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Abstract. This paper deals with iteration stable (STIT) tessellations,
and, more generally, with a certain class of tessellations that are infinitely
divisible with respect to iteration. They form a new, rich and flexible family
of space-time models considered in stochastic geometry. The previously de-
veloped martingale tools are used to study second-order properties of STIT
tessellations. A general formula for the variance of the total surface area of
cell boundaries inside an observation window is shown. This general ex-
pression is combined with tools from integral geometry to derive exact and
asymptotic second-order formulas in the stationary and isotropic regime.
Also a general formula for the pair-correlation function of the surface mea-
sure is found.
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1. INTRODUCTION

Iteration stable random tessellations (or mosaics), called STIT tessellations for
short, form a new model for random tessellations of the d-dimensional Euclidean
space and were formally introduced in [8]–[11]. They have quickly attracted con-
siderable interest in stochastic geometry, because of their flexibility and analytical
tractability. They clearly show the potential to become a new mathematical refer-
ence model besides the hyperplane and Voronoi tessellations studied in classical
stochastic geometry. Whereas much research in the last decades was devoted to
mean values and mean value relations, modern stochastic geometry focuses on
second-order theory, distributional results, and limit theorems; see [1], [3], [4],
[18] or [20], to mention just a few. To introduce the non-specialized reader to the
subject, we briefly recall the basic construction of STIT tessellations within com-
pact convex windows W ⊂ Rd having interior points. To this end, let us fix a (in

∗ Deceased author (1975–2010).
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Figure 1. Realizations of a planar and a spatial stationary and
isotropic STIT tessellation within a square or a cube, respectively

some sense non-degenerate) translation-invariant measure Λ on the space of hyper-
planes. Further, let t > 0 be fixed and assign to the window W a random lifetime.
Upon expiry of its lifetime, W dies and splits into two sub-cells separated by a
hyperplane hitting W , which is chosen according to a suitable normalization of Λ.
The resulting new cells are again assigned independent random lifetimes and the
entire construction continues recursively until the deterministic time threshold t
is reached; see Figure 1 for an illustration. In order to ensure the Markov prop-
erty of the above construction in the continuous-time parameter t, we assume from
now on that the lifetimes are exponentially distributed. Moreover, we assume that
the parameter of the exponentially distributed lifetimes of individual cells c equals
Λ([c]), where [c] stands for the collection of hyperplanes hitting c. In this special
situation, the random tessellation constructed by the described dynamics fulfills
a stochastic stability property under the operation of iteration of tessellations, and
whence is indeed a STIT tessellations. We refer to Section 2 below for more details.

In [16] we have introduced a new technique relying on martingale theory for
studying these tessellations. One feature of this new approach is that it allows us
to investigate second-order parameters (i.e., variances) of the tessellation, which
were out of reach so far and are in the focus of the present work. Based on a spe-
cialization of our martingale technique, we calculate in Section 4 the variance of
a general face-functional and as a special case we find the variance of the total
surface area of cell boundaries in a bounded convex window. The resulting integral
expression can be explicitly evaluated in the stationary and isotropic regime by
applying an integral-geometric transformation formula of Blaschke–Petkantschin
type which is also developed in this paper; see Section 5. For the particular case
of space dimension 3, an exact formula without further integrals is found. Another
important task in our context is to determine for fixed terminal times t the large
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scale asymptotics of the afore calculated exact variance for a family of growing
convex windows. Relying again on techniques from integral geometry, we will be
able to determine asymptotic variance expressions, leading – most interestingly –
in dimension d = 2 to a result of very different qualitative nature compared with
space dimensions d > 3, where certain chord-power integrals known from convex
and integral geometry will reflect the influence of the geometry of the observation
window. In dimension d = 2 we will see that, in contrast to the described situa-
tion for higher space dimensions, the shape of the window does not play any rôle
and only its area enters our formulas; see Section 6. We also derive an explicit ex-
pression for the so-called pair-correlation function of the random surface measure
for arbitrary space dimensions (see Section 7), generalizing thereby findings from
[21], which are based on completely different methods.

We would like to point out that the second-order theory developed in this paper
is fundamental for our further work on STIT tessellations (see [13], [14], and [17])
and that its extended version [15] is available online.

In this paper we will make use of the following general notation:BR = Bd
R(o)

is the d-dimensional ball around the origin with radius R > 0; κj := Volj(B
j
1) is

the volume of the j-dimensional unit ball, and jκj its surface area. The uniform
distribution on the unit sphere Sd−1 in Rd (normalized spherical surface measure)
is denoted by νd−1.

2. CONSTRUCTION AND PROPERTIES OF THE TESSELLATIONS

Let Λ be a non-atomic and locally finite measure on the space H of hyper-
planes in the d-dimensional Euclidean space Rd. Further, let t > 0 andW ⊂ Rd be
a compact convex window with interior points in which our construction of a ran-
dom tessellation Y (tΛ,W ) is carried out. In a first step, we assign to the window
W an exponentially distributed random lifetime with parameter Λ([W ]), where
[W ] := {H ∈ H : H ∩W ̸= ∅} means the collection of hyperplanes hitting W .
Upon expiry of its lifetime, the cell W dies and splits into two polyhedral sub-
cells W+ and W− separated by a hyperplane in [W ], which is chosen according
to the conditional law Λ( · |[W ]). The resulting new cells W+ and W− are again
assigned independent exponential lifetimes with respective parameters Λ([W+])
and Λ([W−]) (whence smaller cells live stochastically longer) and the entire con-
struction continues recursively until the deterministic time threshold t is reached;
for an illustration see Figure 1. The cell-separating (d− 1)-dimensional facets (the
term facet stands for a (d − 1)-dimensional face here and throughout) arising in
subsequent splits are referred to as (d − 1)-dimensional maximal polytopes (or
I-segments for d = 2 as assuming shapes similar to the letter I).

The described process of recursive cell divisions is called the MNW-construc-
tion in honor of its inventors in the sequel and the resulting random tessellation
created inside W is denoted by Y (tΛ,W ) as mentioned above. (We adopt the
convention that a random tessellation is a random closed set, which is formed by
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the union of its cell boundaries. In particular, this induces a measurable structure
on the space of tessellations.) The random tessellation Y (tΛ,W ) has the following
properties (see [11] for the proofs):

• Y (tΛ,W ) is consistent in that Y (tΛ,W ) ∩ V D
= Y (tΛ, V ) for convex V ⊂

W , and thus Y (tΛ,W ) can be extended to a random tessellation Y (tΛ) on the
whole space Rd. Hence, for arbitrary Borel sets A ⊂ Rd we shall write Y (tΛ, A)
for Y (tΛ) ∩A.

• If Λ is translation-invariant, Y (tΛ) is stationary, i.e., stochastically trans-
lation invariant. If, moreover, Λ is the isometry-invariant hyperplane measure Λiso

(with a normalization as in [12]), then Y (tΛiso) is even isotropic, i.e., stochastically
invariant under rotations with respect to the origin.

• Y (tΛ,W ) is iteration infinitely divisible with respect to the operation � of
iteration of tessellations for any compact convex W ⊂ Rd. This is to say

Y (tΛ,W )
D
= m

(
Y
(
(t/m)Λ,W

)
� . . .� Y

(
(t/m)Λ,W

))
, m = 2, 3, . . . ;

see [16] for more details. Because of this property we call Y (tΛ,W ) an itera-
tion infinitely divisible MNW-tessellation. In addition, if Λ is translation-invariant,
Y (tΛ) is stable under the operation �, which is to say

Y (tΛ)
D
= m

(
Y
(
(t/m)Λ

)
� . . .� Y

(
(t/m)Λ

))
, m = 2, 3, . . .

For this reason, Y (tΛ) is called a random STIT tessellation in this case.
• In the stationary regime, the surface density, i.e., the mean surface area of

cell boundaries of Y (tΛ) per unit volume, equals t.
• STIT tessellations have the following scaling property:

tY (tΛ)
D
= Y (Λ), t > 0,

i.e., the tessellation Y (tΛ) of surface intensity t upon rescaling by factor t has the
same distribution as Y (Λ), the STIT tessellation with surface intensity one.

3. BACKGROUND MATERIAL

In this section we recall a few facts from [16], which will turn out to be crucial
for our arguments below. Firstly, it follows directly from the MNW-construction
that in the continuous-time parameter t,

(
Y (tΛ,W )

)
t>0

is a pure jump Markov
process on the space of tessellations of W , whose generator L := LΛ;W is given
by the formula

(3.1) LF (Y ) =
∫
[W ]

∑
f∈Cells(Y ∩H)

[F (Y ∪ {f})− F (Y )] Λ(dH)
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for all F bounded and measurable on the space of tessellations ofW. (Here, Y ∩H
stands for the tessellation induced by Y in the intersection plane H .) Similar to
the approach taken in [16], the general theory of Markov processes can now be
used to construct a class of martingales associated with iteration infinitely divisi-
ble MNW-tessellations or, more specifically, with STIT tessellations. Indeed, for
bounded measurable G = G(Y, t), considering the time-augmented Markov pro-
cess

(
Y (tΛ,W ), t

)
t>0

and applying standard theory (see Lemma 5.1 in Appen-
dix 1, Section 5, in [6], or simply by performing a direct check) we obtain

PROPOSITION 3.1. Assume that G(Y, t) is twice continuously differentiable
in t and that

sup
Y,t

∣∣∣∣ ∂∂tG(Y, t)
∣∣∣∣+ ∣∣∣∣ ∂2∂t2G(Y, t)

∣∣∣∣ < +∞.

Then the stochastic process

G
(
Y (tΛ,W ), t

)
−

t∫
0

(
[LG(·, s)]

(
Y (sΛ,W )

)
+

∂

∂s
G
(
Y (sΛ,W ), s

))
ds

is a martingale with respect to ℑt, the filtration induced by
(
Y (sΛ,W )

)
06s6t.

For Y abbreviating Y (tΛ,W ) for some t, Λ, and W , we define

(3.2) Σϕ(Y ) :=
∑

f∈MaxPolytopesd−1(Y )

ϕ(f),

where MaxPolytopesd−1(Y ) are the (d − 1)-dimensional maximal polytopes of
Y (the I-segments in the two-dimensional case), whereas ϕ(·) is a generic bounded
and measurable functional on (d − 1)-dimensional facets in W, that is to say, a
bounded and measurable function on the space of closed (d − 1)-dimensional
polytopes in W, possibly chopped off by the boundary of W, with the standard
measurable structure inherited from the space of closed sets in W. Whereas the
so-defined Σϕ is not bounded, we cannot directly apply Dynkin’s formula (see
Appendix 1, Section 5, in [6] for example) to conclude that the stochastic process
Σϕ

(
Y (tΛ,W )

)
−
∫ t
0
LΣϕ

(
Y (sΛ,W )

)
ds is anℑt-martingale. However, a suitable

localization argument can be applied (see [16] for the details) to show

PROPOSITION 3.2. The stochastic process

Σϕ
(
Y (tΛ,W )

)
−

t∫
0

∫
[W ]

∑
f∈Cells(Y (sΛ,W )∩H)

ϕ(f) Λ(dH)ds

is a martingale with respect to ℑt.

REMARK 3.1. We assume here and until the final section that the observation
window W is convex. This is natural regarding the integral-geometric interpreta-
tion of variance formulas below. Moreover, the assumption is helpful when our
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results shall be compared with the formulas for the Poisson hyperplane tessella-
tions in [3] for example. However, parts of our theory hold for arbitrary bounded
Borel sets W ⊂ Rd. This generality will be needed to obtain an explicit expression
for the pair-correlation function of the surface measure at the end of this paper.

4. A GENERAL VARIANCE FORMULA

The general martingale statements from the previous section admit a conve-
nient specialization to deal with second-order characteristics of iteration infinitely
divisible MNW-tessellations or stationary STIT tessellations. Let us fix through
this section a compact convex window W ⊂ Rd with interior points. From now on
we will focus our attention on translation-invariant face functionals ϕ of (d − 1)-
dimensional facets, regarded as usual as closed subsets of W , of the form

(4.1) ϕ(f) := Vold−1(f)ζ
(
n⃗(f)

)
with n⃗(f) standing for the unit normal to f and ζ for a bounded measurable even
function on the (d − 1)-dimensional unit sphere Sd−1. Recall now the definition
(3.2) of Σϕ

(
Y (tΛ,W )

)
, introduce the bar notation

Σ̄ϕ
(
Y (tΛ,W )

)
:= Σϕ

(
Y (tΛ,W )

)
− EΣϕ

(
Y (tΛ,W )

)
,

write Σ̄2
ϕ

(
Y (tΛ,W )

)
for

(
Σ̄ϕ

(
Y (tΛ,W )

))2, and put

(4.2) Aϕ
(
Y (tΛ,W )

)
:=

∫
[W ]

∑
f∈Cells(Y (tΛ,W )∩H)

ϕ(f) Λ(dH).

PROPOSITION 4.1. The stochastic process

(4.3) Σ̄2
ϕ

(
Y (tΛ,W )

)
−

t∫
0

Aϕ2
(
Y (sΛ,W )

)
ds

is an ℑt-martingale.

P r o o f. Let Y = Y (tΛ,W ) for some t and W and define

G(Y, t) :=
(
Σϕ(Y )− EΣϕ(Y )

)2
,

so that G
(
Y (tΛ,W ), t

)
= Σ̄2

ϕ

(
Y (tΛ,W )

)
. For so defined G we have

∂

∂t
G(Y, t) = 2Σ̄ϕ

(
Y (tΛ,W )

) ∂
∂t

Σ̄ϕ
(
Y (tΛ,W )

)
= −2Σ̄ϕ

(
Y (tΛ,W )

) ∂
∂t

EΣϕ
(
Y (tΛ,W )

)
= −2Σ̄ϕ

(
Y (tΛ,W )

)
EAϕ

(
Y (tΛ,W )

)
(4.4)
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according to Proposition 3.2. In order to apply Proposition 3.1 it remains to find an
expression for [LG(·, t)](Y ). Using (3.1) we obtain

[LG(·, t)](Y ) =
∫
[W ]

∑
f∈Cells(Y ∩H)

[(
Σϕ(Y ∪ {f})− EΣϕ(Y )

)2 − Σ̄2
ϕ(Y )

]
Λ(dH).

By rearranging terms we find that

(4.5) [LG(·, t)](Y ) =
∫
[W ]

∑
f∈Cells(Y ∩H)

[ϕ2(f) + 2ϕ(f)Σ̄ϕ(Y )] Λ(dH).

We would now like to apply Proposition 3.1 and use (4.4) and (4.5) to conclude
that

(4.6) G
(
Y (tΛ,W ), t

)
−

t∫
0

(
[LG(·, s)]

(
Y (sΛ,W )

)
+

∂

∂s
G
(
Y (sΛ,W ), s

))
ds

= Σ̄2
ϕ

(
Y (tΛ,W )

)
−

t∫
0

∫
[W ]

∑
f∈Cells(Y (sΛ,W )∩H)

ϕ2(f) Λ(dH)ds

− 2
t∫
0

[ ∫
[W ]

∑
f∈Cells(Y (sΛ,W )∩H)

ϕ(f) Σ̄ϕ
(
Y (sΛ,W )

)
Λ(dH)

− Σ̄ϕ
(
Y (sΛ,W )

)
EAϕ

(
Y (sΛ,W )

)]
ds

= Σ̄2
ϕ

(
Y (tΛ,W )

)
−

t∫
0

Aϕ2
(
Y (sΛ,W )

)
ds

− 2
t∫
0

Āϕ
(
Y (sΛ,W )

)
Σ̄ϕ

(
Y (sΛ,W )

)
ds

(4.7)

is anℑt-martingale with Āϕ
(
Y (sΛ,W )

)
:= Aϕ

(
Y (sΛ,W )

)
−EAϕ

(
Y (sΛ,W )

)
.

However, this is not possible directly, because G(Y, t) does not necessarily fulfill
the conditions of Proposition 3.1. However, we can apply a suitable localization
and truncation argument similar to the one leading to Proposition 2 in [16] to get
the result. In our case we replaceG byGN chosen so that

(
GN (·, ·)∧N

)
∨−N ≡(

G(Y, t) ∧N
)
∨ −N, that |GN (·, ·)| 6 N + 1, and that GN (·, t) is twice contin-

uously differentiable in t. The localizing stopping times are defined by

TN = inf

{
t > 0 :

(
|G(Y, t)| ∨

∣∣∣∣ ∂∂tG(Y, t)
∣∣∣∣ ∨ ∣∣∣∣ ∂2∂t2G(Y, t)

∣∣∣∣) > N

}
.

Then Proposition 3.1 can be applied to infer that the stochastic process (4.6) with
G replaced by GN is a local martingale for the localizing sequence (TN )N>1 as
defined above. Letting N →∞ we see that even (4.6) with the original function G
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is a local martingale. Moreover, it is of class DL, which finally shows that (4.6) with
G(Y, t) = Σ̄2

ϕ(Y ) and consequently (4.7) is a martingale as claimed; see Defini-
tion 4.8 and Problem 5.19 (i) in [5].

We now take advantage of the special form (4.1) of the face functional ϕ to
conclude that
(4.8) Aϕ ≡

∫
[W ]

Vold−1(H ∩W )ζ
(
n⃗(H)

)
Λ(dH) = const.

This implies that Āϕ ≡ 0, and thus, using (4.7), we can complete the proof. �

The so-far established theory is now used to calculate the variance of face
functionals as given by the formula (4.1) of iteration infinitely divisible random
MNW-tessellations Y (tΛ,W ) restricted to a compact convex window W ⊂ Rd
with Vold(W ) > 0.

THEOREM 4.1. For arbitrary diffuse and locally finite measures Λ on H and
ϕ as in (4.1) we have

Var
(
Σϕ

(
Y (tΛ,W )

))
=

∫
[W ]

ζ2
(
n⃗(H)

) ∫
W∩H

∫
W∩H

1− exp
(
− tΛ([xy])

)
Λ([xy])

dxdyΛ(dH).

P r o o f. Recall first (4.2) and note that it implies

Aϕ2
(
Y (tΛ,W )

)
=

∫
[W ]

∑
f∈Cells(Y (tλ,W )∩H)

ϕ2(f) Λ(dH)

=
∫
[W ]

ζ2
(
n⃗(H)

) ∫
W∩H

∫
W∩H

1[x, y are in the same cell of Y ∩H] dxdyΛ(dH).

Taking the expectation and using Fubini’s theorem we see that

EAϕ2
(
Y (tΛ,W )

)
=

∫
[W ]

∑
f∈Cells(Y (tΛ,W )∩H)

ϕ2(f) Λ(dH)

=
∫
[W ]

ζ2
(
n⃗(H)

) ∫
W∩H

∫
W∩H

P(x, y are in the same cell of Y ∩H) dxdyΛ(dH).

Moreover, the martingale property of the stochastic process in (4.3) implies that

VarΣϕ
(
Y (tΛ,W )

)
= EΣ̄2

ϕ

(
Y (tΛ,W )

)
=

t∫
0

EAϕ2
(
Y (sΛ,W )

)
ds.

Thus,

(4.9) VarΣϕ
(
Y (tΛ,W )

)
=

t∫
0

∫
[W ]

ζ2
(
n⃗(H)

)
×

∫
H∩W

∫
H∩W

P
(
x, y are in the same cell of Y (sΛ,W ) ∩H

)
dxdyΛ(dH)ds.



Iteration stable tessellations 289

We now determine the probability that two points x, y ∈ W ∩H are in the same
cell of Y (sΛ,W ). We note that this is equivalent to the event that the line segment
xy connecting x and y does not intersect Y (sΛ,W ), i.e.,

P
(
x, y are in the same cell of Y (sΛ,W ) ∩H

)
= P

(
xy ∩ Y (sΛ,W ) = ∅

)
;

recall that we regard Y (sΛ,W ) as a random closed subset of W . The latter prob-
ability is the so-called capacity functional of Y (sΛ,W ) evaluated for the line seg-
ment xy. Thus, using Lemma 3 in [11], we obtain

P
(
x, y are in the same cell of Y (sΛ,W ) ∩H

)
= exp

(
− sΛ([xy])

)
.

Combining this with (4.9), we end up with

Var
(
Σϕ

(
Y (tΛ,W )

))
=

t∫
0

∫
[W ]

ζ2
(
n⃗(H)

) ∫
W∩H

∫
W∩H

exp
(
− sΛ([xy])

)
dxdyΛ(dH)ds

=
∫
[W ]

ζ2
(
n⃗(H)

) ∫
W∩H

∫
W∩H

1− exp
(
− tΛ([xy])

)
Λ([xy])

dxdyΛ(dH).

This completes our argument. �

For general hyperplane measures Λ this cannot be simplified further, even
not in the stationary case. However, in the special case where Λ is the isometry-
invariant measure Λiso, tools from integral geometry become available to evaluate
the integral further.

5. EXACT VARIANCE EXPRESSION FOR THE ISOTROPIC STIT TESSELLATION

For the stationary and isotropic case Λ = Λiso we want to evaluate the variance
expression from Theorem 4.1 in the special case ϕ = Vold−1, i.e., when ζ ≡ 1. To
simplify the notation we will write from now on Y (t) instead of Y (tΛiso).

THEOREM 5.1. Let W be a compact and convex subset of Rd having interior
points and let γW (r) =

∫
Sd−1

Vold
(
W ∩ (W + ru)

)
νd−1(du) be the isotropized

set-covariance function of W . For the stationary and isotropic STIT tessellation
Y (t) with surface intensity t > 0 we have

(5.1) Var
(
Vold−1

(
Y (t,W )

))
=
d− 1

2

∫
W

∫
W

[
1− exp

(
−2κd−1

dκd
t ∥x− y∥

)]
∥x− y∥−2dxdy
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and, consequently,

(5.2) Var
(
Vold−1

(
Y (t,W )

))
=
d(d− 1)κd

2

∞∫
0

γW (r)rd−3
[
1− exp

(
−2κd−1

dκd
tr

)]
dr.

The key to Theorem 5.1 is an integral-geometric transformation formula of
Blaschke–Petkantschin type, which is interesting in its own right. We develop this
formula in a slightly more general setting than presently needed. This generality
will be useful in the discussion of the pair-correlation function of the random sur-
face measure at the end of the paper.

PROPOSITION 5.1. Let W1,W2 ⊂ Rd be Borel sets and let g : W1×W2→R
be a non-negative measurable function. Then

(5.3)∫
H

∫
W1∩H

∫
W2∩H

g(x, y) dxdyΛiso(dH) =
(d− 1)κd−1

dκd

∫
W1

∫
W2

g(x, y)

∥x− y∥
dxdy.

P r o o f. First, we use the affine Blaschke–Petkantschin formula (see [12],
Theorem 7.2.7) with q = 1 to deduce that for any non-negative measurable func-
tion h : (Rd)2 → R∫

Rd

∫
Rd

h(x, y) dxdy =
dκd
2

∫
L

∫
L

∫
L

h(x, y) ∥x− y∥d−1 ℓL(dx)ℓL(dy)dL,

where L is the space of lines in Rd with invariant measure dL normalized as in
[12] and ℓL is the Lebesgue measure on L. Taking now

h(x, y) = 1[x ∈W1]1[y ∈W2] ∥x− y∥k g(x, y)

for some k > −d and another non-negative measurable function g :W1×W2→R
we obtain

(5.4)
∫
W1

∫
W2

∥x− y∥k g(x, y) dxdy

=
dκd
2

∫
L

∫
W1∩L

∫
W2∩L

∥x− y∥d−1+k g(x, y) ℓL(dx)ℓL(dy)dL.

For k = −1 this yields

(5.5)
∫
W1

∫
W2

g(x, y)

∥x− y∥
dxdy

=
dκd
2

∫
L

∫
W1∩L

∫
W2∩L

∥x− y∥d−2 g(x, y) ℓL(dx)ℓL(dy)dL.
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We replace now in (5.4), for k = 0, W1 by W1 ∩H and W2 by W2 ∩H for some
fixed hyperplane H , and d by d− 1. Then we get∫

W1∩H

∫
W2∩H

g(x, y) dxdy

=
(d− 1)κd−1

2

∫
LH

∫
W1∩H∩L

∫
W2∩H∩L

∥x− y∥d−2 g(x, y) ℓL(dx)ℓL(dy)dLH ,

where by LH we mean the space of lines within the hyperplane H (again with a
normalization as in [12]). Averaging the last expression over all hyperplanes H
and using the fact that Λiso(dH) ⊗ dLH = dL (see the remark at the end of Sec-
tion 7.1 in [12]) yields

(5.6)
∫
H

∫
W1∩H

∫
W2∩H

g(x, y) dxdyΛiso(dH)

=
(d− 1)κd−1

2

∫
H

∫
LH

∫
W1∩H∩L

∫
W2∩H∩L

∥x− y∥d−2

× g(x, y)ℓL(dx)ℓL(dy)dLHΛiso(dH)

=
(d− 1)κd−1

2

∫
L

∫
W1∩L

∫
W2∩L

∥x− y∥d−2 g(x, y) ℓL(dx)ℓL(dy)dL.

By comparing (5.5) and (5.6) we finally conclude that∫
H

∫
W1∩H

∫
W2∩H

g(x, y) dxdyΛiso(dH) =
(d− 1)κd−1

dκd

∫
W1

∫
W2

g(x, y)

∥x− y∥
dxdy,

completing thereby the proof of the proposition. �

P r o o f o f T h e o r e m 5.1. First, in view of the general formula from The-
orem 4.1, we put

g(x, y) =
1− exp

(
− tΛiso([xy])

)
Λiso([xy])

=

[
1− exp

(
−2κd−1

dκd
t ∥x− y∥

)](
2κd−1
dκd

∥x− y∥
)−1

,

where the equality follows from the fact that

Λiso([xy]) =
2κd−1
dκd
∥x− y∥;
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cf. [12], Theorem 6.2.2 with q = j = d − 1 there. Thus, upon applying the trans-
formation formula (5.3) with W1 =W2 =W , we conclude the following identity
for Var

(
ΣVold−1

(
Y (t,W )

))
= Var

(
Vold−1

(
Y (t,W )

))
:∫

[W ]

∫
H∩W

∫
H∩W

g(x, y) dxdyΛiso(dH)

=
d− 1

2

∫
W

∫
W

[
1− exp

(
−2κd−1

dκd
t ∥x− y∥

)]
∥x− y∥−2dxdy

=
d(d− 1)κd

2

∞∫
0

γW (r)

[
1− exp

(
−2κd−1

dκd
tr

)]
r−2rd−1dr

=
d(d− 1)κd

2

∞∫
0

γW (r)rd−3
[
1− exp

(
−2κd−1

dκd
tr

)]
dr,

where we have passed to spherical coordinates in the second step. �

In the special case W = B3
R, the isotropized set-covariance function γB3

R
(r)

is given by

γB3
R
(r) =


4π

3
R3

(
1− 3r

4R
+

r3

16R3

)
for 0 6 r 6 2R,

0 for r > 2R.

In this practically relevant situation the variance integral can be evaluated in a
closed form and we obtain

(5.7) Var
(
Vol2

(
Y (t, B3

R)
))

=
4π2

3t4
(
t2R2(12− 8tR+ 3t2R2) + 24(1 + tR)e−tR − 24

)
.

The same closed form cannot be achieved in other space dimensions, since for
example γB2

R
(r) has a more complicated structure. More precisely,

γB2
R
(r) = 2R2 arccos

(
r

2R

)
− r

2

√
4R2 − r2

for r between 0 and 2R and γB2
R
(r) = 0 for r > 2R. For general space dimensions

(including the separately discussed cases d = 2 and d = 3), γBd
R
(r) is given by

γBd
R
(r) = 2κd−1R

d
1∫

r/(2R)

(1− u2)(d−1)/2 du

if 0 6 r 6 2R and γBd
R
(r) = 0 otherwise. Unfortunately, the resulting integrals in

this case cannot be further simplified.
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6. THE VARIANCE IN THE ASYMPTOTIC REGIME

Another important task in our context is to determine for fixed t the large R
asymptotics of the variance Var

(
Vold−1

(
Y (t,WR)

))
for the family of growing

windowsWR = R ·W as R→∞ and withW as in the previous section. We con-
centrate once more on the isotropic case, where explicit computations are possible.
Let us write ∼ for the asymptotic equivalence of functions, i.e., f(R) ∼ g(R) iff
f(R)/g(R)→ 1 as R→∞.

THEOREM 6.1. For d = 2,

(6.1) Var
(
Vol1

(
Y (t,WR)

))
∼ πVol2(W )R2 logR,

whereas for d > 3 we have

(6.2) Var
(
Vold−1

(
Y (t,WR)

))
∼ d− 1

2
E2(W )R2(d−1)

with E2(W ) being the two-energy of W given by

(6.3) E2(W ) =
∫
W

∫
W

∥x− y∥−2 dxdy.

In particular, this establishes (weak) long range dependencies present in sta-
tionary and isotropic STIT tessellations Y (t). In the planar case, these dependen-
cies are rather weak in that

Var
(
Vol1

(
Y (t,WR)

))
Vol2(WR)

∼ π logR→∞ as R→∞.

For d > 3 these dependencies are much stronger, as the variance of the total sur-
face area grows asymptotically like R2(d−1), which should be compared with the
volume-order Rd.

P r o o f. Formula (6.1) can be established by using (5.2), the relation

γWR
∼ Vol2(WR) = R2Vol2(W ),

valid uniformly for arguments r = O(R/ logR), the observation that γWR
(r)→ 0

for r = Ω(R logR), together with the fact that

L(R)∫
0

(1− e−cr) dr
r
∼ logR, c > 0,

as soon as logL(R) ∼ logR, and the scaling property of STIT tessellations:

Var
(
Vol1

(
Y (t,WR)

))
= t−2Var

(
Vol1

(
Y (1,WtR)

))
=
π

t2

∞∫
0

γWtR
(r)

[
1− exp

(
− 2

π
r

)]
dr
r

∼ πt−2Vol2(WtR) log(tR) ∼ πR2Vol2(W ) logR.
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To see (6.2), we use (5.1) and again the scaling property of STIT tessellations to
obtain

Var
(
Vold−1

(
Y (t,WR)

))
= R2(d−1)Var

(
Vold−1

(
Y (Rt,W )

))
= R2(d−1)d− 1

2

∫
W

∫
W

[
1− exp

(
−2κd−1

dκd
Rt ∥x− y∥

)]
∥x− y∥−2dxdy

∼ R2(d−1)d− 1

2
E2(W ) as R→∞.

Observe that this does not extend to the above separately treated case d = 2 be-
cause there the integral in (6.3) diverges. �

It is easily seen that E2( · ) enjoys a superadditivity property in that

E2(W1 ∪W2) > E2(W1) + E2(W2), W1 ∩W2 = ∅,

which stands in contrast to (6.1), where the asymptotic expression is linear in
Vol2(W ). We will now derive an integral-geometric interpretation of this energy
functional. Taking W1 = W2 = W , g(x, y) ≡ 1, and k = −2 in (5.4) yields the
identity

E2(W ) =
∫
W

∫
W

∥x− y∥−2 dxdy

=
dκd
2

∫
L

∫
W∩L

∫
W∩L
∥x− y∥d−3 ℓL(dx)ℓL(dy)dL

=
dκd

(d− 1)(d− 2)

∫
L
Vol1(W ∩ L)d−1 dL

=
2

(d− 1)(d− 2)
Id−1(W )

(6.4)

with Id−1(W ) being the (d− 1)-st chord power integral of W in the sense of [12],
p. 363. More precisely,

Id−1(W ) =
dκd
2

∫
L
Vold−11 (W ∩ L) dL.

Hence, combining (6.4) with (6.2) from above and using the fact that Id−1(·) is
homogeneous of degree 2(d− 1), we arrive at the following result.

COROLLARY 6.1. For space dimensions d > 3 the asymptotic variance of the
total surface area induced by the cells of Y (t,WR) is given by

Var
(
Vold−1

(
Y (t,WR)

))
∼ 1

d− 2
Id−1(WR) =

1

d− 2
R2(d−1)Id−1(W )

as R→∞.
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In general, Id−1(W ) is rather difficult to evaluate explicitly. But in the special
case W = Bd

1 we can apply Theorem 8.6.6 in [12] (with a corrected constant),
which yields

Id−1(B
d
1) = d2d−2

κdκ2d−2
κd−1

and, thus, the two-energy of the d-dimensional unit ball Bd
1 equals

E2(B
d
1) =

d2d−1

(d− 1)(d− 2)

κdκ2d−2
κd−1

=
2πd

(d− 1)(d− 2)
Γ

(
d

2

)−2
(here Γ(·) is the usual gamma function). In the particular case d = 3 we obtain the
value E2(B

3
1) = 4π2, which agrees with our explicit variance formula (5.7).

7. PAIR-CORRELATION FUNCTION

It is our next goal to establish a closed formula for the so-called pair-correlation
function gd,t(r) of the random surface measure of a STIT tessellation Y (t). To in-
troduce the pair-correlation function formally, we start by recalling that the second-
moment measure µ(2)d,t of the random surface measure of Y (t) is defined by

µ
(2)
d,t (W1 ×W2) = E

[
Vold−1

(
Y (t,W1)

)
Vold−1

(
Y (t,W2)

)]
for measurable subsetsW1,W2 ⊂ Rd. Since Y (t) is stationary, the reduced second-
moment measure Kd,t on Rd can be introduced by

(7.1) µ
(2)
d,t (W1 ×W2) = t2

∫
Rd

∫
Rd

1[x ∈W1, x+ h ∈W2] dxKd,t(dh)

and the reduced second-moment function by Kd,t(r) := K(Bd
r ); see Section 2.5 in

[2] or Sections 4.5 and 7.2 in [19]. Finally, the pair-correlation function gd,t(r) is
related to Kd,t(r) via

gd,t(r) =
1

dκdrd−1
∂Kd,t(r)

∂r
.

This function is a commonly used tool in spatial statistics, stochastic geometry
and physics to describe the second-order structure of a random set. It describes the
expected surface density of Y (t) at a given distance r from a typical point of Y (t);
cf. [19].

THEOREM 7.1. The pair-correlation function gd,t(r) of the random surface
measure of the stationary and isotropic random STIT tessellation Y (t) is given by

gd,t(r) = 1 +
d− 1

2t2r2

[
1− exp

(
−2κd−1

dκd
tr

)]
.
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2.5

3

2

1.5

1

0.5 1 1.5 2 2.5 3
r

Figure 2. Pair-correlation functions of a stationary and isotropic STIT
tessellation Y (1) in the plane (solid curve) and a stationary and isotropic

Poisson line tessellation (PLT) with edge length density one (dashed curve)

P r o o f. We start by noticing that the stochastic process in (4.7) is a martin-
gale for any ϕ on the space of (d− 1)-polytopes of the form

ϕ(f) = ζ
(
n⃗(f)

) ∫
f

g(x)dx,

where g : Rd → R is a bounded measurable function with bounded support and
ζ is a bounded measurable even function on Sd−1; compare, for example, with
the discussion in Section 3.2 of [13]. Let ψ(f) = ξ

(
n⃗(f)

) ∫
f
h(x)dx be another

such functional and apply the martingale property of (4.7) to ϕ + ψ and ϕ − ψ.
Subtracting the resulting expressions we conclude that

(7.2) Σ̄ϕ
(
Y (t)

)
Σ̄ψ

(
Y (t)

)
−

t∫
0

Aϕψ
(
Y (s)

)
ds

−
t∫
0

Āϕ
(
Y (s)

)
Σ̄ψ

(
Y (s)

)
+ Āψ

(
Y (s)

)
Σ̄ϕ

(
Y (s)

)
ds

is a martingale with respect to ℑt; compare with Proposition 1 in [13] or Proposi-
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tion 2 in [14]. Here,

Σϕ
(
Y (t)

)
=

∑
f∈MaxPolytopesd−1(Y (t))

ϕ(f),

Aϕ
(
Y (t)

)
=
∫
H

∑
f∈Cells(Y (t)∩H)

ϕ(f) Λiso(dH)

with similar expressions for ψ and with the standard bar-notation Σ̄ϕ
(
Y (t)

)
=

Σϕ
(
Y (t)

)
− EΣϕ

(
Y (t)

)
, etc. It is important to note that even if the integrals in

(7.2) are defined for the whole space tessellation Y (t), we can safely replace Y (t)
by Y (t,W ) for some W ⊂ Rd containing the supports of ϕ and ψ.

Now, we let W1 ⊂ Rd and W2 ⊂ Rd be two bounded Borel sets and take
g(x) = 1[x ∈W1], h(x) = 1[x ∈W2], and ζ = ξ ≡ 1 in the definition of ϕ and ψ
so that

ϕ = Vold−1( · ∩W1) and ψ = Vold−1( · ∩W2).

Then (4.8) implies that Āϕ( · ) = Āψ( · ) = 0. Taking now expectations in (7.2)
yields

E
[
Vold−1

(
Y (t,W1)

)
Vold−1

(
Y (t,W1)

)]
− EVold−1

(
Y (t,W1)

)
EVold−1

(
Y (t,W2)

)
= E

t∫
0

Aϕψ
(
Y (s)

)
ds

with Aϕψ
(
Y (s)

)
given by

Aϕψ
(
Y (s)

)
=
∫
H

∑
f∈Cells(Y (s)∩H)

Vold−1(f ∩W1)Vold−1(f ∩W2) Λiso(dH).

Proceeding now as in the proof of Theorem 4.1 and using Proposition 5.1 in its
general form we obtain

(7.3) E
t∫
0

Aϕψ
(
Y (s)

)
ds

=
t∫
0

∫
H

∫
W1∩H

∫
W2∩H

P(x, y are in the same cell ofY (s) ∩H)dxdydHds

=
t∫
0

∫
H

∫
W1∩H

∫
W2∩H

exp

(
−2κd−1

dκd
s∥x− y∥

)
dxdydHds

=
∫
H

∫
W1∩H

∫
W2∩H

[
1− exp

(
−2κd−1

dκd
t∥x− y∥

)]
∥x− y∥−1dxdydH

=
d− 1

2

∫
W1

∫
W2

[
1− exp

(
−2κd−1

dκd
t∥x− y∥

)]
∥x− y∥−2dxdy.
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Thus,

E
[
Vold−1

(
Y (t,W1)

)
Vold−1

(
Y (t,W1)

)]
− EVold−1

(
Y (t,W1)

)
EVold−1

(
Y (t,W2)

)
=
d− 1

2

∫
W1

∫
W2

[
1− exp

(
−2κd−1

dκd
t∥x− y∥

)]
∥x− y∥−2dxdy.

Since EVold−1
(
Y (t,Wi)

)
= tVold(Wi) for i = 1, 2, we see that

µ
(2)
d,t (W1 ×W2) = E

[
Vold−1

(
Y (t,W1)

)
Vold−1

(
Y (t,W2)

)]
= t2

∫
Rd

∫
Rd

1[x ∈W1, x+ h ∈W2]

×
(
1 +

d− 1

2

[
1− exp

(
−2κd−1

dκd
t∥h∥

)]
t−2∥h∥−2

)
dxdh.

A glance at (7.1) then shows that the reduced second-moment measure Kd,t is
given by

Kd,t(dh) =
(
1 +

d− 1

2

[
1− exp

(
−2κd−1

dκd
t∥h∥

)]
t−2∥h∥−2

)
dh.

The definition of the reduced second-moment function implies now that

Kd,t(r) = K(Bd
r )

= dκd
r∫
0

(
1+

d− 1

2

[
1−exp

(
−2κd−1

dκd
tu

)]
t−2u−2

)
ud−1 du.

(7.4)

Finally, the relationship between gd,t(r) and Kd,t(r) leads in view of (7.4) to

gd,t(r) =
1

dκdrd−1
dκd

(
1 +

d− 1

2

[
1− exp

(
−2κd−1

dκd
tr

)]
t−2r−2

)
rd−1

= 1 +
d− 1

2

[
1− exp

(
−2κd−1

dκd
tr

)]
t−2r−2.

This completes the proof. �

It is interesting to note the joint scale invariance of gd,t(r), i.e.,

gd,t(λr) = gd,t/λ(r), λ > 0.
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We further note that in the special case d = 2 the pair-correlation function gd,t(r)
becomes

g2,t(r) = 1 +
1

2t2r2

[
1− exp

(
− 2

π
rt

)]
,

which was independently discovered by Weiß, Ohser, and Nagel by entirely dif-
ferent methods and is presented in [21]. However, it should be emphasized though
that our approach developed above yields information also on higher dimensional
cases. For example, we have for the spatial case d = 3

g3,t(r) = 1 +
1

t2r2

[
1− exp

(
−1
2
tr

)]
.

The result in Theorem 7.1 should be compared with pair-correlation function of the
surface measure of a stationary and isotropic Poisson hyperplane tessell-
ation PHT(t) having the same surface intensity t > 0. The latter will be denoted
by gPHT(t)

d (r). Using Slivnyak’s theorem for Poisson processes (see [12], Theo-
rem 3.3.5) one can easily show that

g
PHT(t)
d (r) = 1 +

(d− 1)κd−1
dκdtr

.

In particular, for the planar case d = 2, i.e., for the Poisson line tessellation abbre-
viated by PLT(t), we have

g
PLT(t)
2 (r) = 1 +

1

πtr
.

A comparison of g2,t(r) and gPLT(t)
2 (r) is shown in Figure 2.

Acknowledgments. The authors would like to thank Joachim Ohser (Darm-
stadt) and Claudia Redenbach (Kaiserslautern) for providing the simulations shown
in Figure 1. The second author also thanks Matthias Reitzner (Osnabrück) and an
anonymous referee for valuable comments, which were very helpful to improve
the paper.

REFERENCES

[1] V. Baumstark and G. Last, Gamma distributions for stationary Poisson flat processes,
Adv. in Appl. Probab. 41 (2009), pp. 911–939.

[2] V. Beneš and J. Rataj, Stochastic Geometry: Selected Topics, Kluwer Academic Publish-
ers, 2004.

[3] L. Heinr ich, Central limit theorems for motion-invariant Poisson hyperplanes in expanding
convex windows, Rend. Circ. Mat. Palermo (2), Suppl. 81 (2009), pp. 187–212.

[4] D. Hug and R. Schneider, Typical cells in Poisson hyperplane tessellations, Discrete Com-
put. Geom. 38 (2007), pp. 305–319.

[5] I . Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, second edition,
Springer, 1998.



300 T. Schreiber and C. Thäle

[6] C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Springer, 1999.
[7] P. Matt i la, Geometry of Sets and Measures in Euclidean spaces: Fractals and Rectifiability,

Cambridge University Press, 1995.
[8] J . Mecke, W. Nagel , and V. Weiß, A global construction of homogeneous random planar

tessellations that are stable under iteration, Stochastics 80 (2008), pp. 51–67.
[9] J . Mecke, W. Nagel , and V. Weiß, The iteration of random tessellations and a construc-

tion of a homogeneous process of cell division, Adv. in Appl. Probab. 40 (2008), pp. 49–59.
[10] W. Nagel and V. Weiß, Limits of sequences of stationary planar tessellations, Adv. in Appl.

Probab. 35 (2003), pp. 123–138.
[11] W. Nagel and V. Weiß, Crack STIT tessellations: characterization of stationary random

tessellations stable with respect to iteration, Adv. in Appl. Probab. 37 (2005), pp. 859–883.
[12] R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer, 2008.
[13] T. Schreiber and C. Thäle, Second-order properties and central limit theory for the vertex

process of iteration infinitely divisible and iteration stable random tessellations in the plane,
Adv. in Appl. Probab. 42 (2010), pp. 913–935.

[14] T. Schreiber and C. Thäle, Intrinsic volumes of the maximal polytope process in higher
dimensional STIT tessellations, Stochastic Process. Appl. 121 (2011), pp. 989–1012.

[15] T. Schreiber and C. Thäle, Typical geometry, second-order properties and central limit
theory for iteration stable tessellations, arXiv: 1001.0990 [math.PR] (2010).

[16] T. Schreiber and C. Thäle, Geometry of iteration stable tessellations: Connection with
Poisson hyperplanes, accepted for publication in Bernoulli (2012+).

[17] T. Schreiber and C. Thäle, Limit theorems for iteration stable tessellations, accepted for
publication in Ann. Probab. (2012+).

[18] M. Schul te and C. Thäle, The scaling limit of Poisson-driven order statistics with appli-
cations in geometric probability, Stochastic Process. Appl. 122 (2012), pp. 4096–4120.

[19] D. Stoyan, W. S. Kendal l , and J. Mecke, Stochastic Geometry and Its Applications,
second edition, Wiley, 1995.

[20] C. Thäle , V. Weiß, and W. Nagel, Spatial STIT tessellations: distributional results for
I-segments, Adv. in Appl. Probab. 44 (2012), pp. 635–654.

[21] V. Weiß, J . Ohser, and W. Nagel, Second moment measure and K-function for planar
STIT tessellations, Image Anal. Stereol. 29 (2010), pp. 121–131.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
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