬ Npn) is equal to

V 2
i = (pn)

2 1

Npn + 2

i

Npn + 1

(
1− i

Npn + 1

)
,

and on the set E this quantity is less than

(pn)
2A0k

1/2
n (log kn)

1/2

N2
pn

,

and

Vi ¬ pnA
1/2
0 k1/4n (log kn)

1/4/Npn ¬ A
1/2
0 pnk

−3/4
n (log kn)

1/4

¬ A
1/2
0 (pn)

1/4n−3/4(log kn)
1/4.

Using Hoeffding’s inequality (as in the proof of Theorem 2.1), we find that

P
(∣∣∣∣Ui:n − pn

i

Npn + 1

∣∣∣∣ > A1(pn)
1/4

(
log kn
n

)3/4∣∣Npn : kn ¬ Npn

)
=O(k−cn ),

where A1 depends only on c1 (in fact, this is true for every A1 such that A2
1 >

2A0c1). Thus

(4.6)

P
(
1

n

∣∣∣∣ Npn∑
i=kn

(
Ui:n− pn

i

Npn+1

)∣∣∣∣>A0A1(pn)
3/4

(
log kn
n

)5/4∣∣Npn : kn¬Npn

)
¬ A0(kn log kn)

1/2O(k−c1n ) = O(k−cn ).

Combining (4.5) and (4.6) and using similar estimates for the case Npn < kn, we
arrive at (4.3). Thus the theorem is proved. �
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5. PROOF OF COROLLARY 2.3

Suppose that pn → 0 as n → ∞; the case where pn → 1 as n → ∞ can be
treated in a similar fashion and is therefore omitted. We will establish the relations:

(5.1)
Ψpn,g/f (C) = O

((
log kn
kn

)1/4 |g|
f
(ξpn)

)
,

Ψ̂pn,g/f (C) = O

((
log n

kn

)1/4 |g|
f
(ξpn)

)
.

Let log(·) denote log kn when we prove the first relation in (5.1), and log n when
we prove the second one. Since we will need only the relation log(·)/kn → 0,
which is evident in the first case and is valid by [A2] in the second case, this simple
observation will allow us to prove both the assertions in (5.1) at the same time.

Define xn = F−1(pn) which approaches −∞ as n→∞. Fix C > 0 and for
a fixed t such that |t| ¬ C, put

△xn = F−1
(
pn + t

√
pn

log(·)
n

)
− xn = F−1

(
pn

(
1 + t

√
log(·)
kn

))
− xn.

First we prove that (△xn)/xn → 0 as n→∞. Due to the smoothness condi-
tion [A1], for all sufficiently large n we may write

△xn
xn

=
1

xn f
(
F−1

(
pn

(
1 + θ t

√
k−1n log(·)

))) t
√

pn
log(·)
n

=
1

xnf(xn)

f
(
F−1(pn)

)
f
(
F−1

(
pn

(
1 + θ t

√
k−1n log(·)

))) t
√

pn
log(·)
n

,

where 0 < θ < 1, and since due to the condition of regular variation we have

f(xn)xn ∼ −γ F (xn) = −γ pn as xn → −∞

(cf., e.g., Bingham et al. [3]), the latter quantity is equivalent to

− 1

γ pn

f
(
F−1(pn)

)
f
(
F−1

(
pn

(
1 + o(1)

))) t√pn
log(·)
n

= −1

γ

f
(
F−1(pn)

)
f
(
F−1

(
pn

(
1 + o(1)

))) t√ log(·)
kn

.

It remains to show that

f
(
F−1(pn)

)
f
(
F−1

(
pn

(
1 + o(1)

))) = 1 + o(1).
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Since f ∈ SRV −∞−(1+γ), for all x < x0 < 0 we have f(x) = |x|−(1+γ)L(x), where
L(x) is a positive function slowly varying at −∞. Moreover, the inverse function
F−1(u) is regularly varying at zero, i.e. F−1(u) = u−1/γL1(u), where L1(u) is a
corresponding function slowly varying at zero. So, for sufficiently large n, we have

f
(
F−1(pn)

)
f
(
F−1

(
pn

(
1 + o(1)

)))
=

[p
−1/γ
n L1(pn)]

−(1+γ)L
(
F−1(pn)

)[(
pn

(
1 + o(1)

))−1/γ
L1

(
pn

(
1 + o(1)

))]−(1+γ)
L
(
F−1

(
pn

(
1 + o(1)

)))
∼

L
(
F−1(pn)

)
L
(
F−1

(
pn

(
1 + o(1)

))) =
L[p
−1/γ
n L1(pn)]

L
[(
pn

(
1 + o(1)

))−1/γ
L1

(
pn

(
1 + o(1)

))] ∼ 1.

Thus, |(△xn)/xn| = O
(√

k−1n log(·)
)
.

Finally, we obtain a bound for |(g/f)(xn +△xn) − (g/f)(xn)| for an arbi-
trary fixed C > 0 and |t| ¬ C, as n→∞. Due to the relation (2.11) which holds
true for the density f as well as for the function g we have∣∣∣∣ gf (xn +△xn)−

g

f
(xn)

∣∣∣∣
=

∣∣∣∣f(xn)[g(xn +△xn)− g(xn)]− g(xn)[f(xn +△xn)− f(xn)]

f(xn +△xn)f(xn)

∣∣∣∣
= O

(
|g|
f
(xn)

f(xn)

f(xn +△xn)

∣∣∣∣△xnxn

∣∣∣∣1/2)
= O

(
|g|
f
(xn)

f(xn)

f(xn) + [f(xn +△xn)− f(xn)]

∣∣∣∣△xnxn

∣∣∣∣1/2)
= O

(
|g|
f
(xn)

1

1 +O
(
|(△xn)/xn|1/2

) ∣∣∣∣△xnxn

∣∣∣∣1/2) = O

(
|g|
f
(xn)

∣∣∣∣△xnxn

∣∣∣∣1/2)
= O

(
|g|
f
(xn)

(
log(·)
kn

)1/4)
as n→∞.

The latter bound yields (5.1). Thus the corollary is proved. �

6. APPENDIX

As before, let Np = ♯{i : Xi ¬ ξp, i = 1, . . . , n}, where 0 < p < 1 is fixed.
We prove that conditionally on Np the order statistics X1:n, . . . , XNp:n are dis-
tributed as the order statistics corresponding to a sample of Np i.i.d. r.v.’s with dis-
tribution function F (x)/p, x ¬ ξp. Let U1, . . . , Un denote a sample of independent
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uniformly (0, 1) distributed r.v.’s, and U1:n ¬ . . . ¬ Un:n be the corresponding or-
der statistics. Put Np,u = ♯{i : Ui ¬ p, i = 1, . . . , n}. Since the joint distribution
of the pair Xi:n, Np is the same as the joint distribution of F−1(Ui:n), Np,u , it
suffices to prove the assertion for the uniform distribution.

LEMMA 6.1. Conditionally given Np,u, the order statistics U1:n, . . . , UNp,u:n

are distributed as the order statistics corresponding to a sample of Np,u indepen-
dent (0, p)-uniformly distributed r.v.’s.

P r o o f. (a) First consider the case where Np,u = n. Take arbitrary 0 < u1 ¬
. . . ¬ un < p and note that

P(U1:n ¬ u1, . . . , UNp,u:n ¬ un | Np,u = n) =
P(U1:n ¬ u1, . . . , Un:n ¬ un)

pn

=
n!

pn

u1∫
0

u2∫
u1

. . .
un∫

un−1

dx1 dx2 . . . dxn,

where the latter expression is nothing but the joint df of the order statistics corre-
sponding to a sample of n independent (0, p)-uniformly distributed r.v.’s.

(b) Next consider the case where Np,u = k < n. Let Fi,n(u) = P(Ui:n ¬ u)
be a df of i-th order statistic, and put

Pn(k) = P(Np,u = k) =

(
n

k

)
pk(1− p)n−k.

Then we have

(6.1) P(U1:n ¬ u1, . . . , UNp,u:n ¬ uk | Np,u = k)

=
P(U1:n ¬ u1, . . . , Uk:n ¬ uk, Uk+1:n > p)

Pn(k)
.

The probability in the numerator on the right-hand side of (6.1) is equal to

1∫
p

P(U1:n ¬ u1, . . . , Uk:n ¬ uk|Uk+1:n = v) dFk+1,n(v),

and by the Markov property of order statistics the latter quantity equals

1∫
p

(
k!

vk

u1∫
0

u2∫
u1

. . .
uk∫

uk−1

dx1 dx2 . . . dxk

)
dFk+1,n(v)

=
k!

pk

( u1∫
0

u2∫
u1

. . .
uk∫

uk−1

dx1 dx2 . . . dxk

)
pk

1∫
p

1

vk
dFk+1,n(v).
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Since

pk
1∫
p

1

vk
dFk+1,n(v) = pk

1∫
p

(1− v)n−k−1

B(k + 1, n− k)
dv =

(
n

k

)
pk(1− p)n−k = Pn(k),

where B(k + 1, n− k) = k!(n− k − 1)!/n!, we see that the conditional probabil-
ity in (6.1) is equal to

k!

pk

u1∫
0

u2∫
u1

. . .
uk∫

uk−1

dx1 dx2 . . . dxk,

which obviously corresponds to the (0, p)-uniform distribution. Thus the lemma is
proved. �
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