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Abstract. This paper is devoted to solving a real-valued backward
stochastic differential equation with jumps where the time horizon may be
finite or infinite. Under a linear growth generator, we prove the existence of
a minimal solution. Using a comparison theorem we show the existence and
uniqueness of solution to such equations when the generator is uniformly
continuous and satisfies a weakly monotonic condition.
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1. INTRODUCTION

After the pioneer work of Pardoux and Peng [12] on linear backward stochas-
tic differential equation (BSDE in short) with Lipschitz generator, the interest in
such stochastic equations has increased thanks to many domains of applications
including stochastic representation of solutions of partial differential equations
(PDEs in short). For example, Pardoux and Peng [11] and Peng [13] proved that
BSDEs provide a probabilistic formula for solutions of quasilinear parabolic PDEs.

BSDEs with Poisson process (BSDEP in short) were first discussed by Tang
and Li [16] and Wu [18]. Studying such equations, Barles et al. [2] generalized
the result in [11], and obtained a probabilistic interpretation of a solution of a
parabolic integral-partial differential equation (PIDE). This was done by means of
a real-valued BSDEP with Lipschitzian generator. Since then many efforts have
been made in relaxing the Lipschitz assumption of the generator of the BSDEs
(see [1] and [7]–[9] among others) and the BSDEP (see [10], [14], [15], [21]).
Pardoux [10] solved a multidimensional BSDEP and showed an existence result
under monotonicity in the second variable of the drift and the Lipschitz condition in
the other ones. Royer [14] focused on weakening the Lipschitz condition required
on the last variable of the generator and improved upon the results given in [2].
The key point is a strict comparison theorem and a representation of solution of the
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one-dimensional BSDEP in terms of non-linear expectation. But all these results
are established with a fixed time horizon T . A natural question is: under which
condition on the coefficients does the stochastic equation still have a solution given
a square-integrable terminal value ξ? In fact, this problem has been investigated by
Peng [13], Darling and Pardoux [4], and other researchers when the terminal value
ξ is null or satisfies the integrability condition E(eλT ξ2)<∞ for some λ> 0 and
random terminal time T . Chen and Wang [3] were the first to establish the existence
and uniqueness of solution to BSDE with infinite time horizon when the generator
satisfies a Lipschitz type condition. Recently Fan et al. [6] weakened assumptions
required in [3] and proved an existence and uniqueness result under mild conditions
of the generator with finite or infinite time horizon.

The aim of this paper is to extend the result established in [6] to the case of
BSDEP. Our motivation comes from the recent work of Yao [19]. The author proves
an existence and uniqueness result of BSDEP with infinite time interval and some
monotonicity condition stronger than those in [6]. In this work we show that the re-
sults obtained in [6] can be extended to BSDEP. The paper is organized as follows.
We first prove the existence of a minimal solution in Section 2 and a comparison
theorem in Section 3. Using these statements we deal with the solvability of finite
or infinite BSDEP in Section 4.

2. BSDE WITH POISSON JUMPS

2.1. Definitions and preliminary results. Let Ω be a non-empty set, F be a
σ-algebra of subsets of Ω, and P a probability measure defined on F . The triplet
(Ω,F , P) defines a probability space, which is assumed to be complete. We are
given two mutually independent processes:

• a d-dimensional Brownian motion (Wt)t­0,
• a random Poisson measure µ on E × R+ with compensator ν(dt, de) =

λ(de)dt, where the space E = R − {0} is equipped with its Borel field E such
that {µ̃([0, t]× A) = (µ− ν)[0, t]× A} is a martingale for any A ∈ E satisfying
λ(A) <∞. λ is a σ-finite measure on E and satisfies∫

E

(1 ∧ |e|2)λ(de) <∞.

We consider the filtration (Ft)t­0 given by Ft = FW
t ∨ F

µ
t , where for any

process {ηt}t­0 we have Fη
s,t = σ{ηr − ηs, s ¬ r ¬ t} ∨ N , and Fη

t = Fη
0,t,

N denotes the class of P-null sets of F . For Q ∈ N∗, | · | stands for the Euclidean
norm in RQ. We consider the following sets (where E denotes the mathematical
expectation with respect to the probability measure P), and a non-random horizon
time T , 0 < T ¬ +∞:

• S2(RQ), the space of Ft-adapted càdlàg processes

Ψ : [0, T ]× Ω→ RQ, ∥Ψ∥2S2(RQ) = E( sup
0¬t¬T

|Ψt|2) <∞.
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• H2(RQ), the space of Ft-progressively measurable processes

Ψ : [0, T ]× Ω→ RQ, ∥Ψ∥2H2(RQ) = E
T∫
0

|Ψt|2 dt <∞.

• L2(µ̃,RQ), the space of mappings U : Ω × [0, T ] × E → RQ which are
P ⊗ E-measurable and such that

∥U∥2L2(RQ) = E
T∫
0

∥Ut∥2L2(E,E,λ,R)dt <∞,

where P denotes the σ-algebra of Ft-predictable sets of Ω× [0, T ], and

∥Ut∥2L2(E,E,λ,R) =
∫
E

|Ut(e)|2 λ(de).

We may often write | · | instead of ∥ · ∥L2(E,E,λ,R) for the sake of simplicity.
Notice that the space B2(RQ) = S2(RQ)×H2(RQ)× L2(µ̃,RQ) endowed

with the norm

∥(Y,Z, U)∥2B2(RQ) = ∥Y ∥
2
S2(RQ) + ∥Z∥

2
H2(RQ) + ∥U∥

2
L2(RQ)

is a Banach space.
Finally, let S be the set of all non-decreasing continuous functions φ(·) : R+→

R+ satisfying φ(0) = 0 and φ(s) > 0 for s > 0, and put

W = R×Rd × L2(E, E , λ,R).

Let f : Ω × [0, T ] × W → R be jointly measurable. Given an FT -measurable
R-valued random variable ξ, we are interested in the BSDEP with parameters
(ξ, f, T ):

(2.1) Yt = ξ +
T∫
t

f (r,Θr) dr −
T∫
t

ZrdWr −
T∫
t

∫
E

Ur(e)µ̃(dr, de), 0 ¬ t ¬ T,

where Θr stands for the triple (Yr, Zr, Ur).
For instance, let us precise the notion of solution to (2.1).

DEFINITION 2.1. A triplet of processes (Yt, Zt, Ut)0¬t¬T is called a solution
to equation (2.1) if (Yt, Zt, Ut)0¬t¬T ∈ B2(R) and satisfies (2.1).

First we state some results in the case of Lipschitz type conditions of the gen-
erator. Suppose that for all 0 < T ¬ ∞ the following assumption (A) holds:

(A1) For all (y, z, u) ∈ W, f(·, y, z, u) is a progressively measurable process
and satisfies E

[( ∫ T

0
|f(r, 0, 0, 0)|dr

)2]
<∞.

(A2) There exist two non-random functions γ(·), ρ(·) : [0, T ] → R+ such
that, for 0¬ t¬ T and (y, y′) ∈ R2, (z, z′) ∈ (Rd)2, and u ∈ L2(E, E , λ,R),

|f(t, y, z, u)− f(t, y′, z′, u)| ¬ γ(t)|y − y′|+ ρ(t)|z − z′|.
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(A3) There exist−1<c¬0 and C>0, a deterministic function σ(·) : [0, T ]→
R+ and β : Ω × [0, T ] × E → R, P ⊗ E-measurable and satisfying c(1 ∧ |e|) ¬
βt(e) ¬ C(1∧ |e|) such that, for all y ∈ R, z ∈ Rd and u, u′∈

(
L2(E, E , λ,R)

)2,

(2.2) f(t, y, z, u)− f(t, y, z, u′) ¬ σ(t)
∫
E

(
u(e)− u′(e)

)
βt(e)λ(de).

(A4) The integrability condition holds:
∫ T

0

(
γ(s) + ρ2(s) + σ2(s)

)
ds <∞.

REMARK 2.1. Let us mention that (A3) implies that f is σ(t)-Lipschitz in u
since we have

|f(t, y, z, u)− f(t, y, z, u′)| ¬ c̃ σ(t)
∫
E

|u(e)− u′(e)|(1 ∧ |e|)λ(de)

¬ c̃ σ(t)
( ∫
E

|u(e)− u′(e)|2λ(de)
)1/2

:= c̃ σ(t)∥u− u′∥L2(E,E,λ,R),

where c̃ is a universal positive constant.

We have the following result which is a consequence of Lemma 2.2 in [21].

LEMMA 2.1. Let 0 < T ¬ ∞ and ξ ∈ L2(Ω,FT ,P). If (A) holds, then equa-
tion (2.1) with parameters (ξ, f, T ) has a unique solution (Yt, Zt, Ut)0¬t¬T .

The proof of our main result needs a comparison theorem for infinite time
horizon. Given two parameters (ξi, f i, T ), i = 1, 2, we consider the BSDEPs

(2.3) Y i
t = ξi +

T∫
t

f i(r,Θi
r)dr−

T∫
t

Zi
rdWr−

T∫
t

∫
E

U i
r(e)µ̃(dr, de), 0 ¬ t ¬ T,

where, for i = 1, 2, Θi
· stands for the triple (Y i

· , Z
i
· , U

i
· ).

Assume in addition that

(A5) ξ1 ¬ ξ2 and, for all (ω, t, y, z, u), f1(ω, t, y, z, u) ¬ f2(ω, t, y, z, u).

We have the following theorem, which can be regarded as a corollary to The-
orem 3.2 in Section 3.

THEOREM 2.1. Suppose that f1 and f2 satisfy (A1)–(A5) and 0 < T ¬ +∞.
If (Y i, Zi, U i), i = 1, 2, are solutions to (2.3), then we have

∀ 0 ¬ t ¬ T, Y 1
t ¬ Y 2

t P-a.s.

REMARK 2.2. Theorem 2.1 establishes a comparison theorem in the case of
Lipschitz coefficients for either T < ∞ or T = +∞. Basically it improves the
well-known result for the finite time horizon.

Let us now deal with our problem.
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2.2. Existence of a minimal solution. In this section, we will prove the exis-
tence of a minimal solution for BSDEPs when their generators are continuous and
have a linear growth (see Theorem 2.2 below). First let us give the following

DEFINITION 2.2. A solution (Yt, Zt, Ut)0¬t¬T of equation (2.1) is called
minimal if for any other solution (Ỹt, Z̃t, Ũt)0¬t¬T to (2.1) we have, for each
0 ¬ t ¬ T, Yt ¬ Ỹt.

Now we introduce the list of conditions weaker than those required in [2],
[14], [19], [21]. We assume that 0 < T ¬ +∞ and the generator f satisfies the
following assumptions (H1):

(H1.1) There exist three functions γ(·), ρ(·), σ(·) : [0, T ] → R+ satisfying
assumption (A4).

(H1.2) There exists an Ft-progressively measurable nonnegative process
(ft)0¬t¬T such that E

[( ∫ T

0
ftdt

)2]
<∞ and, for (t, y, z, u) ∈ [0, T ]×R×Rd×

L2(E, E , λ,R),

|f(ω, t, y, z, u)| ¬ ft(ω) + γ(t)|y|+ ρ(t)|z|+ σ(t)|u|.

(H1.3) f(ω, t, ·, ·, ·) : R×Rd × L2(E, E , λ,R)→ R is continuous.

As in [8], we are led to consider the sequence fn : Ω × [0, T ] × W → R
associated with f , which for (ω, t, y, z, u) ∈ Ω× [0, T ]×W is given by

fn(ω, t, y, z, u) = inf
(y′,z′,u′)∈W

[f(ω, t, y′, z′, u′)+n(|y− y′|+ |z− z′|+ |u−u′|)].

Using similar computations to those in the proof of Lemma 1 in [8], one can obtain
the following proposition. We omit its proof.

PROPOSITION 2.1. Assume that f satisfies (H1). Then the sequence of func-
tions fn is well defined for each n ­ 1 and satisfies the following conditions
dP× dt-a.s.:

(i) Linear growth: for all n ­ 1 and for all y, z, u,

|fn(ω, t, y, z, u)| ¬ ft(ω) + γ(t)|y|+ ρ(t)|z|+ σ(t)|u|.

(ii) Monotonicity in n: for all y, z, u, fn(ω, t, y, z, u) increases in n.
(iii) Convergence: If (yn, zn, un)→ (y, z, u) in R×Rd ×L2(E, E , λ,R) as

n→∞, then for each (ω, t) ∈ Ω× [0, T ] we have

(2.4) fn(ω, t, yn, zn, un)→ f(ω, t, y, z, u) as n→∞.

(iv) The Lipschitz condition: for all n ­ 1 and for all y, y′, z, z′, u, u′, we
have

|fn(ω, t, y, z, u)− fn(ω, t, y
′, z′, u′)|

¬ nγ(t)|y − y′|+ nρ(t)|z − z′|+ nσ(t)|u− u′|.
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Thus, by Lemma 2.1, the following BSDEP with parameters (ξ, fn, T ):
(2.5)

Y n
t = ξ +

T∫
t

fn (r,Θ
n
r ) dr −

T∫
t

Zn
r dWr −

T∫
t

∫
E

Un
r (e)µ̃(dr, de), 0 ¬ t ¬ T,

has a unique solution (Θn
t )0¬t¬T = (Y n

t , Zn
t , U

n
t )0¬t¬T .

The main result in this section is the following

THEOREM 2.2. Let ξ ∈ L2(Ω,FT ,P) and 0 < T ¬ ∞. Under the assump-
tion (H1), the BSDEP (2.1) has a minimal solution (Yt, Zt, Ut)0¬t¬T .

P r o o f. We follow the proof of Theorem 1 in [6]. Consider F : Ω× [0, T ]×
R×Rd × L2(E, E , λ,R)→ R given by

∀(ω, t, y, z, u), F (ω, t, y, z, u) = ft(ω) + γ(t)|y|+ ρ(t)|z|+ σ(t)|u|.

It follows from Lemma 2.1 that the BSDEP with parameters (ξ, F, T ) admits a
unique solution (Ỹt, Z̃t, Ũt)0¬t¬T . Applying Theorem 2.1 and Proposition 2.1, we
deduce that

∀(ω, t) ∈ Ω× [0, T ], Y 1
t (ω) ¬ Y n

t (ω) ¬ Y n+1
t (ω) ¬ Ỹt(ω).

Hence there exists an Ft-progressively measurable process (Yt)0¬t¬T such that
limn→+∞ Y n

t (ω) = Yt(ω). Putting G = supn sup0¬s¬T |Y n
s (ω)| and arguing as

in [6], Theorem 1, we have

E
(

sup
0¬s¬T

|Ys(ω)|2
)
¬ E(G2) <∞.

Itô’s formula applied to equation (2.5) yields, for 0 ¬ t ¬ T ,

E|Y n
t |2 +E

T∫
t

|Zn
r |2dr+E

T∫
t

∫
E

|Un
r (e)|2λ(de)dr ¬ E|ξ|2 + 2E

T∫
t

Y n
r fn(r,Θ

n
r )dr

¬ E|ξ|2 + 2E
T∫
t

|Y n
r |

(
fr + γ(r)|Y n

r |+ ρ(r)|Zn
r |+ σ(r)|Un

r |
)
dr.

Using the inequality 2ab ¬ a2ε + b2/ε for every a ­ 0, b ­ 0, and ε > 0, we
deduce that

E
T∫
0

|Zn
r |2dr +E

T∫
0

∫
E

|Un
r (e)|2λ(de)dr

¬ E|ξ|2 + (1 + δ + δ′)E(G2) +E
[( T∫

0

frdr
)2]

+ 2E(G2) ·
T∫
0

γ(r)dr

+
1

δ
E
[( T∫

0

ρ(r)|Zn
r |dr

)2]
+

1

δ′
E
[( T∫

0

∫
E

σ(r)|Un
r (e)|λ(de)dr

)2]
,
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where δ = 2
∫ T

0
ρ2(s)ds and δ′ = 2

∫ T

0
σ2(s)ds. Applying Hölder’s inequality in

the last two integrals, we obtain

E
[ T∫

0

|Zn
r |2dr +

T∫
0

∫
E

|Un
r (e)|2λ(de)dr

]
¬ 1

2
E
[ T∫

0

|Zn
r |2dr +

T∫
0

∫
E

|Un
r (e)|2λ(de)dr

]
+M,

where

M = E|ξ|2 + (1 + δ + δ′)E(G2) +E
[( T∫

0

frdr
)2]

+ 2E(G2) ·
T∫
0

γ(r)dr > 0

and depends only on the parameters f, ξ, and T . Consequently, we have

sup
n∈N

E
T∫
0

|Zn
r |2dr ¬ 2M and sup

n∈N
E

T∫
0

∫
E

|Un
r (e)|2λ(de)dr ¬ 2M.

Let us define, for δ ∈ {Y,Z, U} and integers n,m ­ 1, δn,m = δn− δm. Applying
again Itô’s formula, we deduce from (2.5) the relation

E|Y n,m
t |2 +E

T∫
t

|Zn,m
r |2dr +E

T∫
t

∫
E

|Un,m
r (e)|2λ(de)dr

¬ 2E
T∫
t

Y n,m
r

(
fn (r,Θ

n
r )− fm (r,Θm

r )
)
dr, 0 ¬ t ¬ T.

Using once again Hölder’s inequality and the assumption (H1) we obtain

E|Y n,m
0 |2 +E

T∫
0

|Zn,m
r |2dr +E

T∫
0

∫
E

|Un,m
r (e)|2λ(de)dr

¬ 4E
T∫
0

|Y n,m
r |frdr + 4

(
E(G2)

)1/2 · (E[( T∫
0

|Y n,m
r |γ(r)dr

)2])1/2

+ 2
√
8M

(
E

T∫
0

|Y n,m
r |2ρ2(r)dr

)1/2
+ 2
√
8M

(
E

T∫
0

|Y n,m
r |2σ2(r)dr

)1/2
.

In particular, Lebesgue’s dominated convergence theorem implies that {Zn} (re-
spectively,{Un}) is a Cauchy sequence in H2(Rd) (respectively, L2(µ̃,R)). Hence
there exists (Z,U) ∈ H2(Rd)× L2(µ̃,R) such that

∥Zn − Z∥2H2(Rd) → 0 and ∥Un − U∥2L2(R) → 0 as n→∞,
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which implies along a subsequence, if necessary,

Zn H2(Rd)−−−−−→ Z and Un L2(µ̃,R)−−−−−→ U as n→∞.

Further, by virtue of (2.4), we get fn(s, Y n
s , Zn

s , U
n
s )→f(s, Ys, Zs, Us) as n→∞,

0 ¬ s ¬ T , and arguing as in [6], Theorem 1, we obtain

lim
n→∞

E
( T∫

0

|fn(r,Θn
r )− f(r,Θr)|dr

)2
= 0 and lim

n→∞
E( sup

0¬t¬T
|Y n

t − Yt|2)= 0.

This is enough to deduce that Y ∈ S2(R). Letting n → +∞ in (2.5), we prove
that (Ys, Zs, Us)0¬s¬T is a solution to (2.1).

Let (Y ′, Z ′, U ′) ∈ B2(R) be a solution of equation (2.1). By Theorem 2.1, for
all n ­ 1, we have Y n ¬ Y ′. Letting n→∞, we get Y ¬ Y ′. This implies that
Y is the minimal solution to (2.1). �

3. COMPARISON THEOREM

We intend to prove a comparison theorem under mild conditions on the drift
of the BSDEP. This result is useful for the proof of the existence and uniqueness
of solution.

Let us introduce, for 0 < T ¬ +∞, the following assumptions (H2) on the
generator f :

(H2.1) f is weakly monotonic in y, i.e., there exist γ(·) : [0, T ]→ R+ satis-
fying

∫ T

0
γ(t)dt <∞ and a concave function ϱ ∈ S such that

∫
0+

(
ϱ(r)

)−1
dr =

+∞, and for any (y, y′) ∈ R2, z ∈ Rd, u ∈ L2(E, E , λ,R),

(3.1) (y − y′)
(
f(t, y, z, u)− f(t, y′, z, u)

)
¬ |y − y′|γ(t)ϱ(|y − y′|),

and we assume that ϱ(x)¬k(x+1), where k denotes a linear growth constant of ϱ.

(H2.2) f is uniformly continuous in z and there exist ρ(·) : [0, T ]→ R+ sat-
isfying

∫ T

0
ρ2(t)dt <∞ and ϕ ∈ S such that

|f(t, y, z, u)− f(t, y, z′, u)| ¬ ρ(t)ϕ(|z − z′|),

and we assume that ϕ(x) ¬ ax + b, a > 0, b ­ 0. Futhermore, we assume that∫ T

0
ρ(t)dt <∞ when b ̸= 0.

(H2.3) There exist−1 < c ¬ 0 and C>0, a deterministic function σ(·) : [0, T ]
→ R+ satisfying

∫ T

0
σ2(s)ds <∞, and β : Ω× [0, T ]×E → R, P ⊗ E-measur-

able satisfying c(1 ∧ |e|) ¬ βt ¬ C(1 ∧ |e|) such that, for all y ∈ R, z ∈ Rd and
u, u′ ∈

(
L2(E, E , λ,R)

)2,

(3.2) f(t, y, z, u)− f(t, y, z, u′) ¬ σ(t)
∫
E

(
u(e)− u′(e)

)
βt(e)λ(de).
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Given two parameters (ξ1, f1) and (ξ2, f2), we are interested in the following
two one-dimensional BSDEPs with 0 ¬ t ¬ T :

Y 1
t = ξ1+

T∫
t

f1
(
r,Θ1

r

)
dr −

T∫
t

Z1
rdWr −

T∫
t

∫
E

U1
r (e)µ̃(dr, de),(3.3)

Y 2
t = ξ2 +

T∫
t

f2
(
r,Θ2

r

)
dr −

T∫
t

Z2
rdWr −

T∫
t

∫
E

U2
r (e)µ̃(dr, de),(3.4)

and we assume in addition that
(H2.4) For all (t, y, z, u) we have f1(t, y, z, u) ¬ f2(t, y, z, u) and ξ1 ¬ ξ2.
We state the following result (see [6], Lemma 3), which will be useful in the

sequel.

LEMMA 3.1. Let Ψ(·) : R+ → R+ be a nondecreasing function with linear
growth, which means that there exists K > 0 such that, for all x ∈ R+, Ψ(x) ¬
K(x+ 1). Then for each n ­ 2K we have

Ψ(x) ¬ nx+Ψ

(
2K

n

)
, x ­ 0.

Before proving the main statement of this section, let us recall the Girsanov
theorem for discontinuous processes. IfM2 denotes the set of square-integrable
martingales, we can define, using the martingale representation (see [16], Lem-
ma 2.3), a mapping

Φ :M2 → H2(Rd)× L2(µ̃,R),

M 7→ (θ, υ) such that Mt =
t∫
0

θsdWs +
t∫
0

∫
E

υr(e)µ̃(de, dr).

Let M =
{
M = (Mt)t­0 ∈ M2

∣∣∥θs∥ ¬ C, υs(x) > −1, |υs(x)| ¬ C(1 ∧ |x|)
a.s. with Φ(M) = (θ, υ)

}
. For M ∈ M, the Doléans-Dade exponential of M is

defined by

E(M)T = exp

(
MT −

1

2
⟨M c⟩T

) ∏
0<s¬T

(1 + ∆Ms) exp(−∆Ms).

We have

THEOREM 3.1 (Girsanov’s theorem). Let (Z,U) ∈ H2(Rd)×L2(µ̃,R) and
Kt =

∫ t

0
ZsdWs +

∫ t

0

∫
E
U r(e)µ̃(de, dr). If M ∈M, then the process K̃ = K −

⟨K,M⟩ is a martingale under the probability measure P̃ such that dP̃/dP =
E(M)T .

Here is the main result of this section.
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THEOREM 3.2. Let 0 < T ¬ +∞. Assume we are given f1, f2 and (ξ1, ξ2) ∈(
L2(Ω,FT ,P)

)2 such that the conditions (H2) hold true. If (Y 1
t , Z

1
t , U

1
t )0¬t¬T

and (Y 2
t , Z

2
t , U

2
t )0¬t¬T are solutions of equations (3.3) and (3.4), respectively,

then, for all 0 ¬ t ¬ T, we have

Y 1
t ¬ Y 2

t P-a.s.

P r o o f. We assume d = 1. Putting

(3.5) Θ̂t = (Ŷt, Ẑt, Ût) = (Y 1
t − Y 2

t , Z
1
t − Z2

t , U
1
t − U2

t ), ξ̂ = ξ1 − ξ2,

we can see that (Θ̂t)0¬t¬T satisfies the following BSDEP for 0 ¬ t ¬ T :

(3.6) Ŷt = ξ̂ +
T∫
t

[f1(r,Θ1
r)− f2(r,Θ2

r)]dr −
T∫
t

ẐrdWr −
T∫
t

∫
E

Ûr(e)µ̃(dr, de).

Tanaka–Meyer’s formula yields

Ŷ +
t ¬ ξ̂+ +

T∫
t

1{Ŷr>0}[f
1(r,Θ1

r)− f2(r,Θ2
r)]dr −

T∫
t

1{Ŷr>0}ẐrdWr(3.7)

−
T∫
t

∫
E

1{Ŷr>0}Ûr(e)µ̃(de, dr), 0 ¬ t ¬ T, x+ = max(x, 0).

Further we have

f1(r,Θ1
r)− f2(r,Θ2

r) = [f1(r,Θ1
r)− f1(r,Θ2

r)] + [f1(r,Θ2
r)− f2(r,Θ2

r)]

and the assumption (H2.4) implies that the right-hand side is less than

[f1(r,Θ1
r)− f1(r, Y 2

r , Z
1
r , U

1
r )] + [f1(r, Y 2

r , Z
1
r , U

1
r )− f1(r, Y 2

r , Z
2
r , U

1
r )]

+ [f1(r, Y 2
r , Z

2
r , U

1
r )− f1(r,Θ2

r)].

Hence applying (H2.1) and (H2.3) we deduce that

1{Ŷr>0}[f
1(r,Θ1

r)− f2(r,Θ2
r)] ¬ γ(r)ϱ(Ŷ +

r ) + 1{Ŷr>0}ρ(r)ϕ(|Ẑr|)

+
∫
E

1{Ŷr>0}Ûr(e)σ(r)βr(e)λ(de).

By Lemma 3.1 with Ψ(·) = ϕ(·) and K = c = a+ b, we have

1{Ŷr>0}ρ(r)ϕ(|Ẑr|) ¬ 1{Ŷr>0}nρ(r)|Ẑr|+ 1{Ŷr>0}ρ(r)ϕ

(
2c

n

)
, n ­ 2c.
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Putting pieces together, we infer from (3.7) that

(3.8) Ŷ +
t ¬ an +

T∫
t

γ(r)ϱ(Ŷ +
r )dr + K̃t,

where

K̃t =
T∫
t

[
1{Ŷr>0}Ẑr

(
nρ(r)Ẑr

|Ẑr|
1{Ẑr ̸=0}

)
+
∫
E

1{Ŷr>0}Ûr(e)σ(r)βr(e)λ(de)

]
dr

−
T∫
t

1{Ŷr>0}ẐrdWr −
T∫
t

∫
E

1{Ŷr>0}Ûr(e)µ̃(de, dr)

and

an = 1b̸=0ϕ

(
2c

n

)
·
T∫
0

ρ(r)dr → 0 as n→∞,

b being given in (H2.2). Define

Mt =
t∫
0

(
nρ(r)Ẑr

|Ẑr|
1{Ẑr ̸=0}

)
dWr +

t∫
0

∫
E

σ(r)βr(e)µ̃(de, dr), 0 ¬ t ¬ T,

Kt =
t∫
0

1{Ŷr>0}ẐrdWr +
t∫
0

∫
E

1{Ŷr>0}Ûr(e)µ̃(de, dr), 0 ¬ t ¬ T.

By Theorem 3.1, it follows that K̃t is a martingale under the probability measure
P̃ = E(M)T ·P. Hence, taking Ẽ (·|Ft), the conditional expectation given Ft un-
der the probability measure P̃, and taking into account that ϱ is concave, we deduce
that

Ẽ(Ŷ +
s |Ft) ¬ an +

T∫
s

γ(r)ϱ(Ẽ[Ŷ +
r |Ft])dr, t ¬ s ¬ T.

Thus Lemma 5 in [6] implies that Ŷ +
t = 0, which is true if and only if Y 1

t ¬ Y 2
t . �

The following corollary is immediate.

COROLLARY 3.1. Let 0 < T ¬ +∞. If ξ ∈ L2(Ω,FT ,P) and f satisfies
(H2), then the BSDEP (2.1) with parameters (ξ, f, T ) has at most one solution.

4. EXISTENCE AND UNIQUENESS OF SOLUTION

Using the results established in the previous section, we can now investigate
the solvability of our equation under weaker conditions on the generator.
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Assume that f : Ω × [0, T ] ×R ×Rd × L2(E, E , λ,R) → R is uniformly
continuous with respect to its variables and satisfies (H3):

|f(t, y, z, u)− f(t, y′, z′, u)| ¬ γ(t)ϱ(|y − y′|) + ρ(t)ϕ(|z − z′|),

f(t, y, z, u)− f(t, y, z, u′) ¬ σ(t)
∫
E

(
u(e)− u′(e)

)
βt(e)λ(de),

where γ, ρ, σ, ϕ, and β are as in (H2).
We claim

THEOREM 4.1. Let 0 < T ¬ +∞ and ξ ∈ L2(Ω,FT ,P). If f satisfies (H3)
and (A1), then equation (2.1) admits a unique solution.

P r o o f. The uniqueness follows from Corollary 3.1 since (H3) implies (H2).
Moreover, from (H3) one can infer that

|f(ω, t, y, z, u)| ¬ γ(t)ϱ(|y|) + ρ(t)ϕ(|z|) + c̃ σ(t)
( ∫
E

|u(e)|2λ(de)
)1/2

+ |f(ω, t, 0, 0, 0)|

¬ ft + kγ(t)|y|+ aρ(t)|z|+ c̃ σ(t)|u|,

where ft = kγ(t) + bρ(t) + |f(ω, t, 0, 0, 0)|. Hence Theorem 2.2 ensures the ex-
istence of a minimal solution. This completes the proof. �
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