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Abstract. We propose new data driven score rank tests for univariate
symmetry around a known center. We apply both Schwarz-type and recently
introduced data driven penalty selection rules. Some key asymptotic results
regarding the test statistics are given and some asymptotic optimality prop-
erties proved. In an extensive simulation study, we compare the empirical
behaviour of these tests to tests found in the recent literature to be powerful.
We show that, for a broad range of asymmetric distributions, data driven
tests have stable power, which is comparable to their competitors for typical
alternatives and much greater for some atypical alternatives.
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1. INTRODUCTION

It has been strongly argued that the symmetry or asymmetry of a distribu-
tion is essential for the validity of many statistical models. Simultaneously, test-
ing for symmetry (about a known center) is one of the oldest classical nonpara-
metric problems. Beginning with Fisher’s sign test through the tests assembled
in the monograph of Hájek and Šidák [13] and followed by a large variety of
recent constructions (e.g., McWilliams [36], Modarres and Gastwirth [37], [38],
Janic-Wróblewska [26], Cheng and Balakrishnan [4], Thas et al. [45], and Bak-
shaev [1] to mention only some examples), this problem has received constant
attention in the literature. Hájek and Šidák [13] described a broad class of linear
rank tests, each being optimal for a particular type of asymmetry. On the other
hand, omnibus tests, based on Cramér–von Mises and Kolmogorov–Smirnov type
statistics, are widely recommended in the literature (see, e.g., Orlov [40], Rothman
and Woodroofe [41], Doksum et al. [6], Koziol [33]), but attain high power only
for narrow classes of asymmetric distributions. The different approach adopted by
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Behnen and Neuhaus [2] has turned out to be successful in improving the range of
sensitivity of such tests to a wider class of asymmetric distributions.

In the last two decades, some new concepts have been introduced. One of
them, proposed by Cheng and Balakrishnan [4], modifies the sign test by trimming
the sum of signs only to that corresponding to a few of the largest and smallest
observations. The resulting test can detect asymmetry in the tails of a distribu-
tion with very high power. An interesting construction was presented by Modarres
and Gastwirth [38]. Their two-stage testing procedure, called the hybrid test, com-
bines the sign test with a modification of the conditional Wilcoxon test introduced
by Tajuddin [44] by considering only the tails of the observed distribution. The
hybrid test performs very well and provides superior power in comparison with
many classical or recently proposed procedures for alternatives with a typical form
of asymmetry. Another construction based on a decomposition of the chi-square
statistic for independence in a particular contingency table was recently proposed
by Thas et al. [45].

Further progress was achieved by Janic-Wróblewska [26], who adopted the
methodology of data driven tests developed by Ledwina [34], Kallenberg and Led-
wina [29]–[31], and Inglot et al. [19] to the problem of testing symmetry. She
proved some asymptotic results for a new test statistic and showed the good em-
pirical behaviour of the test based on it by a small simulation study. Later on, such
an approach proved to be successful in the construction of new powerful nonpara-
metric procedures as, e.g., testing for independence (Kallenberg and Ledwina [32],
or Janic-Wróblewska et al. [27]) or testing in two- and k-sample problems (Janic-
Wróblewska and Ledwina [28], Wyłupek [46], Ledwina and Wyłupek [35]).

In the present paper we continue, extend and generalize the work of Janic-
Wróblewska [26]. In Section 2 we recall the construction of the test statistic in-
troduced in Janic-Wróblewska [26] and provide some new data driven rank test
statistics by applying some new selection rules proposed in Inglot and Janic [17]
for testing uniformity. In Section 3 we give an extensive study of the asymptotic
behaviour of these test statistics. We also state some asymptotic optimality prop-
erties of the tests based on them. Roughly speaking, they say that our tests are as
good as the most powerful test in the sense of asymptotic powers for converging
alternatives. In Section 4 results of the simulation study are presented. We com-
pare the empirical behaviour of our data driven tests with selected tests, which are
all recommended in the recent literature as being powerful. We make these com-
parisons for a broad variety of alternatives representing different types of asym-
metry. We show that data driven tests have stable power, which is comparable to
their competitors for typical alternatives and much greater for some atypical alter-
natives. We show empirically that the proposed data driven tests are significantly
more powerful (on average) than any of their competitors. These conclusions are in
accordance with the theoretical optimality properties discussed in Section 3. Sec-
tion 5 contains proofs of all the theorems, which rely heavily on the results given
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in the Appendix. In the Appendix we present some general asymptotic results for
linear rank statistics using a new approach based on the Hungarian construction.

2. DATA DRIVEN TESTS

Let X1, . . . , Xn be i.i.d. real random variables with a continuous distribution
function F (x). We are interested in testing

H0 : F (µ+ x) = 1− F (µ− x), x ∈ R,

i.e. testing the symmetry of F about a known median µ, which throughout will be
assumed to be equal to zero.

Furthermore, denote byFs(x) =
1
2

(
F (x)+ 1−F (−x)

)
the distribution func-

tion of the symmetric part of F and put Fa = F − Fs. Then testing H0 is equiva-
lent to testing whether F = Fs. We transform the data into the unit interval using
Fs to obtain U1, . . . , Un with Ui = Fs(Xi), i = 1, . . . , n. Since F is absolutely
continuous with respect to its symmetric part Fs, the transformed data Ui have a
distribution function

F ◦ F−1s (t) = t+A(t), t ∈ [0, 1],

where A(t) is an absolutely continuous function symmetric with respect to
t = 1/2. Equivalently they have a density on [0, 1] of the form

p(t) = 1 + a(t),

where a(t) is an antisymmetric, with respect to t = 1/2, derivative of A(t). So,
testing H0 is equivalent to testing that a = 0. Observe that |a(t)| ¬ 1 a.s. due to
the above definition of A.

The above analysis allows us to follow the idea of Neyman [39] and embed
the null distribution (the uniform distribution over [0,1]) into the nested sequence
of exponential families of densities

(2.1) fk(t, ϑ) = ck(ϑ) exp
{ k∑

j=1

ϑjb2j−1(t)
}
, k = 1, 2, . . . ,

where b1, b3, . . . , b2k−1 denote the odd Legendre polynomials (cf. Sansone [42]),
ϑ = (ϑ1, ϑ2, . . . , ϑk)

T ∈ Rk, vT stands for the transposition of a vector v, and
ck(ϑ) is the normalizing constant.

Suppose that p(t) = 1 + a(t) can be treated approximately as a member of
the family (2.1). Then H0 reduces to testing ϑ = 0. By the orthonormality of the
Legendre polynomials, the score statistic for such a parametric problem takes the
form

(2.2)
k∑

j=1

{
1√
n

n∑
i=1

b2j−1
(
Fs(Xi)

)}2

.
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Since Fs is unknown (and therefore can be regarded as a nuisance parameter in our
initial testing problem), we shall apply its natural estimator of the form

Fns(x) =
1

2

(
Fn(x) + 1−Fn(−x)

)
,

where Fn(x) is the empirical distribution function of the original sample X1, . . . ,
Xn. Consequently, the test statistic for testing H0 within the family fk is of the
form

(2.3) Nk =
k∑

j=1

b̂22j−1,

where

(2.4) b̂2j−1 =
1√
n

n∑
i=1

b2j−1

(
Fns(Xi)−

1

4n

)
shall be called empirical Fourier coefficients. In (2.4) we have inserted a usual
continuity correction. It is easily seen that (2.3) can be written in the following two
equivalent forms:

Nk =
k∑

j=1

(
1√
n

n∑
i=1

sign(Xi)b2j−1

(
n+R+

i − 1/2

2n

))2

(2.5)

=
k∑

j=1

(
1√
n

n∑
i=1

b2j−1

(
Ri − 1/2

2n

))2

,

where R+
i is the rank of the absolute value |Xi| among |X1|, . . . , |Xn|,

sign(Xi) is the sign of Xi, while Ri is the rank of Xi in the pooled sample
X1, . . . , Xn,−X1, . . . ,−Xn.

To apply Nk for testing H0, one needs to choose a number k of components
from the set {1, . . . , d(n)}, where d(n) ­ 1 can unboundedly increase for n→∞.
To ensure that this choice is well suited to the observations, we base it on the
data. Namely, following Kallenberg and Ledwina [31], Janic-Wróblewska [26] and
Janic-Wróblewska and Ledwina [28], we take a score based selection rule S which
is a modification of the Schwarz BIC criterion (cf. also Schwarz [43]), defined by

(2.6) S = min{1 ¬ k ¬ d(n) : Nk − k log n ­ Nj − j log n, 1 ¬ j ¬ d(n)},

and the corresponding data driven test statistic is set to be NS . This selection rule,
with a relatively large penalty, is not able to detect highly oscillating alternatives
with good power. So, one can adopt data driven choices of the penalty, which for
the case of goodness-of-fit testing problem were proposed in Inglot and Ledwina
[25] and Inglot and Janic [17]. The idea for such choices is to apply Schwarz
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penalty when empirical Fourier coefficients are of small magnitude (and therefore
indicate forH0) or to apply much lighter Akaike penalty, otherwise. Here, we shall
define the selection rule L, which will be defined analogously to the one introduced
in Inglot and Janic [17], where it was shown to have good empirical properties.

For this purpose take a natural numberDn ­ 1, Dn ¬ d(n), as well as a small
positive number δn, and consider thresholds cjn given by (cf. Inglot and Janic [17]
for some explanation)

1−Φ(cjn) =
1

2

(
δnD

−1
n

(
d(n)

j

)−1)1/j

,

where Φ denotes the standard normal distribution function. Next, order
b̂21, b̂

2
3, . . . , b̂

2
2d(n)−1 from the smallest to the largest, obtaining b̂2(1), . . . , b̂

2
(d(n)), and

consider the event

Wn = {b̂2(d(n)) ­ c
2
1n} ∪ {b̂2(d(n)−1) ­ c

2
2n} ∪ {b̂2(d(n)−Dn+1) ­ c

2
Dnn}.

Denote by 1A the indicator of the set A. Then define the penalty

π(j, n) = j log n · 1W c
n
+ 2j · 1Wn ,

where W c
n denotes the complement of Wn, the corresponding selection rule L,

(2.7) L = min{1 ¬ k ¬ d(n) : Nk − π(k, n) ­ Nj − π(j, n), 1 ¬ j ¬ d(n)},

and the data driven test statistics NL also denoted by NL(Dn, δn). These statistics
define upper-tailed tests for H0. After some numerical comparisons, conducted
for the usual significance level α = 0.05, we restrict our attention mainly to the
cases δn = 0.05, Dn = 1 and δn = 0.05, Dn = 3. In the sequel, we denote the
corresponding selection rules succinctly by L1 and L3, respectively, and the cor-
responding statistics by NL1 and NL3. For δn = 0 we get the statistic NS . For
other significance levels α, we suggest to take δn comparable with α and again Dn

between 1 and 3.
In Janic-Wróblewska [26], it was shown that, under H0, the selection rule

S is consistent (i.e. S → 1 in probability) provided d(n) = o(n/ log n)1/9 and,
consequently, that asymptotically NS has the central chi-square distribution with
one degree of freedom. In the next section, we slightly strengthen this result and
give a more complete study of asymptotic properties of the test statistics NS and
NL. In Section 4 we report results of an extensive study of empirical behaviour
of the three above described tests NS , NL1, and NL3 in comparison to other tests
which are recommended in the literature as being good tests for symmetry.

Finally, note that although we restrict our attention to exponential families
based on the odd Legendre polynomials, all our considerations remain true if we
take any orthonormal system of absolutely continuous functions on [0, 1] which are
antisymmetric with respect to 1/2.
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3. ASYMPTOTIC BEHAVIOUR AND OPTIMALITY OF DATA DRIVEN TESTS

In this section, we provide asymptotic results for data driven tests based on
NS and NL described in the previous section both under the null hypothesis (sym-
metry) and under alternatives. To this end let us put

(3.1) b̂ = b̂(n) = (b̂1, b̂3, . . .)

to denote an infinite sequence of empirical Fourier coefficients given by (2.4) with
respect to the odd Legendre polynomials. Then (cf. (2.3)) obviously

Nk = |b̂|2k, k ­ 1,

where |v|k = (v21 + . . . + v2k)
1/2 stands for the k-dimensional Euclidean norm of

a vector v = (v1, v2, . . .)
T .

Recall d(n) ­ 1 is a number of components we allow for our statistics
(a maximal dimension of the model we consider), and S and L are the selection
rules defined in (2.6) and (2.7). Of course, we are mostly interested in the case
d(n)→∞.

3.1. Null hypothesis. Suppose H0 is true, i.e. the distribution of the sample
satisfies F = Fs. The first statement of the following theorem slightly strengthens
Theorem 3.1 in Janic-Wróblewska [26]. We present its proof in Section 5. It goes
along another line of the argument than applied in Janic-Wróblewska [26]. We give
it because a similar methodology has been used to prove all our next results.

THEOREM 3.1. Assume d(n) = O(nτ ) for some τ < 1/6.

(1) We have S → 1 in probability and, consequently, NS
D→ χ2

1, where χ2
k

denotes a random variable with the central chi-square distribution with k degrees
of freedom.

(2) If, in addition, Dn = D ­ 1 is a fixed natural number, D < d(n), and
δn > 0 is such that δn → 0, log(1/δn) = o(n), and

(
log log d(n)

)
/log(1/δn)→0,

then P (L = S)→ 1 and, consequently, NL
D→ χ2

1.

It is worth noting that the convergence to the limiting distribution for both
statistics under H0 is rather slow, and exact critical values for upper-tailed tests
based on NS and NL are, for moderate sample sizes, essentially larger than the
asymptotic ones (cf., for example, Ledwina [34]). To overcome this problem, one
can use simulated critical values or apply some approximation formula for the
exact null distributions of these statistics. Both solutions are discussed in Subsec-
tion 4.1.

The moderate deviation theorem for NS and NL, we state below and prove in
Section 5, will be useful to derive some optimality properties of our tests. Recall
that 1 ¬ S ¬ L ¬ d(n) a.s.
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THEOREM 3.2. Assume d(n) = O(nτ log n) for some 0 ¬ τ < 1/12. Then
for any sequence xn of positive numbers satisfying the conditions

nxϑn → 0,
n1−2τx2n
log4 n

→∞

for some ϑ < 3/(1 + 3τ) we have

P (NS ­ nx2n) ¬ P (NL ­ nx2n) ¬ P (Nd(n) ­ nx2n)

= exp

{
− 1

2
nx2n +O(nx1+ϑ/2

n ) +O
(
d(n) log nx2n

)}
= exp

{
− 1

2
nx2n + o(

√
nxn)

}
.

(3.2)

3.2. Alternative hypothesis. Suppose that F ̸= Fs. More precisely, let Fs be
some (unknown) distribution function of a symmetric distribution on R and

F ◦ F−1s (t) = t+A(t),

where A(t) is an absolutely continuous function symmetric with respect to 1/2.
This means that the distribution of the original sample is F (x)=Fs(x)+A

(
Fs(x)

)
with some unknown Fs.

The first result deals with fixed alternatives as described above.

THEOREM 3.3. Assume d(n) → ∞ and d(n) = O(nτ ) for some τ < 1/6,
and F is a fixed asymmetric distribution. Then NS →∞ in probability and, con-
sequently, NL → ∞ in probability. This means that data driven symmetry tests
based on NS and NL are consistent against any fixed alternative (asymmetric
distribution).

The proof of Theorem 3.3 is given in Section 5.
Now, let us consider alternatives with distribution functions Fn converging to

the null hypothesis at an intermediate rate. Namely, consider sequences of alterna-
tives of the form

(3.3) Fn(x) = Fs(x) + ρnA
(
Fs(x)

)
,

where Fs is again some (unknown) distribution function of a symmetric distribu-
tion on R,

(3.4) ρn → 0 and
nρ2n
log2 n

→∞

and A(t) has a normalized derivative a(t) antisymmetric with respect to t = 1/2,
i.e.

∫ 1

0
a2(t)dt = 1 (recall that a is bounded a.s.).
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Set

(3.5) sn = ρn
√
n

1∫
0

b(t)a(t)dt

being an asymptotic shift, where b = (b1, b3, . . .) denotes the sequence of the odd
Legendre polynomials. The following limit theorem for NS and NL is proved in
Section 5.

THEOREM 3.4. Assume d(n) → ∞ and d(n) = O(nτ log n) for some
0 ¬ τ < 1/12, and the sequence (Pn) of alternatives is defined as in (3.3) with
arbitrary normalized a(t) antisymmetric with respect to 1/2. Then for any ρn
satisfying n1−2τρ2n/ log

4 n→∞ and nρ4n = o(1) and for every x ∈ R we have

(3.6) Pn

(NS − |sn|2d(n)
2|sn|d(n)

¬ x
)
→ Φ(x), Pn

(NL − |sn|2d(n)
2|sn|d(n)

¬ x
)
→ Φ(x)

as n→∞.

3.3. Efficiency of data driven tests. The considerations presented in this sub-
section correspond to those of Inglot et al. [20] (cf. also Ducharme and Ledwina
[7] or Inglot [15]).

Let w be an arbitrary real number and for the alternative given by (3.3) define
the critical value of the upper-tailed test based on NS by

(3.7) tn = |sn|2d(n) + 2w|sn|d(n).

Denote by αn the size of this test and by βn its power under Fn. Now, for each n
consider the Neyman–Pearson test for testing p0(t)≡1 against pn(t)=1+ρna(t),
defined by the statistic

Vn =
1√
nσ0n

n∑
i=1

[
log

(
1 + ρna(Ui)

)
− µ0n

]
,

where µ0n=
∫ 1

0
log pn(t)dt and σ20n=

∫ 1

0
log2 pn(t)dt−µ20n whileU1, U2, . . . , Un

is the transformed sample as defined in Section 2. Choose the critical value for Vn
which ensures exactly the size αn. Then denote by β+n the power of such a test
and by Rn = β+n − βn the shortcoming of the test NS with respect to Vn under
the alternative Fn. The next theorem gives conditions under which Rn vanishes
asymptotically.

THEOREM 3.5. Assume d(n) → ∞ and d(n) = O(nτ log n) for some
0 ¬ τ < 1/12, and the sequence (Pn) of alternatives is defined as in (3.3). Sup-
pose ρn satisfies n1−2τρ2n/ log

4 n→∞ and nρϑn → 0 for some ϑ < 3/(1 + 3τ).
Additionally, assume a, defined by (3.3), satisfies

(3.8)
|sn|2d(n) − nρ

2
n√

nρn
→ 0.
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Then for any w ∈ R we have

Rn = β+n − βn → 0 as n→∞.

An analogous statement also holds for the tests based on NL.

Theorem 3.5 is proved in Section 5. The condition (3.8) means that a is “suffi-
ciently smooth” and is obviously satisfied when a has finite expansion with respect
to b (cf. (3.5)).

The optimality property obtained in the previous theorem can be stated in
terms of asymptotic intermediate efficiency, i.e. Kallenberg efficiency (see Inglot
[14] for the definition, conditions for existence, and the explicit formula). We omit
here the precise definition and other details and refer the reader to, e.g., Inglot [14].
Applying Theorem 2.7 from Inglot [14] and Theorems 3.2 and 3.4, we get the
following result which is proved in Section 5.

THEOREM 3.6. Assume d(n) → ∞ and d(n) = O(nτ log n) for some
0 ¬ τ < 1/12, and the sequence (Pn) of alternatives is defined as in (3.3) with
ρn satisfying the assumptions of Theorem 3.5 and with an arbitrary a(t). Then the
Kallenberg efficiency of the test based on NS with respect to the Neyman–Pearson
test for such a sequence of alternatives is equal to one. The same assertion holds
for the test based on NL.

The statement of Theorem 3.6 reads as follows. Given a sequence of alterna-
tives as in (3.3) satisfying the assumptions of Theorem 3.6. Consider the test NS

for the sample of size n with critical value defined by (3.7) with any w ∈ R, the
corresponding significance level αn, and asymptotic power 1−Φ(w). Next, con-
sider the minimal sample sizeMn (Mn ¬ n) for the Neyman–Pearson test being on
the same significance level αn, which attains asymptotic power at least 1−Φ(w).
Then

Mn

n
→ 1 as n→∞.

Note that here the direction of alternative represented by a(t) is arbitrary, while
conditions for ρn give some restrictions on the convergence rate of sequences of
alternatives to the null hypothesis (i.e. to some symmetric distribution Fs).

4. SIMULATION STUDY

To see how well new tests behave for finite samples, we present in this section
an extensive simulation study in which we compare power behaviour of our tests
with a broad variety of existing tests for different types of asymmetric distribu-
tions. For convenience, we shall write D and δ rather than Dn and δn omitting the
subscript n. All programming work and computations were performed using R and
C++. Every Monte Carlo experiment was repeated 10,000 times.
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4.1. Critical values. As was said above, asymptotic critical values of our data
driven tests determined in Theorem 3.1 are far from being close to the exact ones
for moderate sample sizes. The same situation has occurred in the case of data
driven goodness-of-fit tests. Since the distributions of our signed rank test statistics
do not depend on the underlying distribution Fs, the simplest way is to find empir-
ical critical values by MC experiment. In Table 1 we provide such critical values
for several choices of D and δ.

Table 1. Simulated critical values of NS and NL = NL(D, δ) for different
sample sizes and selected values of D and δ, α = 0.05; 10,000 MC runs

δ D n = 25 n = 50 n = 100 n = 200 n = 400 n = 800
d(25)=9 d(50)=10 d(100)=12 d(200)=14 d(400)=15 d(800)=15

0 NS 6.138 5.659 5.355 4.929 4.428 4.224
0.01 1 NL 6.178 5.779 5.548 5.224 4.706 4.476

3 NL 6.157 5.717 5.474 5.164 4.663 4.442
0.03 1 NL 6.343 6.085 5.997 5.814 5.443 5.113

3 NL 6.240 5.922 5.788 5.607 5.186 4.951
0.05 1 NL1 6.571 6.461 6.514 6.441 6.312 5.986

3 NL3 6.333 6.153 6.121 6.042 5.803 5.573

From Table 1 it can be easily seen that critical values slowly approach the
asymptotic ones and for a relatively large sample size n = 800 they are (in some
cases) even 50% greater than the asymptotic one (i.e. 3.841). Such tendency is
more distinct for larger δ. In the simulations below we shall use the critical values
from Table 1.

Another possible way to get critical values for finite sample sizes is to find an
approximation formula to the null distribution of the test statistic. Kallenberg and
Ledwina [30] proposed an approximation formula to the null distribution of their
data driven test statistic and proved its accuracy. A similar solution was adopted
by Janic-Wróblewska and Ledwina [28] and also Janic-Wróblewska [26]. The for-
mula in Janic-Wróblewska [26] concerns the statisticNS and works well providing
slightly smaller values in comparison with the exact ones. The reason is that the
approximation formula takes into account events {S = 1} and {S = 2} omitting
cases when S ­ 3 which occur with small but positive probability. The differences
between values in Table 1 and calculated from that approximation formula do not
exceed 0.3 for n = 25 and 0.05 for n = 400. However, that construction is hard to
repeat for the statistic NL since the selection rule L depends on two parameters D
and δ and a resulting formula is rather complicated and much less accurate. So, we
resign from presenting it here.

4.2. Tests for comparisons. As competitors of the data driven tests, described
in Section 2, the following tests have been considered.

• The Behnen and Neuhaus [2] omnibus test, denoted here by BN
(Sn(a,K) in their notation). The authors propose the bandwidth 0.40 and the
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Parzen-2 kernel K. For detailed description of the test statistic, we refer to (5.2.4),
(5.2.14) and (5.2.15), p. 266, in Behnen and Neuhaus [2] (see also (10) and (11),
p. 78, of their book).

• The Doksum et al. test, denoted here by DFA, introduced in Doksum et
al. [6] (An in their notation, the weight function Ψ1(u, v), and ends of the interval
a = 0, b = 1). For detailed description of the test statistic, we refer to Doksum et
al. [6].

• The hybrid test, denoted here byMG and introduced by Modarres and Gast-
wirth [38] (Zw in their notation). This is a two-stage testing procedure and has good
power behaviour as it was shown in Modarres and Gastwirth [38]. Below, we take
p = 0.8 and α1 = 0.01, α2 = 0.0404 as was suggested by the authors. For detailed
description, we refer to Modarres and Gastwirth [38].

• The modified sign test, denoted here by CB, introduced by Cheng and Bal-
akrishnan [4] (Ck in their notation). For detailed description of Ck we refer to
Cheng and Balakrishnan [4].

Making the above choice we were aiming at taking the most representative
tests from a large variety of constructions which have proved to be powerful. For
example, an interesting recent construction by Thas et al. [45] leads to the test
whose power behaviour is quite comparable with the hybrid test (cf. Table 3 in
Thas et al. [45]). So, we have decided to include to our study only the hybrid test.

For many families of alternatives there are known locally most powerful rank
tests. To see how far their powers are better than those of our new tests we consid-
ered the four simplest location families for logistic, normal, Laplace and Cauchy
distributions. These families were studied in Hájek and Šidák [13]. In Figure 1 we
show powers of the corresponding tests denoting them by OP (S+ in the Hájek
and Šidák [13] notation).

4.3. Alternatives. For power comparisons, we have considered a broad spec-
trum of alternatives. Although we have assumed that the median is equal to zero,
we also want to check the ability of the considered tests to detect alternatives with
non-zero median. To have a better insight into the connection between the magni-
tude of Fourier coefficients and sensitivity of the tests under consideration (andNS ,
NL1, NL3, in particular) we classify alternatives into some groups using estimated
Fourier coefficients with respect to the odd Legendre polynomials (cf. (2.4)):

(4.1) ⟨2j − 1⟩ = 1

N

N∑
k=1

1

n

n∑
i=1

b2j−1

(
Ri(k) − 1/2

2n

)
=

1

N
√
n

N∑
k=1

b̂2j−1(k),

whereRi(k) is the rank of the observation xi in thekth simulated sample x1, . . . , xn,
−x1, . . . ,−xn, n is the sample size, and N is the number of Monte Carlo runs.
These coefficients can be interpreted as estimated odd components (under the Le-
gendre polynomials) of Pearson’s Φ2 measure of disparity between two distribu-
tions studied by Eubank et al. [8].
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4.3.1. Alternatives with non-zero median. We take here some alternatives which
are shifts of some typical symmetric distributions and mixtures of some typical dis-
tributions. We divide them into three groups according to a magnitude of absolute
values of the components ⟨2j − 1⟩. Let β(p,q)(x), p, q > 0, denote the beta density
function and θ be a real parameter.

• Alternatives with dominating component ⟨1⟩, denoted by ALT1:
Notation Density
Logistic(θ) exp(x− θ)/

(
1 + exp(x− θ)

)2, x ∈ R;
Normal (θ) ϕ(x− θ), x ∈ R;
Laplace (θ) 0.5 exp(−|x− θ|), x ∈ R;
Cauchy(θ) 1/

[
π
(
1 + (x− θ)2

)]
, x ∈ R,

where ϕ denotes the standard normal density function.
• Alternatives with dominating component ⟨3⟩, denoted by ALT2:

Notation Density
EV(θ) exp

(
(x− θ)− exp(x− θ)

)
, x ∈ R;

C(θ) θϕ
(
ln(x+ 1.2)

)
/(x+ 1.2) + (1− θ)ϕ(x), x > −1.2, θ ∈ [0, 1];

LC(θ) 0.7ϕ(x− θ/0.7) + 0.3ϕ(x+ θ/0.3), x ∈ R.

• Alternatives with ‘mixed’ structure of components, denoted by ALT3:
Notation Density
Beta(θ) 0.3

(
β(1,2)(x− 1) + β(2,1)(x)

)
+ 0.4β(1,θ)(x− 0.5),

x ∈ [0, 2], θ > 0.
Alternatives ALT1 come from Eubank et al. [8], while LC(θ) was used in

Fan [9].

4.3.2. Alternatives with zero median. We consider alternatives with mixed struc-
ture of components and we also include some families of alternatives which fre-
quently appear in the literature.

• Alternatives with ‘mixed’ structure of components, denoted by ALT4:
Notation Density
F(θ) 0.5 + 2xθ−2(θ − |x|)1(|x|<θ), x ∈ [−1, 1], θ ∈ [0, 1];
MixBeta(θ) 0.1

(
β(1,2)(x− 1) + β(2,1)(x)

)
+ 0.8β(1,θ)(x+ 2−1/θ − 1),

x ∈ [0, 2], θ > 0;
Sin(θ, j) 0.5 + θ sin(πjx), x ∈ [−1, 1], θ ∈ [−0.5, 0.5].

Note that F(θ) and Sin(θ, j) were also considered by Fan [9].

• The Generalized Lambda Family denoted by ALT5:
Following, e.g., Modarres and Gastwirth [38] the nine specific distributions are

selected from the Generalized Lambda Family. The corresponding random variable
is defined as

(4.2) X =
Uλ3 − (1− U)λ4

λ2
+ λ1,
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where U is a uniform random variable on [0, 1], λ3, λ4 ∈ R, λ2 ̸= 0, and in each
case λ1 is chosen in such a way that X has median zero. In each case ⟨3⟩ is the
dominating component.

• The Generalized Tukey-Lambda Family denoted by ALT6:
The Generalized Tukey-Lambda Family was studied in detail by Freimer et al.

[10]. The corresponding random variable is defined as

(4.3) X =
1

λ2

(
Uλ3 − 1

λ3
− (1− U)λ4 − 1

λ4

)
+ λ1,

where U is a uniform random variable on [0, 1], λ3, λ4 ∈ R, and in each case λ1
is chosen in such a way that X has median zero. In all our simulations we took
the scale parameter λ2 equal to one. Thus we consider the two-parameter family
denoted here by Tukey(λ3, λ4). The members of the family are usually classified
into five categories. In simulation study we consider the following cases:

Notation Description
Tukey(0.1, λ) λ < 1, class I;
Tukey(λ, 0.9) λ > 1, class II;
Tukey(7, λ) 1 < λ < 2, class IV;
Tukey(4, λ) λ > 2, class V.

For this family of distributions, the third component ⟨3⟩ is usually domi-
nating. For the cases Tukey(0.1, λ), Tukey(λ, 0.9), and Tukey(4, λ), the compo-
nent ⟨5⟩ is also significant. We omit class III of distributions corresponding to
λ3, λ4∈(1, 2) for which all the compared tests behave similarly to those in class I.

• The Fechner Family denoted by ALT7:
A simple family of asymmetric densities, proposed more than a century ago

by Fechner, was recently revived by Arellano-Valle, Gómez, and Quintana (see
Cassart et al. [3]). Denote by f a symmetric density. The f -Fechner family is the
three-parameter collection of densities of the form

1

σ

[
f

(
x− θ

(1 + ξ)σ

)
1(−∞,θ](x) + f

(
x− θ

(1− ξ)σ

)
1(θ,∞)(x)

]
, x ∈ R,

with the location parameter (median) θ ∈ R, the scale parameter σ ∈ (0,+∞),
and the skewness parameter ξ ∈ (−1, 1). So, we take in our simulations θ = 0 and
σ = 1. We consider two families: the Normal-Fechner Family and the Cauchy–
Fechner Family. For the Normal-Fechner Family ⟨3⟩ is the dominating coefficient,
while for the Cauchy–Fechner Family also ⟨1⟩ and ⟨5⟩ are significant.

Notation Description
Normal-Fechner(ξ) f(x) = (

√
2π)−1 exp(−x2/2);

Cauchy-Fechner(ξ) f(x) = π−1(x2 + 1)−1.
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Figure 1. Alternatives ALT1 with the dominating component ⟨1⟩. Comparison
of empirical powers (in %) of NS (-�-), NL3 (- -), BN (-#-), DFA (-N-),

MG (-�-), CB (-∗-), and OP (-△-). n = 100, α = 0.05, d(100) = 12; 10,000 MC runs

4.3.3. Orthogonal alternatives. We consider the set of 24 alternatives defined
by the exponential family fk(x, ϑ) given by (2.1) by taking k = 12 and ϑ =
±0.25ej , j = 1, . . . , 12, where e1, . . . , e12 is the standard basis in the Euclidean
space R12. Namely, we put

g+12,j(x)=f12

(
x+ 1

2
, 0.25ej

)
, g−12,j(x)=f12

(
x+ 1

2
,−0.25ej

)
, x∈ [−1, 1],

j = 1, . . . , 12, respectively. So, we disturb the (symmetric) uniform distribution
on [−1, 1] nearly on the one (antisymmetric) axis.

4.4. Power comparisons. In the consecutive points, we present the power com-
parisons for alternatives described in Subsection 4.3. For brevity, we focus on the
case n = 100 (except Table 2 in which we took n = 50 to get reasonable powers
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Figure 2. Alternatives ALT2 with the dominating component ⟨3⟩ and alternatives ALT3
with ‘mixed’ structure of components. Comparison of empirical powers (in %) of NS (-�-),

NL3 (- -), BN (-#-), DFA (-N-), MG (-�-), and CB (-∗-).
n = 100, α = 0.05, d(100) = 12; 10,000 MC runs

of the compared tests). In our figures, we show two data driven tests NS and NL3.
Only in Table 3 NL1 is also present. For notational convenience, we shall denote
them by NS, NL3, and NL1, respectively.

4.4.1. Power comparisons for alternatives with non-zero median. The power be-
haviour of the considered tests for the alternatives described in Subsection 4.3.1 is
reported in Figures 1 and 2.

We can observe that for alternatives from group ALT1 (see Figure 1) almost
all the considered tests work very well. Only the test CB performs poor behaviour.
In particular, for the Cauchy distribution (Cauchy(θ)), the test CB attains power
at the significance level. A similar situation occurs for the Laplace distribution
(Laplace(θ)). As could be expected, the test OP is optimal for detecting location



338 T. Inglot et al.

θ

p
o
w
e
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
2
0

4
0

6
0

8
0

1
0
0

F(θ)

●

●

●

●

●
● ● ●

θ

p
o
w
e
r

0.5 1.0 1.5 2.0 2.5 3.0

0
2
0

4
0

6
0

8
0

1
0
0

MixBeta(θ)

●

●

●

●

●

●

j

p
o
w
e
r

3 4 5 6 7 8 9 10

0
2
0

4
0

6
0

8
0

1
0
0

Sin(0.5, j)

● ● ● ● ●
●

●

●

θ

p
o
w
e
r

0.0 0.1 0.2 0.3 0.4 0.5

0
2
0

4
0

6
0

8
0

1
0
0

Sin(θ, 3.5)

●

●

●

●

●
●

Figure 3. Alternatives ALT4 with ‘mixed’ structure of components. Comparison of empirical
powers (in %) of NS (-�-), NL3 (- -), BN (-#-), DFA (-N-), MG (-�-), and CB (-∗-).

n = 100, α = 0.05, d(100) = 12; 10,000 MC runs

shifts in the known distribution. In particular, the Wilcoxon test is the best for
logistic family (Logistic(θ)), the sign test for Laplace Family, etc. However, the
loss in power for the data driven tests (NS and NL3) with respect to OP is at
most ca. 30%. On the other hand, these linear rank tests are not able to detect
alternatives when the component ⟨1⟩ is negligible. For alternatives ALT2–ALT7
these tests completely break down, and therefore the results of power simulations
are not reported here. Moreover, note that the hybrid test MG is distinctly worse
than NS and NL3 for alternatives from the group ALT1.

It can be seen from Figure 2 that for alternatives ALT2 and ALT3 the data
driven tests provide superior power. Contrary to BN and CB, the tests NS and
NL3 do not have weak points, and DFA and MG are often worse than NS and
NL3. Moreover, NS is a little bit better than NL3. Observe that CB is not able
to detect ALT3 at all. The reason is that the asymmetry of these alternatives has
nothing to do with the tails of a distribution.
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Table 2. Alternatives ALT5 from the Generalized Lambda Family.
Comparison of empirical powers (in %) of NS, NL3, BN , DFA, MG, and CB.

n = 50, α = 0.05, d(50) = 10; 10,000 MC runs

λ2 λ3 λ4 NS NL3 BN DFA MG CB

Case 1: 0.197454 0.134915 0.134915 5 5 5 5 4 5
Case 2: 1.0 1.4 0.25 83 80 49 81 94 95
Case 3: 1.0 0.00007 0.1 96 95 77 95 99 99
Case 4: 0.04306 0.025213 0.094029 39 35 16 24 49 43
Case 5: −1.0 −0.0075 −0.03 56 52 25 37 67 59
Case 6: −0.351663 −0.13 −0.16 7 7 6 5 6 7
Case 7: −1.0 −0.1 −0.18 19 17 10 11 22 19
Case 8: −1.0 −0.001 −0.13 99 98 88 98 100 100
Case 9: −1.0 −0.00001 −0.17 99 99 91 98 100 100

4.4.2. Power comparisons for alternatives with zero median. The power be-
haviour of the considered tests for the alternatives described in Subsection 4.3.2
is reported in Figures 3, 4, and 5 and Table 2.

In Figure 3, one can observe that the tests CB and MG provide no protection
against alternatives with asymmetry in the “middle” part of a distribution when
simultaneously the median equals zero (see, for example, MixBeta(θ)). The tests
NL3,NS, andBN perform the best behaviour for alternativesALT4. It turns out
that for detecting “high-frequency” departures (see Sin(0.5, j)) NL3 is the best
test. In this case, the loss in power for NS and for other tests is even equal to 50%.

Table 2 presents power behaviour of all the compared tests for nine cases
from the Generalized Lambda Family, which are frequently studied in the literature
(see, e.g., Modarres and Gastwirth [38] and also Cheng and Balakrishnan [4]).
Exceptionally, in this case we took n = 50 to ensure reasonable powers. It is known
that the alternatives ALT5, considered in Table 2, have asymmetry in tails of the
distribution (the component ⟨3⟩ is dominating). This explains why CB and MG
detect ALT5 with very high powers. But the data driven tests lose at most ca. 15%
with respect to MG.

In Figure 4, we report powers of the six compared tests for alternatives ALT6
taken from the Generalized Tukey-Lambda Family. In this case the results are quite
similar to those for alternatives ALT5 but here the data driven tests lose at most
40% with respect to (the most powerful) CB.

Finally, Figure 5 concerns the Fechner Family. Observe that for heavy tailed
distribution (Cauchy-Fechner(ξ)) the data driven tests are much better than CB
and slightly dominateMG although the asymmetry in tails is essential (but it seems
the “middle” part is more significant).

4.4.3. Average powers. The aim of this section is to repeat an analogous exper-
iment to that performed in Inglot and Janic [17]. We consider a finite set of nearly
orthogonal alternatives g+12,j(x), g

−
12,j(x), j = 1, . . . , 12, defined in Subsection

4.3.3, and look at average powers of all the considered tests in comparison to the
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Figure 4. Alternatives ALT6 from the Generalized Tukey-Lambda Family. Comparison of
empirical powers (in %) of NS (-�-), NL3 (- -), BN (-#-), DFA (-N-), MG (-�-),

and CB (-∗-). n = 100, α = 0.05, d(100) = 12; 10,000 MC runs

Neyman–Pearson test and the optimal Bayes test. Inglot and Janic [17] showed
that, in the middle range of the power function, the loss in average power of the
optimal Bayes test with respect to the Neyman–Pearson test can be measured by
the Shannon entropy of a prior distribution.

Let T ∗ be the two-sided optimal Bayes test given as in Inglot and Janic [17]
(cf. (A.2) in their Appendix), defined by 24 densities g+12,j(x), g

−
12,j(x), j =

1, . . . , 12, under the uniform prior distribution on them. In Table 3 we present
powers of all the six compared tests, NL1 and T ∗ for alternatives g+12,j(x), j =
1, . . . , 12. The powers for alternatives g−12,j(x) are practically the same as that for
g+12,j(x), so we omit them in Table 3. To show the whole picture, we also include
the one-sided Neyman–Pearson test denoted by NP (constructed for each alterna-
tive separately) and the score test based on N12 = |b̂|212. In the last row of Table 3
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Figure 5. Alternatives ALT7 from the Fechner Family: the Normal-Fechner Family and the
Cauchy–Fechner Family. Comparison of empirical powers NS (-�-), NL3 (- -), BN (-#-),
DFA (-N-), MG (-�-), and CB (-∗-). n = 100, α = 0.05, d(100) = 12; 10,000 MC runs

Table 3. Comparison of powers and average powers (in %) of NP ,
T ∗, NS, NL1, NL3, BN, DFA, MG, CB, and N12.

n = 100, α = 0.05, d(n) = 12; 10,000 MC runs, alternatives g+12,j(x), uniform prior

ϑ NP T ∗ NS NL1 NL3 BN DFA MG CB N12 ⟨2j − 1⟩
0.25e1 80 40 58 48 52 53 60 41 15 28 0.24
0.25e2 80 40 60 53 56 45 25 54 22 27 0.24
0.25e3 81 41 33 35 34 30 13 12 20 27 0.23
0.25e4 80 40 16 30 24 21 9 8 13 27 0.22
0.25e5 81 41 9 28 22 15 8 7 9 26 0.21
0.25e6 79 39 6 23 20 11 6 5 7 26 0.19
0.25e7 81 41 6 20 18 9 6 6 6 26 0.17
0.25e8 80 39 5 16 16 7 6 6 6 25 0.15
0.25e9 81 41 5 14 14 7 6 5 6 24 0.13
0.25e10 81 40 5 12 12 6 6 6 6 22 0.11
0.25e11 81 42 5 9 10 6 5 5 6 20 0.09
0.25e12 82 43 6 8 9 6 6 6 7 15 0.07

average power 80.6 40.6 17.8 24.7 23.9 18.0 13.0 13.4 10.3 24.4

we give average powers over 12 displayed alternatives. Note that average powers
over all 24 alternatives differ from the presented ones at most 0.1%. Although N12

attains a similar average power to NL3, this last test keeps much higher power
for “smooth” alternatives, and therefore better competes with other tests. Note that
the power of NP and T ∗ tests is almost constant for each such artificially selected
alternative and the loss in average power for T ∗ with respect to the case when full
information about alternative is available equals ca. 40%. This agrees quite well
with the approximation derived in Theorem A.2 of Inglot and Janic [17]. On the
other hand, the loss in average power for NL3 and NL1 with respect to T ∗ in the
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middle range of the power function is about 16%. Moreover, as could be expected,
the testNL1 attains a little bit better average power thanNL3 (ca. 0.8%) and much
better than NS (ca. 7%). DFA, MG, and CB behave like typical directional tests
and break down beginning from the sixth alternative. BN looks much better and
can compete with NS although being inferior to NS for the first three (“smooth”)
alternatives.

4.5. Conclusions. The results presented in Subsection 4.4 show that the newly
introduced data driven tests perform well for a wide range of alternatives and are
able to compete with other commonly used tests as well as recent constructions.
Simulations show that the new test NL3 has high and stable power in situations
when the other tests break down and simultaneously has comparable power under
alternatives which can be detected by those tests. This observation is also con-
firmed by the results shown in Table 3. Therefore, we recommend NL3 as an om-
nibus test having the widest spectrum of sensitivity for detecting asymmetry. To
make this conclusion more transparent we selected one specific alternative from
each figure, took powers for every of the six compared tests for these alternatives
(for which powers attained are in the middle range) and calculated average pow-
ers over all 18 cases. We obtained (in %) 57.5 for NL3, 56.2 for NS, 51.9 for
MG, 48.5 for DFA, 44.9 for BN , and 36.9 for CB. This calculation additionally
illustrates the above conclusion on the ability of data driven tests (and NL3 in par-
ticular) to cover the widest spectrum of asymmetric distributions preserving high
power in each case.

5. PROOFS

In this section we provide proofs of all theorems stated in Section 3. They are
based on auxiliary results presented in the Appendix. In the sequel we shall use
letters C, c to denote positive constants possibly different in each case.

In our case we specify a system of functions Φ taken arbitrarily in the Ap-
pendix to be the vector b of the odd Legendre polynomials (cf. (2.4) and (A.3)).
Hence a Gaussian vector γ defined in (A.6) is a standard Gaussian sequence and,
consequently, Γ = I is the identity matrix, and λn defined in Proposition A.3 are
equal to one for all n. Using well-known properties of the Legendre polynomi-
als we easily see that the coefficient ψ(k) defined in (A.8) can be estimated by
ψ2(k) ¬ Ck3 log2 k for every k.

Observe that the correction 1/(4n) we have inserted in (2.4) has no influence
on asymptotic behaviour of our statistics. Indeed, if we set b̃2j−1 =

(1/
√
n)

∑n
i=1 b2j−1

(
Fns(Xi)

)
and b̃ = (b̃1, b̃3, . . .), then applying again proper-

ties of the Legendre polynomials we obtain, by a standard calculation,∣∣|b̂|k − |b̃|k∣∣ ¬ C(k3/2 log n)/√n.
This estimate allows us to omit the correction in proofs of all theorems. Therefore,
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throughout this section we shall use the notation b̂2j−1 and b̂ for empirical Fourier
coefficients without the correction 1/(4n). Then the vector of empirical Fourier
coefficients b̂ coincides with Φ̂ as in (A.2).

P r o o f o f T h e o r e m 3.1. Taking in (A.12) xn = (log2 n)/
√
n and

k(n) = 1 for all n and applying the triangle inequality, we get

N1 = |b̂|21
D→ |γ|21

D
= χ2

1.

Now, let d(n) = O(nτ ) for some τ < 1/6 be as assumed in Theorem 3.1.
Then

P (S ­ 2) =
d(n)∑
k=2

P (S = k) ¬
d(n)∑
k=2

P
(
Nk ­ (k − 1) log n

)
=

d(n)∑
k=2

P
(
|b̂|2k ­ (k − 1) log n

)
.

(5.1)

For each fixed k ­ 2 put in Proposition A.3 x2n = [(k − 1) log n]/n, k(n) = k,
and take some ν < (1− 4τ)/(2− 2τ). Then (A.13) is satisfied and, consequently,
by Proposition A.3 we have for n sufficiently large

P
(
|b̂|2k ­ (k − 1) log n

)
¬ exp

{
−1
2
(k − 1)(log n)

(
1 + o(1)

)}
+ C exp{−c log2 n} ¬ n−1/3.

Combining the above estimation with (5.1) we obtain P (S ­ 2) ¬ d(n)/n1/3,
which tends to zero. This proves the assertion (1). Note that here we have needed
only that τ < 1/4.

To prove the assertion (2) let Ej be the family of all j-element subsets of
{1, 2, . . . , d(n)}. Then

(5.2) P (Wn) ¬
D∑
j=1

P (b̂2(d(n)−j+1) ­ c
2
jn) ¬

D∑
j=1

∑
E∈Ej

P (|b̂|2E ­ jc2jn),

where |v|2E =
∑

i∈E v
2
i for a finite subset E of {1, 2, . . .}. Arguing as in the

proof of Proposition 1 in Inglot and Janic [17] and using the assumption(
log log d(n)

)
/ log(1/δn)→ 0 we get

jc2jn ¬ 2D log
(
2Dd(n)/δn

)
and jc2jn ­ log(1/δn) + 2 log

(
d(n)

j

)
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for n sufficiently large. Since log(1/δn) = o(n), we see that for every j and every
E ∈ Ej we have jc2jn = o(n) and c2jn →∞. In Proposition A.3 set x2n = jc2jn/n
and ν = (1− 6τ)/3. Then (A.13) is fulfilled. Hence, for n sufficiently large

P (|b̂|2E ­ jc2jn) ¬ exp

{
−1
2
log

1

δn
− log

(
d(n)

j

)
+ rn

}
+ C exp{−cnε}

with any positive ε < ν, where the remainder rn, due to the assumptions on d(n)
and δn, can be estimated by C log log

(
d(n)/δn

)
+ Cn−ν/2 log1+ν/2(1/δn) not

depending on j and a particular set E. Again, by the assumptions on δn we have
rn = o

(
log(1/δn)

)
. Inserting this estimate into (5.2) we infer that P (Wn) → 0,

which completes the proof of the assertion (2). �

P r o o f o f T h e o r e m 3.2. Given d(n) with corresponding τ ∈ [0, 1/12)
let xn be any sequence such that nxϑn → 0 for some ϑ < 3/(1 + 3τ) and
n1−2τx2n/ log

4 n→∞. To check the assumptions of Theorem A.2 let us set ν =
ϑ/2− 1 and k(n) = d(n). Then

nx2n
d(n)

=
n1−2τx2n
log4 n

nτ log n

d(n)
(nτ log3 n)→∞.

Since η = 3− 6τ − ϑ(1− 2τ) > 0 and ψ2
(
d(n)

)
= O

(
d3(n) log2 n

)
, we have

n3x4+4ν
n

ψ4
(
d(n)

)
log6 n

­ C
(
n1−2τx2n
log4 n

)ϑ(
nτ log n

d(n)

)6 nη

log16−4ϑ n
→∞

and similarly, observing that ζ = (6− 2ϑ)/ϑ− 6τ > 0, we get

x2−4νn ψ4
(
d(n)

)
¬ C(nxϑn)(6−2ϑ)/ϑ

(
d(n)

nτ log n

)6 log10 n

nζ
→ 0.

Hence (A.14) of Theorem A.2 can be applied, thus proving the first expansion in
(3.2). Due to the assumptions on xn the remainder terms in this expansion are of
order o(

√
nxn). This proves our theorem. �

P r o o f o f T h e o r e m 3.3. Let P denote the distribution of the sample
X1, . . . , Xn with distribution function F (x). Since F is asymmetric, we have
F ̸= Fs or, equivalently, A ̸= 0. This implies

∫ 1

0
b(t)dA(t) ̸= 0. Write

k0 = min
{
k ­ 1 :

∫ 1

0
b2k−1(t)dA(t) ̸= 0

}
. Further let us put

SnA =
1∫
0

b
(
Hns(t)

)
dA(t)
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and (cf. (3.5))

sA =
1∫
0

b(t)dA(t).

We apply Proposition A.5 to xn = (log2 n)/
√
n and fixed k(n) = 1, . . . , k0. Then

from (A.21) and (A.22) we get

|b̂−
√
nSnA − b̂0|j

P→ 0, |SnA − sA|j
P→ 0,

where (cf. (A.5))

b̂0 =
1∫
0

b(t)dεn(t) = −
1∫
0

b′(t)εn(t)dt
D→ −

1∫
0

b′(t)B
(
t+A(t)

)
dt,

while εn(t) denotes the transformed empirical process as defined in the Appendix.
In consequence, |

√
nSnA|k0 = C

√
n
(
1 + oP (1)

)
and

|b̂|k0 ­ |
√
nSnA|k0 − |b̂−

√
nSnA − b̂0|k0 − |b̂0|k0 = C

√
n
(
1 + oP (1)

)
.

On the other hand, we have |sA|j = 0 for j < k0, which results in |b̂|j = oP (
√
n).

Now, for the selection rule S we have

P (S < k0) ¬
k0−1∑
j=1

P
(
|b̂|2k0 ¬ |b̂|

2
j + (k0 − j) log n

)
→ 0.

Hence, P (S ­ k0) → 1, P (NS ­ |b̂|2k0) → 1 and NS
P→ ∞. An application of

Theorem 3.1 (boundedness of a critical value) completes the proof. �

P r o o f o f T h e o r e m 3.4. Given d(n) with the corresponding τ . Let ρn
be any sequence satisfying the assumptions of Theorem 3.4. We apply Theo-
rem A.3 to k(n) = d(n), An = A for all n and δn = (log n)/

√
nρκn with

κ = (1 + τ) ∧ (3/2− 6τ). Then ζ = (1− 2τ)(1 + κ) ¬ 2 and, consequently,

ρn
δ2n

= n1−ζ/2 log2κ n

(
n1−2τρ2n
log4 n

)(1+κ)/2

→∞.

Obviously, nρnδ2n/(log n) = (logn)/ρκ−1n → ∞ and (A.15) is fulfilled. So, by
(A.20) we have for versions of b̂ and γ on a common probability space (Ω,B,P),
defined by the KMT inequality (cf. (A.7) in the Appendix),

P
(
|b̂(1) − sn − γ(1)n |d(n) ­ Cρ1−κ/2n d3/2(n) log2 n

)
¬ C1 exp{−c log n} → 0.

Since 12τ − 2 + κ < 0, the assumption on d(n) implies

ρ2−κn d3(n) log4 n ¬ Cρ2−κn n3τ log7 n = C(nρ4n)
(2−κ)/4n3τ−(2−κ)/4 log7 n→ 0.
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Hence we have proved

(5.3) |b̂(1) − sn − γ(1)n |d(n)
P→ 0.

Since a is normalized, the assumption d(n) → ∞ and the Parceval identity
give

(5.4) |sn|2d(n)/nρ
2
n → 1,

which immediately implies |sn|d(n) →∞. Thus

(5.5)
|b̂|2d(n) − |sn|

2
d(n)

2|sn|d(n)
D
=
|b̂(1)|2d(n) − |sn|

2
d(n)

2|sn|d(n)

=
|b̂(1) − sn|2d(n)

2|sn|d(n)
+

sn
|sn|d(n)

◦d(n) (b̂(1) − sn − γ(1)n ) +
sn
|sn|d(n)

◦d(n) γ(1)n ,

where ◦d(n) denotes the usual Euclidean scalar multiplication in Rd(n). From (5.3)
it follows that the first two terms on the right-hand side of (5.5) converge in prob-
ability to zero while the third one has the standard normal distribution for every n
(we use the fact that for every n, d(n)-dimensional truncation of sn/|sn|d(n) is a

point on the unit sphere in Rd(n) and γ(1)n is a standard Gaussian sequence). Thus
we have proved

(5.6)
|b̂|2d(n) − |sn|

2
d(n)

2|sn|d(n)
D→ N(0, 1).

Now, let us consider a deterministic counterpart of the Schwarz type rule S
defined by

(5.7)
l(n) = min{1 ¬ k ¬ d(n) : |sn|2k − |sn|2j ­ µ(k − j) log n, 1 ¬ j ¬ d(n)},

where µ > 1 is chosen arbitrarily. We shall show that P
(
S < l(n)

)
→ 0 in a

similar way to that of Inglot and Ledwina [23]. To this end let us write |v|2kl =
|v|2l − |v|2k for a vector v and k < l. For k < l(n) = l, from the triangle inequality
we have

(5.8) P
(
|b̂|2kl ¬ (l − k) log n

)
¬ P

(
|b̂− sn|kl ­ |sn|kl −

√
(l − k) log n

)
¬ P

(
|b̂− sn|kl ­ (

√
µ− 1)

√
(l − k) log n

)
= P

(
| ˆb(1) − sn|kl ­ (

√
µ− 1)

√
(l − k) log n

)
¬ P

(
| ˆb(1) − sn − γ(1)n |kl ­ (1/2)(

√
µ− 1)

√
(l − k) log n

)
+ P

(
|γ|kl ­ (1/2)(

√
µ− 1)

√
(l − k) log n

)
.
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Set δn = (log n)/
√
nρn. Then δn → 0 and

ψ2(l − k)nρ2nδ2n ¬ Cd3(n)ρn log4 n ¬ Cn3τρn log7 n
= (nρ4n)

1/4n(12τ−1)/4 log7 n→ 0.

Moreover, δn satisfies (A.15) and δn = O(
√
ρn). So, applying again Theorem A.3

we estimate the first term in (5.8) by C exp{−c log2 n}. By the classical bound
for tails of a norm of a Gaussian vector, the second term in (5.8) is estimated by
exp{−c(l − k) log n}. Using these estimates and (5.7) we get

P
(
S < l(n)

)
¬

l−1∑
k=1

P (|b̂|2k − k log n ­ |b̂|2l − l log n)

=
l−1∑
k=1

P
(
|b̂|2kl ¬ (l − k) log n

)
¬ Cd(n) exp{−c log2 n}+

l−1∑
k=1

n−c(l−k) → 0

(5.9)

as the last term on the right-hand side is smaller than 1/(nc − 1).
It is easily seen that the proof of (5.3) can be repeated with d(n) replaced by

l(n). Moreover, by (5.4), (5.7), and the assumptions on d(n) and ρn, we have for
sufficiently large n (cf. (3.5))

|sn|2l(n)d(n)
|sn|2d(n)

¬
|sn|2d(n) − |sn|

2
l(n)

|sn|d(n)
¬
µ
(
d(n)− l(n)

)
log n

|sn|d(n)
¬ Cn

τ log2 n√
nρn

→ 0.

Hence |sn|l(n)/|sn|d(n) → 1 and |sn|l(n) → ∞. This implies that (5.6) holds for
d(n) replaced by l(n) and, consequently,

(5.10)
|b̂|2l(n) − |sn|

2
d(n)

2|sn|d(n)
D→ N(0, 1).

The relation P (|b̂|2l(n) ¬ NS)→ 1 and the obvious inequality NS ¬ NL ¬ |b̂|2d(n)
combined with (5.6) and (5.10) complete the proof. �

REMARK 5.1. An inspection of the proof of (5.3) and (5.9) shows that if
τ = 0, then (3.6) remains valid if

ρn log
7 n→ 0 and

nρ2n
log4 n

→∞,

thus covering almost the whole range of convergent alternatives between contigu-
ous and fixed alternatives.
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P r o o f o f T h e o r e m 3.5. The proof of Theorem 3.5 goes along the same
line of argument as in Inglot et al. [20], Inglot and Ledwina [24] or Ducharme and
Ledwina [7]. We provide it here to make the paper self-contained.

To make the notation precise, throughout this proof and the proof of Theo-
rem 3.6, we shall write P0 for the null distribution corresponding to some F = Fs

and Pn for the alternative distribution corresponding to the density 1 + ρna(t) of
the data transformed by Fs (cf. (3.3)).

Let w ∈ R be an arbitrary number and assume that the critical value of the
upper tailed test based on NS is given by tn = |sn|2d(n) + 2|sn|d(n)w. From Theo-
rem 3.4 and (5.4) we obtain

(5.11) βn = Pn

(NS − |sn|2d(n)
2|sn|d(n)

­ w
)
→ 1−Φ(w)

as n→∞, where Φ is the standard normal distribution function. By Theorem 3.2
and the assumption (3.8), the size of this test satisfies

(5.12) αn = P0(NS ­ tn) ¬ exp
{
− (1/2)nρ2n −

√
nρnw + o(

√
nρn)

}
.

Consider the Neyman–Pearson test statistic Vn for testing uniformity, given
in Section 3, against the distribution given by the density 1 + ρna(t) on the unit
interval. Then from Theorems 3.1 and 3.2 in Inglot and Ledwina [24] (see also
Proposition 4.1 and the formula (4.5) in Inglot [15]) it follows that

(5.13) Pn(Vn ­
√
nmn + y)→ 1−Φ(y)

as n→∞ for every y ∈ R, where mn = ρn +O(ρ2n) and

(5.14) P0(Vn ­
√
nxn) = exp

{
− (1/2)nx2n +O(nx3n) +O(log nx2n)

}
for every xn → 0 and nx2n →∞. Choose a real number yn such that

(5.15) P0(Vn ­
√
nmn + yn) = αn,

i.e. such that
√
nmn + yn is an exact critical value for the Neyman–Pearson test,

which ensures exactly the same significance level αn as defined by (5.12) for the
test NS .

We have yn ¬ w + o(1) since otherwise (5.11) and (5.13) would imply that
the Neyman–Pearson test attains lower power than the test NS , both being on the
level αn, which is impossible.

From (5.12), (5.14), and the assumptions on ρn it follows that for n sufficiently
large P0(Vn ­

√
nρn/2) > exp{−nρ2n/4} > αn, which means yn ­ −

√
nρn/2
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for n sufficiently large. So, (5.14) can be applied for xn = mn + yn/
√
n. Com-

paring the exponents from this expansion and those given by (5.12) we see that yn
satisfies the inequality

1

2
√
nρn

y2n + yn − w + o(1) ­ 0

and, consequently, the inequality yn ­ w + o(1). This proves that yn = w + o(1)
and, by (5.11) and (5.13),

lim
n
β+n = lim

n
Pn(Vn ­

√
nmn + yn) = 1−Φ(w) = lim

n
βn.

Thus the assertion of the theorem follows. �

P r o o f o f T h e o r e m 3.6. We shall apply Theorem 2.7 of Inglot [14].
Under the assumptions of our theorem it follows immediately from (3.2) that

lim
n→∞

1

nx2n
logP0(NS ­ nx2n) = −

1

2

for every sequence xn as in Theorem 3.2. This and Theorem 3.4 imply that the
intermediate slope of the test NS for the considered sequence (Pn) of alternatives
is equal to |sn|2d(n)/2, while the intermediate slope for the Neyman–Pearson test
Vn for this sequence is equal to nρ2n/2. This means that the ratio of slopes equals∣∣∫ 1

0
b(t)a(t)dt

∣∣2
d(n)

and tends to one by the Parceval identity (cf. (5.4)). Since the
choice of the critical value tn given in (3.7) and the form of significance level
αn in (5.12) ensure nondegenerate power for the test NS and (logαn)/n → 0,
Theorem 2.7 of Inglot [14] can be applied, thus proving our theorem. �

6. APPENDIX

We collect here some auxiliary, general results on asymptotic behaviour of lin-
ear rank statistics related to the one-sample problem. We present them to assure an
easy and precise reference in Section 5 and for the convenience of the reader. Anal-
ogous results for linear rank statistics in the two-sample problem were investigated
in Inglot [16].

Limit theorems for rank statistics have been investigated intensively by many
authors, among them Hájek [12] and Govindarajulu [11]. Hájek’s approach is quite
general and his main results are often referred to also in recent papers. However, his
proofs are technically involved and do not allow for explicit probability inequal-
ities. To get asymptotic results more flexible for various applications we propose
here to use Hungarian construction and, in particular, the celebrated Komlós, Ma-
jor and Tusnády inequality (KMT inequality, for short). Such methodology was
successfully exploited to establish limit behaviour of some classes of statistics like
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Lipschitz functionals of the empirical process (Inglot and Ledwina [21], [22]) or
bilinear forms of empirical process (Inglot et al. [18]) for the problem of testing
uniformity.

Before we state our results we need some additional notation to that we have
used in Section 2.

Let X1, . . . , Xn be a sample from a continuous distribution F on the real
line and let Fs(x) =

1
2 [F (x) + 1 − F (−x)] be its symmetric part. Transform our

sample into the unit interval by Fs to get Ui = Fs(Xi), i = 1, . . . , n. Then Ui

have the distribution function F ◦ F−1s (t) = t + A(t), t ∈ [0, 1], where A is an
absolutely continuous function on [0, 1], symmetric with respect to t = 1/2. The
case F = Fs corresponds to A ≡ 0.

As previously, let Fn(x) denote the empirical distribution function of the
sample X1, . . . , Xn and Fns its symmetric part which we have used as an esti-
mator of the unknown distribution Fs. Moreover, denote by Hn = Fn ◦ F−1s the
empirical distribution function of the transformed sample U1, . . . , Un. Next, let
εn =

√
n(Hn − F ◦ F−1s )

D
= en ◦ F ◦ F−1s be the transformed empirical process

on [0, 1], where en denotes the uniform empirical process. It is easy to verify that

(A.1) Hns(t) =
1

2
[Hn(t) + 1−Hn(1− t)] =

1

2
√
n
[εn(t)− εn(1− t)].

Now, let φ1, φ2, . . . be a system of linearly independent, absolutely contin-
uous functions on [0, 1], antisymmetric with respect to t = 1/2 and such that∫ 1

0
φ2
j (t)dt = 1 for all j. Let Φ = (φ1, φ2, . . .) stand for the vector of these func-

tions. We shall use φj’s as score functions to define the following linear rank statis-
tic which is our main object in this section:

(A.2) Φ̂ =
1√
n

n∑
i=1

Φ
(
Fns(Xi)

)
=

1√
n

n∑
i=1

Φ
(
Hns(Ui)

)
=

1√
n

n∑
i=1

Φ

(
Ri

2n

)
,

where Ri is the rank of Xi in the pooled sample X1, . . . , Xn − X1, . . . ,−Xn

(cf. Section 2). Components φ̂j of Φ̂ may be considered as empirical Fourier co-
efficients of the antisymmetric part of F , i.e., Fa = F − Fs with respect to the
system Φ. A simple calculation shows that Φ̂ can be written in the form

(A.3) Φ̂ =
1∫
0

Φ
(
Hns(t)

)
dεn(t) +

√
n

1∫
0

Φ
(
Hns(t)

)
dA(t),

where we have used the fact that Φ
(
Hns(t)

)
is antisymmetric with respect to

t = 1/2.
Observe that, under F = Fs, Hns may be considered as an estimator of the

identity function id(t) = t. The following simple fact will be used in the sequel to
replaceHns(t) by t in (A.3) when studying an asymptotics of Φ̂.
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PROPOSITION A.1. Under the above notation we have

(A.4)
1∫
0

[
Φ
(
Hns(t)

)
− Φ(t)

]
dεn(t) =

2n∑
i=1

i/2n∫
(i−1)/2n

Φ′(s)[εn(s)− εn(U(i))]ds,

where U(i) are the order statistics in the pooled transformed sample U1, . . . , Un,
1− U1, . . . , 1− Un.

P r o o f o f P r o p o s i t i o n A.1. By the absolute continuity of Φ we have

1∫
0

[
Φ
(
Hns(t)

)
− Φ(t)

]
dεn(t) =

1∫
0

Hns(t)∫
t

Φ′(s)dsdεn(t).

The last integral can be written as a double integral over the subset D of the unit
square which lies between graphs of Hns(t) and the identity function id(t) (cf.
Lemma 2.1 in Inglot [16]). Using the Fubini theorem, dividing D into 2n parts by
horizontal lines s = i/(2n), i = 1, . . . , 2n − 1, and integrating with respect to t
over each part, we get (A.4). �

The formula (A.4) suggests to define an auxiliary statistic of the form

(A.5) Φ̂0 =
1∫
0

Φ(t)dεn(t) = −
1∫
0

Φ′(t)εn(t)dt,

which corresponds to Φ̂ withHns replaced by the identity function.
Finally, let B(t) denote the Brownian bridge and

(A.6) γ = −
1∫
0

Φ′(t)B(t)dt

be a Gaussian vector with mean zero and covariance matrix Γ =
∫ 1

0
Φ(t)ΦT (t)dt.

Null hypothesis. Now, we consider the case F = Fs, i.e. the case where Xi

have a symmetric distribution. Then Ui are uniformly distributed over [0, 1] and

εn
D
= en is the uniform empirical process.

Now, let k(n) be any sequence of natural numbers (including the constant
sequence) and |v|k = (v21 + . . .+ v2k)

1/2 denote the k-dimensional Euclidean norm
of a vector v (cf. Section 3). By a straightforward application of KMT inequality
we get

(A.7) P
(
|Φ̂(1)

0 − γ
(1)
n |k(n) ­ ψ

(
k(n)

)
xn

)
= P

(∣∣ 1∫
0

Φ′(t)[ε(1)n (t)−B(1)
n (t)]dt

∣∣
k(n)
­ ψ

(
k(n)

)
xn

)
¬ C exp{−cxn

√
n}
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provided positive numbers xn satisfy the condition nx2n/ log
2 n→∞. Here and in

the sequel ε(1)n and B
(1)
n are versions of εn andB defined on a common probability

space (Ω,B,P) constructed in the KMT inequality, Φ̂(1)
0 = −

∫ 1

0
Φ′(t)ε

(1)
n (t)dt,

γ
(1)
n = −

∫ 1

0
Φ′(t)B

(1)
n (t)dt, and

(A.8) ψ2(k) =
k∑

j=1

( 1∫
0

|φ′j(t)|dt
)2

is the constant depending on the system Φ which is finite due to the absolute con-
tinuity of Φ.

PROPOSITION A.2. If F = Fs, then for any sequence k(n) of natural numbers
and every sequence xn of positive numbers satisfying the conditions xn → 0 and
nx2n/ log n→∞ we have for n sufficiently large

(A.9) P
(
|Φ̂(1) − Φ̂

(1)
0 |k(n) ­ ψ

(
k(n)

)√
nx3n

)
¬ C exp{−cnx2n},

where ψ(k) is given by (A.8).

P r o o f o f P r o p o s i t i o n A.2. Consider an event

(A.10) En = {sup
t
|ε(1)n (t)| ­

√
nxn} ⊂ Ω.

Then by the KMT inequality and the well-known inequality

P
(
sup
t
|B(1)

n (t)| ­ x
)
¬ 2 exp{−2x2}, x > 0,

we get for n sufficiently large

P(En) ¬ P
(
sup
t
|ε(1)n (t)−B(1)

n (t)| ­ (1/2)
√
nxn

)
+P

(
sup
t
|B(1)

n (t)| ­ (1/2)
√
nxn

)
¬ C exp{−(1/2)nx2n}.

(A.11)

On the set Ec
n, for each i = 1, . . . , 2n and u ∈ [(i− 1)/(2n), i/(2n)] we have by

the formula (A.1)

|u− U (1)
(i) | ¬

∣∣∣∣ i2n − U (1)
(i)

∣∣∣∣+ 1

2n
= |H(1)

ns (U
(1)
(i) )− U

(1)
(i) |+

1

2n
¬ xn +

1

2n
= rn

and, consequently, on the set Ec
n we have

max
1¬i¬2n

sup
u∈[(i−1)/2n,i/2n]

|ε(1)n (u)− ε(1)n (U
(1)
(i) )|

¬ 2 sup
t
|ε(1)n (t)−B(1)

n (t)|+ sup
0¬t¬1−rn

sup
0¬u¬rn

|B(1)
n (t+ u)−B(1)

n (t)|.
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Now, an application of Proposition A.1 and an analogous argument to that in
the proof of Theorem 3.2 in Inglot [16] gives (A.9). �

Combining (A.7) and (A.9) we obtain the following theorem.

THEOREM A.1. If F = Fs, then for any sequence k(n) of natural numbers
and every sequence xn of positive numbers satisfying xn → 0 and nx2n/ log

2 n→
∞ we have for n sufficiently large

(A.12) P
(
|Φ̂(1) − γ(1)n |k(n) ­ ψ

(
k(n)

)√
nx3n

)
¬ C exp{−cnx2n}.

Observe that from (A.12) one can easily derive asymptotic normality of Φ̂.
Proposition A.2 allows us also to get a moderate deviation theorem for Φ̂.

Since for any ν > 0

P(|Φ̂(1)|2k(n) ­ nx
2
n) ¬ P

(
|γ(1)n |k(n) ­ (1− xνn)xn

√
n
)

+P
(
|Φ̂(1)− Φ̂

(1)
0 |k(n) ­ (1/2)x1+ν

n

√
n
)
+P

(
|Φ̂(1)

0 − γ
(1)
n |k(n) ­ (1/2)x1+ν

n

√
n
)

and

P(|Φ̂(1)|2k(n) ­ nx
2
n) ­ P

(
|γ(1)n |k(n) ­ (1 + xνn)xn

√
n
)

−P
(
|Φ̂(1)− Φ̂

(1)
0 |k(n)­(1/2)x

1+ν
n

√
n
)
−P

(
|Φ̂(1)

0 − γ
(1)
n |k(n)­(1/2)x1+ν

n

√
n
)
,

using (A.7), (A.9), and the expansion for the tails of the distribution of the Eu-
clidean norm of a Gaussian vector we get the following proposition (cf. the proof
of Theorem 3.4 in Inglot [16]).

PROPOSITION A.3. IfF = Fs, then for any sequence k(n) of natural numbers,
any ν > 0, and every sequence xn of positive numbers satisfying

(A.13) xn → 0,
nx2n

k(n)λn
→∞, n3x

4(1+ν)
n

ψ4(k(n)) log3 n
→∞

we have for n sufficiently large∣∣∣∣P (|Φ̂|2k(n) ­ nx2n)− exp

{
−nx

2
n

2λn
+O

(
nx2+ν

n

λn

)
+O

(
k(n) log nx2n

)}∣∣∣∣
¬ C exp

{
− c nx

4(1+ν)/3
n

ψ4/3
(
k(n)

)},
where λn is the largest eigenvalue of the covariance matrix Γn of the first k(n)
components of γ.
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Proposition A.3 immediately implies

THEOREM A.2. If F = Fs, then for any sequence k(n) of natural numbers,
any ν ∈ (0, 1/2), and every sequence xn of positive numbers such that xn → 0,
nx2n/

(
k(n)λn

)
→∞, and x2−4νn ψ4

(
k(n)

)
/λ3n → 0 we have

(A.14) P (|Φ̂|2k(n) ­ nx
2
n)

= exp

{
−nx

2
n

2λn
+O

(
nx2+ν

n

λn

)
+O

(
k(n) lognx2n

)}
,

where λn is the largest eigenvalue of the covariance matrix Γn of the first k(n)
components of γ and ψ(k) is given by (A.8). In particular, when Φ is an orthonor-
mal system, then λn = 1 for all n.

Convergent alternatives. Now, suppose alternativesA(t) = An(t) converge to
zero. Namely, denote by ρnan, ρn > 0, the derivative of An and suppose ρn → 0,
while an are uniformly bounded, i.e. supn supt |an(t)| ¬ a∞ < ∞, and normal-
ized, i.e.

∫ 1

0
a2n(t)dt = 1. We have the following proposition (cf. Theorems 4.1 and

4.2 in Inglot [16]).

PROPOSITION A.4. Suppose X1, . . . , Xn have the distribution function of
the form Fn(x) = Fs(x) + An

(
Fs(x)

)
, where Fs is a distribution function of a

fixed symmetric distribution and An are as described above with ρn → 0 such
that nρ2n/ logn→∞. Then for any sequence k(n) of natural numbers and every
sequence δn → 0 of positive numbers such that

(A.15)
nρnδ

2
n

log n
→∞

we have for n sufficiently large

(i) P
(
|Φ̂(1)

0 − γ
(1)
n |k(n) ­ ψ

(
k(n)

)√
nρnδn

)
¬ C exp{−cnρnδ2n}

and

(ii) P
(∣∣ 1∫

0

Φ
(
H(1)

ns (t)
)
dε(1)n (t)− Φ̂

(1)
0 (t)

∣∣
k(n)
­ ψ

(
k(n)

)√
nρnδn

)
¬ C exp{−cnρ3/2n δn},

where ψ(k) is given by (A.8).



Data driven tests for symmetry 355

P r o o f o f P r o p o s i t i o n A.4. Since ε
(1)
n (t) = e

(1)
n

(
Fn

(
F−1s (t)

))
and,

by the Schwarz inequality, supt
∣∣Fn

(
F−1s (t)

)
− t

∣∣ = supt |An(t)| ¬ ρn/
√
2, it

follows that

P
(
sup
t
|ε(1)n (t)−B(1)

n (t)| ­
√
nρnδn

)
¬ P

(
sup
t
|e(1)n (t)−B(1)

n (t)| ­
√
nρnδ

2
n

)
+P

(
sup

0¬t¬1−ρn
sup

0¬u¬ρn
|B(1)

n (t+ u)−B(1)
n (t)| ­ (1− δn)

√
nρnδn

)
,

which can be estimated by C exp{−cnρnδ2n} due to the KMT inequality, a version
of Lemma 1.1.1 of Csörgő and Révész [5] stated for the Brownian bridge and
(A.15). Now, repeating an analogous calculation to that in (A.7) we prove (i).

Consider an event (cf. (A.10))

(A.16) En = {sup
t
|ε(1)n (t)| ­ √nρnδn} ⊂ Ω.

A similar argument to that in the proof of Proposition A.2 gives an estimation
P(En) ¬ C exp{−cnρnδ2n}. On the set Ec

n, for each i = 1, . . . , 2n and
u ∈ [(i− 1)/(2n), i/(2n)] we have by (A.1)

(A.17) |u− U (1)
(i) | ¬ |H

(1)
ns (U

(1)
(i) )− U

(1)
(i) |+

1

2n
¬ √ρnδn +

1

2n
= rn.

Again, arguing as in the proof of Proposition A.2 we get (ii). �

Set (cf. (A.3))

Sn =
√
n

1∫
0

Φ
(
Hns(t)

)
dAn(t) =

√
nρn

1∫
0

Φ
(
Hns(t)

)
an(t)dt

and its deterministic counterpart (cf. (3.5))

(A.18) sn =
√
nρn

1∫
0

Φ(t)an(t)dt.

An analogue of Proposition A.1 applied to Sn and sn gives

|Sn − sn|k(n) ¬ a∞ψ
(
k(n)

)√
nρn max

1¬i¬2n
sup

u∈[(i−1)/2n,i/2n]
|u− U(i)|.

Using this estimate, considering the event En given by (A.16), the estimate (A.17)
and

|Φ̂(1) − sn − Φ̂
(1)
0 |k(n) ¬

∣∣ 1∫
0

Φ
(
H(1)

ns (t)
)
dε(1)n (t)− Φ̂

(1)
0 (t)

∣∣
k(n)

+ |S(1)n − sn|k(n)

we obtain the following theorem.

THEOREM A.3. Suppose X1, . . . , Xn have the distribution function of the
form Fn(x) = Fs(x) + An

(
Fs(x)

)
, where Fs is a distribution function of a fixed

symmetric distribution and An are as in Proposition A.4 with ρn → 0 such that
nρ2n/ log n → ∞. Then for any sequence k(n) of natural numbers and every se-
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quence δn → 0 of positive numbers satisfying (A.15) and such that δn = O(
√
ρn)

we have for n sufficiently large

(A.19) P
(
|S(1)n − sn|k(n) ­ a∞ψ

(
k(n)

)√
nρ3nδn

)
¬ C exp{−cnρnδ2n}

and

(A.20) P
(
|Φ̂(1) − sn − γ(1)n |k(n) ­ ψ

(
k(n)

)√
nρnδn

)
¬ C exp{−cnρnδ2n},

where ψ(k) is given by (A.8).

Fixed alternatives. LetA(t) ̸= 0 be fixed. Observe that εn(t)
D
= en

(
t+A(t)

)
.

Repeating an argument as in the proof of Proposition A.2 and (A.19) we obtain the
following result.

PROPOSITION A.5. Suppose X1, . . . , Xn have the distribution function of the
form F (x) = Fs(x) + A

(
Fs(x)

)
, where Fs is a distribution function of a fixed

symmetric distribution and A is a fixed absolutely continuous function on [0, 1],
symmetric with respect to t = 1/2. Then for any sequence k(n) of natural numbers,
any 0 ¬ σ < 1/2, and every sequence xn of positive numbers with xn → 0 and
nx2n/ log

2 n→∞ we have for n sufficiently large

(A.21) P
(∣∣ 1∫

0

Φ
(
Hns(t)

)
dεn(t)− Φ̂0

∣∣
k(n)
­ ψ

(
k(n)

)
xσn

)
¬ C exp{−cnx2n}+ C exp{−cx2σ−1n }

and

(A.22) P
(∣∣ 1∫

0

Φ
(
Hns(t)

)
dA(t)−

1∫
0

Φ(t)dA(t)
∣∣
k(n)
­ 3ψ

(
k(n)

)
xn

)
¬ C exp{−cnx2n}.

P r o o f o f P r o p o s i t i o n A.5. Let us putEn = {supt |ε
(1)
n (t)|­

√
nxn}

(cf. (A.10)). Then by a similar argument to that in the proof of Proposition A.2 we
show that P(En) ¬ C exp{−cnx2n}. Next, we pattern the proof of (A.9) with the
only difference that max1¬i¬2n supu∈[(i−1)/2n,i/2n] |ε

(1)
n (u) − ε(1)n (U

(1)
(i) )| will be

estimated by

2 sup
t
|ε(1)n (t)−B(1)

n (t)|+ sup
0¬t¬1−2rn

sup
0¬u¬2rn

|B(1)
n (t+ u)−B(1)

n (t)|,

where rn = xn + 1/(2n). This is a consequence of the property |a(t)| ¬ 1 (cf.
Section 2) and the estimate |s+A(s)−U (1)

(i) −A(U
(1)
(i) )|¬2rn which holds on the set

Ec
n for all s∈ [(i− 1)/(2n), i/(2n)] and i=1, . . . , 2n. The proof is complete. �
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