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Abstract. We consider the extended Skorokhod problem for R™-
valued cadlag functions with the constraining set that changes in time and
the reflection field naturally defined by the standard orthonormal basis. We
find an explicit formula for the solution of such an extended Skorokhod
problem in the case where the evolving constraining set is a region sand-
wiched between two graphs. We obtain the best Lipschitz constant for the
extended Skorokhod map of this type.
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1. INTRODUCTION

To define the Skorokhod problem (SP) or the extended Skorokhod problem
(ESP) in R™ one needs three things: an R™-valued cadlag function ¢ of a nonneg-
ative variable ¢, a closed subset G of R", and a set-valued function d assigning
to each point x on the boundary of G a non-empty closed convex cone in R”
with the vertex at the origin and a closed graph {(x,d(x)) : x € 9G}. We will
use D[0, 00) to denote real-valued right continuous functions with left limits de-
fined on [0, 00), traditionally called cadlag functions. D ([0, c0), R™) will denote
cadlag functions taking values in R” and D¢g ([0, 00), R”) will denote a subspace
of D ([0, 00),R™) consisting of functions 1 such that 1)(0) € G. The convergence
in D([O, ), ]R”) will mean the uniform convergence on compact sets. The sub-
spaces of D([O, oo),R”) and Dg([O, oo),]R”) consisting of piecewise constant
functions with a finite number of jumps will be denoted by S([0,c0),R") and
Se([0,00), R™), respectively. We will use €o(A) to denote the closed convex hull
of a set A and |n|(¢) will denote the total variation of 7 on [0, ¢].
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A pair of functions (¢,1) € D¢ ([0,00),R™) x D([0,00),R™) is a solution
of the ESP for v with respect to (G, d(-)) if ¢ = ¢ + n and for every t > 0 the
following conditions are satisfied:

(1.1) o(t) € G,
(1.2) n(t) —n(s) € co| L(J }d(gb(u))] for every s € [0, 1],
(1.3) n(t) = n(t—) € co[d(4(t))].

The function ¢ in the solution of the ESP is called the extended Skorokhod map for
¢ and the mapping I'¢; : D ([0, 00),R") — D([0, 00),R") defined by I'z(¥)) = ¢
is called the extended Skorokhod map or, shortly, the ESM.

The pair (¢, 7) is said to be a solution of the SP for ¢ with respect to (G, d(-))
if instead of (1.2) and (1.3) the following stronger conditions are satisfied:

(1.4) In|(t) < oo,

(1.5) n](t) f% yeacdln|(s),
t

(1.6) = [~(s)d|n|(s
0

for some function ~y such that v(t) € d*(¢(t)) d|n|-almost everywhere.

If the ESM I';(¢)) = ¢ provides the solution of the SP, then it is called the
Skorokhod map or, shortly, the SM.

Intuitively speaking, given an unrestricted process 1, 17 provides the minimum
force necessary to keep the path of its constrained version ¢ within the constraining
region G. Whenever the change ¢ (¢t + At) — v (t) would place ¢(t) + (¢ + At) —
¥(t) outside of G, the vector n(t + At) — n(t) would push it back into G along
the direction prescribed by d(¢(t + At)).

The SM and the ESM are important tools in studying stochastic equations with
reflections as well as in some queueing and network models. Historically, the SP
appeared first in [19] in the real-valued case and was further studied in [6], [12],
[15], [18]. In [8] and [9] an extensive study of the SP on convex polyhedra was
presented. The ESP was introduced in [16]. Over the last two decades numerous
efforts have been made to obtain some form of explicit solution to the SP. Some of
them can be found in [4], [S], [11], [14], and [24]. Recent developments in the area
of the SP include the explicit formula for the real-valued SM obtained in [13] in
the case of a closed interval as a constraining domain. These results were extended
in [3] to ESP on the interval whose endpoints change in time. Similar results were
obtained by the author in [20] and [21]. In Theorem 2.11 of [21] we have shown
that, for any o € D[0, ), 8 € D[0, 00) such that o < f3, the solution of ESP for
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any ¢ € D[0,00) on [« 3] is a pair (¢ — Z, —E), where

1.7)
Ea,ﬁ(d})(t) = I{Tﬁgra}l[rﬁ,oo) (t)Ha,ﬂ(¢)(t) + I{TQ<Tﬁ}I[’Ta,OO) (t)LOéﬁ(¢)(t)'

In the above formula,

(1.8) 7o =inf{t > 0] a(t) —(t) >0}, 77 =inf{t>0|¥(t) - B(t) > 0},

(1.9 Hap(y)(t) = sup [(¥(s) = B(s)) A inf (d(r) —a(r))],

0<s<t sSr<t
and
(1.10)
Lap(@)(t)=—H_po(-¥)(t)= inf [(¥(s) —a(s)) v sup ((r) = B(r))]-

We will be needing the following well-known properties of solutions of the ESP in
the real-valued case.

REMARK 1.1. Let ¢ € D[0,00), o € D[0,00), and € D[0,00) be such
that o < B. If (¢, n) is a solution of the ESP for 1 on [a, §] and s € [0, t], then the
following conditions hold:

(L.11) ifn(t) > n(s) then there is v € (s,t] such that ¢(r) = a(r);
(1.12) ifn(t) < n(s) then there is v € (s,t| such that ¢(r) = B(r).

Proof. The statements follow immediately from properties (1) and (2) of
Definition 2.2 of [3] or properties (i) and (ii) of Definition 1.1 of [21]. =

REMARK 1.2. Let ¢ € D[0,0), o € D[0,00), and € D[0,00) be such
that o < B. If (¢, m) is a solution of the ESP for 1) on |, 5] and r € [0, 00), then
the following conditions hold:

(1.13)  ifn(t) > n(t—) then ¢(t) = a(?);
(L14) ifn(t) <n(t—) then ¢(t) = B(t).

Proof. These statements follow immediately from properties (1) and (3) of
Definition 2.2 of [3] or properties (i) and (iii) of Definition 1.1 of [21]. =

2. EXTENDED SKOROKHOD PROBLEMS WITH EVOLVING CONSTRAINTS

In this paper we are interested in the constraining domains in R™ that change
with time, and so we shall need to introduce the convergence for sets. This will be
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defined in the sense of the Hausdorff metric. For any two sets G1, Go C R" their
Hausdorff distance is defined by

di (G1,Gsa) = ( sup d(m,Gg)) vV ( sup d(m,Gl)),
zeGy z€G2

where d (z,G) = infyeq ||x — y|| and where || - || is the Euclidean norm on R”.
It is well known that the set of all non-empty compact subsets of R™ forms a
complete metric space with dz. It will be discussed in the proof of Proposition 4.2.

DEFINITION 2.1. A closed set G in R™ will be called a stratum if it admits
the representation

2.1) G ={x:2"€[d",V],i <n,z" e [A(',...,2" "), B',..., 2" 1]},

where ' < b’ for i = 1,2,...,n — 1 and A, B are two real-valued continuous
functions on [a!,b!] x ... x [a"1,b"7!] such that A(x) < B(x) for every .
Given such a representation we will shortly write

(2.2) G = S([a",b'] x ... x [a" 1, 0" 7Y, [A, B]).

It is necessary that we extend the domains of functions A and B to R™ 1. These
extensions, denoted by A and B, will be defined by

zzl(xl,:DQ, . ,:Un_l) = A(ﬂ'al’ﬁl (:Ul),ﬁazﬁz(xz), ey Tgn—1 gn—1 (xn_l)),

B( 1, 1’2, o ’;(;n_l> - B(Tralvﬁl (x1)7 Ta2,82 (.%2)7 ooy Tgn—1 gn—1 (m,n—l))'

Because of the special nature of the last coordinate it will sometimes be convenient
to use n = d + 1. For the sake of brevity we shall also use D = [a!,b] x ... x
[a?, b%]. In the special case when A and B are constant functions, G’ will be called
a block. In other words, a block is a cross product of n intervals.

The projections 7, : R — [a, b] were used in [13] and [20] to construct the
SM in R. They were defined by

a ifx<a,
(2.3) Tap =2 ifa<z<),
b ifxz>0b.

In the vector-valued case we will need similar projections onto blocks and strata.
Given a block D = [a',b!] x ... x [a", b"] we define 7p : R® — D by

(2.4) ™D (JJ) = (7Ta17b1 (371), 7Ta27b2 (CUZ), < ooy TTgn pn (mn)) .

Finally, the projection on a stratum G = S([a!,b!] x ... x [a"~ 1, 6" 1] [4, B))
will be defined by
(2.5)

T6(x) = (T (zh), ..., Tgn—1 pn—1(T
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which we will shortly write as

(2.6) 7a(x) = (T (%), TA(rp (@), Brp @) (T"))-

We shall use G to denote the space of all strata in R™. For any K > 0 we
shall use G to denote the space of all strata in R™ such that A and B satisfy the
Lipschitz condition with constant K.

DEFINITION 2.2. A family {G; : t > 0} of closed subsets of R" will be called
cadlag if the function t — G is cadlag with respect to the Hausdorff metric d ;.

To represent a cadlag family of strata we shall use the following notation:
(2.7) Gy = S([af, Bt % ... x [, B 1, [A, BY)),
where of < ¢ fori =1,2,...,dand 4; < B;.

DEFINITION 2.3. A family of pairs {(Gy,dy()) : t > 0} will be called an
orthogonal evolving stratum constraining system if G is a stratum for every ¢ > 0,
{Gy : t > 0} is cadlag, and

28) di(z)={ Y r'e;— Y r'e;:r; > 0forie [F(z)UI (z)},

icl icl;
where
If(z)={i:1<i<nandz'=aqf, ori =nandz" = A(z', 2% ...,2" )},
I7 () ={i:1<i<nandz' =B}, ori =nandz" = B(z', 2% ...,2" ")}

In the special case when (5, is a block for every t, the orthogonal evolving stra-
tum constraining system will be called an orthogonal evolving block constraining
system.

Note that in the orthogonal evolving stratum constraining system, it is the
stratum that varies in time. The constraining field d, on the other hand, remains
steady. For any ¢, if = is a point on the boundary of G that lies on a partic-
ular side of Gy, then d(z) contains the one-dimensional cone generated by one
vector from the standard orthonormal basis in R™ that corresponds to that side.
For instance, if 2% = BF for some 1 < k < n — 1, then d(x) D —Rtey; if 2" =
Bi(zt, 22, ..., 2" 1), thend(z) D —RTe,. Thus, itis the constraining field d that
is orthogonal.

DEFINITION 2.4. Given an orthogonal evolving stratum constraining system
{(Gt,dy(-)) : t > 0} and a cadlag function ¢ € D, ([0, 00), R™), the pair (¢, 1) €
De, ([0,00),R™) x Doy ([0, 00),R™) is the solution of the evolving ESP for v
with respect to (Gt, dt(')) if the following conditions hold for every ¢ > 0:
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(@) o(t) = »(t) +n(t);
(i) ¢(t) € Gy
(t) -
(

(iii) n(t) —n(s) € co[Uue(s 1 (¢(u))] for every s € [0,];
(V) n(t) = n(t=) € d(6(1)).

THEOREM 2.1. Let {(Gt, dt(-)) it > 0} be an orthogonal evolving stratum
constraining system with Gy = S([ag, B] % ... x [ ™Y, 8071, [Ay, By]). Then,
the evolving ESP for any v € D¢, ([O, oo),R”) on (Gt, d()) has a unique so-
lution (¢,n) given by n = (—anﬂ(zﬁl), —Eq2,82 (1/12), e —Ean’ﬁn(wn)) and
¢ = +n, where

(29) Oé? = At (wl(t) - E’atl,ﬂgﬂqvbg(t) - Ea?,ﬁ?? cee 711)”_1(1:) - Ea?*175f*1)7

(2.10) B = Be(¢'(t) — Zqr 51,07 () = Zaz g2, 0" H(E) — B, ne1 gn-1),
and, for everyi =1,2,...,n,

2.11) Bargt (W)(0) = Lo ot ooy Har gt (41 ()
+ I{Tai <Tﬁi}I[Tai ,00) Lai,,ﬁi (W) (t)

Proof. Foranyfixedi€{1,2,...,n—1} consider the ESP for ¢ on [a, 57].
By (1.7), it has a unique solution ()" — Zi gi ("), —E,s i (¥")), where

(2.12) ot (W) (1) = I i 3Tt o) (0 Hos g (0)(1)
+ I{Tai <73i}I[Tai ,00) (t)Laiﬂi (djz) (t)

Let o™ and 8" be defined as in (2.9) and (2.10), respectively. They are well defined
because, foreach: =1,2,...,n — 1 and every t > 0,

U (t) = Eai i (1) (2) € [, ).

Then, o™ € DI0,00), 8™ € D|0,00), and o™ < ™. Now consider the ESP for "
n [, 5"]. By (1.7), it has a unique solution (Y™ — Zqn gn (™), —Eqn gn (™))
Let n = (—E,1 51 (¥1), ..., —Egn-1 o1 (W), —Egn gn (¥")) and ¢ =
1 + n. We will show that (¢,n) is a solution of the evolving ESP for ¢ with
respect to {(Gy,d¢(+)) : t > 0}. We only need to show properties (ii)—(iv) of Def-
inition 2.4, as the property (i) holds by the definition of ¢. Let t € [0,00). To
show property (ii) consider the i-th coordinate of ¢. Note that ¢'(t) = 1*(t) —
Egi i (%) (t) € [al, B!] for every 1 < i < n because ¢’ is the ESM for 1" on
o, '] n particular, " (£) € [A,(61 (1), ..., 6" (1)), By (61(2), ..., 6" (1))},
and so ¢(t) € G;.
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In order to show property (iii) let s € [0,¢] and consider n(t) — n(s). Let
Jh={1<i<n:n(t) —n'(s) >0} Jo, = {1 <i<n:n'(t) —n'(s) <0}
For every i € J;t, by (1.11), ¢*(u;) = o*(u;) for some u; € (s,t], and therefore
(n'(t) = n'(s)) e € {re; : v > 0} C dy, (¢(u;)). Similarly, by (1.12), ¢'(u;) =
B (u;) for some u; € (s,t], s0 (7'(t) — n'(s)) &; € {—re; : v > 0} C dy, (d(w))
for every i € J;t. Thus we have 7(t) — n(s) = ZiEJ;'t (n'(t) —n'(s)) e;
+ ZzeJ* (n'(t) —n'(s)) e € ﬁ[UuG(st ( u))].

To prove property (iv) let J;F = {1 < n'(t) — n(t—) > 0} and let
Jo={1<i<n:n(t)—n't )<O}By(113)¢1(t) ai(t) fori € J; and,
by (1.14), ¢'(t) = Bi(t) fori € J, Hence Jj = I," (¢(t)) and J; = I (¢( ).
Thus 7(t) —n(t—) = > e+ (ni(t) (=) e + ZzeJ (n'(t) —n'(t)) e: €

{Zieljw(t)) r'e; — Zie[;(¢(t)) r'e; Ty > 0} = dt( )

Clearly, both o™ and 8" in (2.9) and (2.10) are not only functions of ¢ but
also depend on 7. However, it is important to understand that they only depend on
P2, ... "1 and not on ™.

EXAMPLE 2.1. Consider the ESP for a function ¢) € S ([0, 00), R") with an
orthogonal evolving stratum constraining system (Gt, dt(‘)) such that

P(t) =¢(ty) and Gy = Gy, foreveryt € [tg,tiy1),k=0,1,...,m,

where 0 = tg < t; <t3 < ... <ty <ooandt,,+; = co. Then, the correspond-
ing ESM is the function ¢ such that for t € [tg,tx+1),k=0,1,...

, M,

(2.13) o(t) = ¢(tx) = 76y, (D(th—1) + U(tr) — P(te-1))-

It is well known that the ESM of a simple function satisfies equation (2.13) in
the case of a traditional fixed restraining set. It was used in [7], [9], and [17] for
instance. In the case of an evolving constraining system it can be shown directly
that ¢ defined by (2.13) satisfies the conditions of Definition 2.4. Alternatively, it
can be shown that the ESM described by Theorem 2.1 satisfies (2.13).

3. LIPSCHITZ PROPERTIES OF THE ESM
WITH AN ORTHOGONAL EVOLVING BLOCK CONSTRAINING SYSTEM

The more regular the ESM is the more useful it is in applications. The most
important regularity feature of the ESM is the Lipschitz property. Some interesting
geometric conditions were shown to be sufficient for Lipschitz continuity in [7]
and [8]. Here we obtain the best Lipschitz constant for the ESM with an orthogonal
evolving block constraining system.
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PROPOSITION 3.1. Let {(G¢,di(+)) : t > 0} be an orthogonal evolving block
constraining system with Gy = S([a}, Bi] x ... x [af, BP]) and let 11, 1)o be two
functions from D ([0, 00), R™). Then

(3.1) | (Ta (1) = Ta(w2)) — (Y1 — ¥a)|| < vnllvr — ¥ol,
where ||{b|| = sup;>, [ (2) |-

Proof. We will first establish (3.1) in the one-dimensional case. Let (¢, 7)
be the solution of the ESP for ¢ on the interval [« 3]. We will show that

(3.2) [(é1 = d2) — (1 — P2) |l < llvhr — ¢2ll.

In the case when 1,12, , § € S([0,00),R) this is equation (4.40) from
[20] and it is proven there by induction. In the general case, as in the proof of
Remark 4.5 or Proposition 4.6 in [20], we can find sequences ¢, ¥5,a", " €
S ([0, 00), R) converging uniformly on compact sets to 1, ¥9, o, and 3, respec-
tively. Since (3.2) holds for 97, ¥3, a™, 5", taking limits and using (4.4) and Re-
mark 4.3 in [20], we conclude (3.2) in the general case when 11, 19, v, B are from
D([O7 00), ]R). Inequality (3.2) can also be concluded from (1.3) in [22].

For each j = 1,2, let ¢; = ( Jl-, ]2,...,¢;7) € D([0,00),R"™). By Theo-
rem 2.1, g (v;) = ¢; = ( ]1-, ?, .+, @), where qb;- is the ESM for w;- on the
interval [, 3i]. Therefore, by (3.2), foreachi = 1,2,...,n,

(3.3) (8% — %) — (Wi — ¥d)|| < ||k — ¥i]l.

Applying (3.3) to all components, we get

[(61(t) = (1)) — (wa(t) — w2 (1)) ||”
=3 |(640) — 65(0) — (vi(6) — v (0)

=1

n
<Y [lwh — wh]1? < mflr — el
=1

which implies (3.1). =

The following example will show that the Lipschitz constant in Proposi-
tion 3.1 is tight.
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EXAMPLE 3.1. Let G = [0,2] x [0,2] x ... x [0,2], let 91 = —e1ljg ;) —
el 2) — ... —enlp_1) + enl]y o), and 12 = 0. Then ¢2 = 0 and, by (2.13),
$1(0) = 7o) (11(0)) = 0,
$1(1) = 71y (61(0) + 91(1) — ¥1(0)) = 75 (e1 — e2) = ey,
$1(2) = 7 (1(1) + ¥1(2) — ¢1(1)) = 7@ (€1 + €2 — e3) = 1 + ey,

piin—1)=ng(et+ex+...+e,1—e,) =€ +er+...+e,_1,
d1(n)=mg(er+exr+...+e,-1+2e,) =e;+ex+...+e,_1+ 2e,.

Note that

[(1(1) = ¢2(n)) — (¥1(n) = ¥a(n))|| = ller + ez + ... + el = Vn,
while |91 (t) — ¥a(t)|| = 1 for every ¢ > 0. Thus

[(d1 — d2) — (V1 — ¥a2)|| = V/n|r — e,

and so the Lipschitz constant in Proposition 3.1 is tight.

THEOREM 3.1. Let {(G¢,di(+)) : t = 0} be an orthogonal evolving block
constraining system with Gy = S([a}, 8] x ... x [af™L, 8274, [, BP]). Then
the ESM for the evolving ESP of Theorem 2.1 is Lipschitz continuous with constant

1+ /n,ie
(3.4) T (1) = Ta(wo)ll < (L4 vn) ll¥1 = ¢l
Proof. By Proposition 3.1,
ICa(¥1) = Ca@2)|l < ||(Ta(yr) — Tala)) — (1 — )| + llr — ol
< Vnlvr — ol + (|1 — ol < (Vn+ 1) |[v1 — ¥,
which completes the proof. m

The Lipschitz constant in Theorem 3.1 is tight as the following modification
of Example 3.1 will clearly establish.

EXAMPLE 3.2. We will use Example 3.1 with an added extra jump. Let
G= [0, 2] X [0,2] X ... X [0,2], P = —61[[071) - 621[172) — .= en[[n—l,n) +
enljpny1) +(1/v/n) (e1 +e2+ ...+ en) [41,00) and 12 = 0. Then
p1(n+1) = ngmi1) (¢1(n) + Y1(n+1) — 1 (n))
= TFG(n+1)((91 +ert...+e,1+2e,)+(1/vn)(er+es+...+e,) — en)
=7ma((1+1/Vn)(e1+er+...+e,)) =(1+1/Vn)(e1+er+...+e,).
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As in Example 3.1,

1 — el = 1, however

[¢1 — @2l = [¢1(n+1) — ga(n+1)|| = (1 +1/v/n) le1 + e2+ ... + &
=(1+1/vn)Vn=yn+1.

Thus the Lipschitz constant v/n + 1 in Theorem 3.1 is tight.

4. LIPSCHITZ PROPERTIES OF THE ESM
WITH AN ORTHOGONAL EVOLVING STRATUM CONSTRAINING SYSTEM

Our final goal is to find the best Lipschitz constant for the extended Skorokhod
map with an orthogonal evolving stratum constraining system. Consider such a
system {(Gy,dy(+)) : t > 0} as defined in Definition 2.3. For each t > 0, let C{!
and CtB be the best Lipschitz constants for A; and B;, where A and B are as
in (2.7). We define the best Lipschitz constant for GG as follows:

(4.1) Kg = sup{C{* v CP}.
t=0

As it turns out the best Lipschitz constant for ' depends on K. However, before
we derive the best Lipschitz constant, it will be useful to establish any Lipschitz
condition. We can obtain one by applying the real-valued results coordinatewise.

LEMMA 4.1. Let {(G¢,dy(-)) : t > 0} be an orthogonal evolving stratum
constraining system with Gy = S([af, B}] x ... x [off, Bf] x [As, By]) € R
Then the ESM for the evolving ESP of Theorem 2.1 is Lipschitz continuous with
constant (4 + 3Kgvd+ 1)7 ie.

(4.2) ITa(1) —Ta(e)| < (4+ 3KeVd+ 1) - [[¢1 — 2.
Proof. By Theorem 3.6 of [21], forevery: =1,2,...,d,
ITG (1) = T (W2)ll = ITay8, (1) = Tays, (W3l < 2l — 2]
By Theorem 2.1 and by Theorem 3.5 of [21],

ITE (4p1) = TE ()
= Hrad+1(¢1)ﬁd+l(¢1)(w(li+1) — Fad+1(w2)7ﬁd+l(¢2)(wg+l)H
<Aflor =l +3[lla® (1) — ™ (W2) | VBT (1) = BT ()],
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where

o™t (1) — @™ ()|
= sup HAt %Z)i )_Eatl”é’tl?w%(t)_Ea?,ﬁfﬂ"'ﬂwl() at,ﬁt)

ot<T
_At(w%(t) _Eatl,ﬁt17¢%(t)_5a2 BEs - 7¢ ( ) at,ﬁt)H
< K- suwp |60 () —Eatl,g,;(w%)( )+ Zar r ((0)

0<t<T
DP(t) — Y3 (t) — a2z g2 (V)(1) + Eg2 g2 (¥3) (1),
() — g (t) — B 5d(¢1)() Ead, 3 (¥9)( )|l
Ka(llvr — 2] + ||Zar,s1 (V1) = Ear g1 ($3), Eaz 52 (V7)) — Ea2 g2 (43),
2B g () — Eqa ga(¥9)]])
< Ka(|[vr — ol + V| — ¢all) = Ka(1 + Vd)|[vr — vo,

where the last inequality follows from inequality (3.2) applied coordinatewise.
Similarly we can show that

1BH (1) — 85 ()| < Ka(1+Va) oy — .

Therefore

ITc (1) — Da(wha)|| < 4llvr — e + 3K (1 + Vd) |1 — 2|
= (4 +3KaVd)|[¢r — . =

It is well known that every function in D ([0, 7], R™) can be uniformly ap-
proximated by functions taking a finite number of values. In fact, it is true in more
general spaces.

REMARK 4.1. If (X,d) is a metric space, then S ([0,T],X) is dense in
D ([0,T], X).

Proof. In the case when (X, d) is a complete separable metric space the
above result can be surmised from Lemma 1 in Section 12 of [2] and from the re-
marks following its proof. Let (X, d) be any metric space and let ¢ € D ([0, T, X).
For any € > 0 there is a finite partition 0 =ty < t; < ... < t, < tp41 = T such
that d(v (t), v (tx)) < efor t <t < tp4q and 0 < k < n. It is enough to define
tp =inf {t > ty—1 : d(¥ (t), 4 (tg—1)) > €}. Using this partition we can define

n—1
t) = Z 1/} (tk) I[tk,tk+1) + w (tn) I[tn,T]7
k=0

where supg ;<7 d(¢ (), e (t)) < eand ¢c(t) € S([0,T], X). =
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Consider the space G equipped with the Hausdorff metric dy;. It can be shown
that (G, dp) is a complete separable space. We define first a more suitable metric

ong.

DEFINITION 4.1. Let G1 and G2 be two strata in G with representations G; =
S(la}, b} x ... x [a? 1,071, [Ay, By]) for i = 1,2. We define

(43) dar (G1,Go) = max [lay — ag| V b} = B[]V [[[ A1 = Asf| V [| By = Bo]

It is easy to verify that dj; is a metric on G.

PROPOSITION 4.1. The metrics dyr and dp are equivalent on G. In fact, for
any G1,G4 € G,

4.4) dy (Gl,Gg) < Vd+1'dM(G1,G2),
4.5) dy (Gl,Gz) < (K—l— vV K2+ 1) 'dH(Gl,GQ),

where K = max {Kq,, Ka, }-

Proof. We begin with a simple observation: given any two intervals [a1, b1 ]
and [ag, by]

(4.6) \x — Tay,bo (LU)| < ‘CLQ — a1| V |b2 — b1| for every x € [al, bl].

Let D; = [a1 bl] X [a2 b2] X ... X [ad b‘-l] fori = 1, 2. Using (2.4) and applying

i Y1 R 1971
(4.6) coordinatewise we get a multidimensional version of this inequality:

d
@7) |z —7p,(@)|> < 3 (laf — ab] v o — b5])?  forevery z € D;.
k=1

We consider (4.4) first. If G1 # Go then dy (G1,G2) = d (21, G3) for some x1 €
0G1\ G2 or dy (G1,G2) = d(x2,G1) for some zo € 0G2\ G1. We can assume

without loss of generality that it is the former case. Then 29T = A(z}, 23, ..., z9)
or 24t = B(al,2?,...,29), or ¥ = a¥, or 2% = bk for some k = 1,2,....d.

Let Dy = [a},bd] x [a3,b3] x ... x [a4,b4] and let 7¢, be as defined in (2.5)
or (2.6). Then we can write

TGy (xl) = (ﬂ-DQ (x1)7 T As(mpy (21)),B2(mpy (1)) (wil—’—l))
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Now, by (4.6) and (4.7),

(d(21,G2))? < |1 — 7, (21)])?
(

= H (mi‘r%? . 7‘7"%) - 71-[)2(‘,171)7'Cvclli-i_l - 7TA2(7rD2(:1:1)) Ba(mpy (21) d+1 )H
= H(x%, x%, s 7xcll) - TrDz(xl)HQ + HliclH_l - 7TA2(TFD2($1)) B2(7"D2(zl))( d+1)H2
d
< Y (laf — a5] v b} — b5])?
k=1
2
+ (|4l o) = As(mp, (@) |V [Bual, . af) = Ba(mpa(21))])
< _ ko ok
d- fg?gﬂ% al| v |bf — b5])?

+ (JA (2, 2 — As(ad, . 2| V| Bi(al, ... ad) = Bo(al, ..., 2D))”
< (d+1)(du(G1, Go)) .

This completes the proof of (4.4).
We now move on to (4.5). Let 1 < k < d and suppose that a¥ < a5. Let a; =

(al,...,a). Since af < z* for every x € G2, we have
k k) _ k k : k k :
lay — aj| = a3 — af < xleIgQ |z" — af| < xlen(i |z — (a1, A1(ar))|

< dH((al,Al(al)),GQ) < sup d(a; Gg) H(Gl,GQ).

z€Gy

If a¥ > a% we proceed analogously. We can show that |b5 — b¥| < dpy (G1,G2) in
the same way. Thus we have max;<j<q[laf — ak| v |b¥ — b5|] < dy (G1, Ga).
Next we will show that

||/_11 —AQH < (K+ VEK?2+1 ) dH Gl,Gz)

Note first that
A — Ayl = inf |Ai(z) — As(x)].
141 = Aofl = _inf [A1(2) — Aa(2)]
Thus we need to show that for every (m[l), x%, .. ,:cg) € D1 U Dy we have
4.8)
‘Al(x(lbxgv s ,1’3) - A2(‘T(1)7$(2)7 e (K + v K? =+ ) dH Gl, G?)
Since (4.8) holds trivially when As(zd, 22, ..., 2d) = Ay (zd,22,...,28), by a

standard symmetry argument, it suffices to prove (4.8) when

4.9 Ag(zd, ... xd) < Ay(xb, 23, xd).
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We assume first that (2, ...,28) € Dy. Then, ((z},...,23), As(zf,...,28)) €
G\ G1, and so we can find 21 € G such that

d(((x(l), 1‘%, .. ,:Ef)l) Ag(az(l),m%, cel $d)) G1>

- a:lenCi HZL‘ - ($0a 1:07 cee afES)? A2(x(1)’ x?)’ e 71"‘31)) H
= Hggl - ((x(l),xg, cxd), Ag(ad, 2l ,x%))“.

Then a:il'H = Ay(z},22,... 2%), and using the Cauchy—Schwarz inequality, we

| Av (g, -, 2§) — Aa(ag, - .. 2f)]
<Az, 2d) — Ay(ad, 2D+ A (2l 2 — Ag(ad, .. 2d)]
d d d d
< KH(w(lb '7x0) - (ZL’ 'ax1>|| + |A1(5L’%7' : 'axl) _AQ(x(l)v'-- 7~T0)|

1
1
= (K, 1), (|[(x3s - - - v 2d) = (21, ..., 2D, [ A1 (2], - .., 2D) = Aa(ag, - . ., 2d)]))
SVE2+1-||((2h, . 2d)—(2d, . ah), Azl ) = Ag(a, ., 2d)|
= \/Kzi—l—l-H((x(l),...,xg,Ag(x(l),...,mg))—(:L‘%, Ll Al )H
- m-d((xg),...,xg,AQ(mg,...,xg)),@) < m-dlf (G, Ga).

In particular, since 7p, (2}, 23, . .. ,xg) € D, we have

’;h (7TD2 (x(l)a 1’%, cees l‘g)) - AZ (7TD2 (1:(1)7 :L‘%a cee ,l’g))‘

<VEK?2+1-d(Gy,Ga).

Suppose now that (z}, 23, ..., 28) € D;\ Da. Then

|Ay(zd, 23, .. . 2d) — Ay(xd, 23, ..., 2d)|
< ‘Al(xé,mg, Lady — Ay (7D, (25, 25, - - - xg))|
+ }Al (7TD2<LZ'(1), x%, . ,xg)) — flg(x(l),afg, . ,xg)‘
< K||(zd, 23, ... 28) — 7p, (xd, 22, ..., zd)||
+ ‘Al (7TD2($(1), x%, . ,xg)) — Ay (7TD2 (3:(1),:13%, e ,:L'g))‘
< KH(:L‘(I), . ,{L‘g,Al($(1), . ,l’g)) — TG, ((l’(l), .. .,mg,Al(x[l), . ,:L‘g))) H
+ }Al (7rD2(ac(1), e :z:g)) — Ay (7TD2 (:L‘é, . ,:L'g))‘

< K -dp(Gi,Ga) + \/m -dg (G, G2)
<

(K+ VEK?2+1 ) dH Gl,Gz)
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Since x is arbitrary, we conclude that

A1 — Ao|| < (K + VK2 +1) - dp(Gy,Ga).

If A1(wg) < Az(x0), the proof proceeds analogously. Similarly, we can prove that

|B1 — Ba|| < (K +VK?+1) -dp(G1,Ga),
and so the proof of (4.5) is complete. =
PROPOSITION 4.2. (G, dp) is a complete separable metric space.

Proof. It is well known that the space H (R™) of all non-empty compact
subsets of R"™ equipped with the Hausdorff metric dg is a complete separable met-
ric space. For the completeness see Theorem 2.4.4 in [10] or Theorem 7.1 of Chap-
ter IT in [1]. Since G is a closed subset of H (R"™), it follows that (G, dp) is also
complete.

Let R be a countable dense subset of the space of real-valued continuous
functions of n — 1 variables, C (R™"'), and let S be a subset of G consisting
of all strata S([a',b'] x ... x [a®~1, 6”71, [A, B]) such that a',a?,...,a¢ and
b, b2, ..., b? are rational numbers and A, B are restrictions of functions from R
to [al,b'] x ... x [@"1,""1]. Then S is countable. It is also easy to verify that
S is dense in (G, dyy). Since dy and dys are equivalent on G, S is also dense in

(G,dpz). m

COROLLARY 4.1. Forevery K > 0, (Gk,dg) is a complete separable metric
space.

Proof. Itiseasy to see that Gi is a closed subset of (G, das). Thus (Gx, dar)
and therefore also (G, dp) is complete. The intersection of S from the proof of
Proposition 4.2 with G is a countable dense set in (Gx,dp). =

Consider the space g}; of Gx-valued cadlag functions defined on [0, 77]. We
define two metrics d1; and d%; on G% by

dy; (G1,G2) = sup dy(Gi(t), Ga(t)),
0<t<T

df; (G1,Gs) = sup dy(Gi(t),Ga(t)).
0<t<T

The following statement is a direct result of combining Corollary 4.1 with
Remark 4.1. It will play a significant role in obtaining the best Lipschitz constant
in the proof of Theorem 4.1.

COROLLARY 4.2. For every € > 0 and every function G € QIT< there is G' €
GE NS such that &%, (G, G") < € or, equivalently, such that d%; (G, G') < e.
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The next result will show that for any ¢» € D ([0, T], R"™) the Skorokhod map
I'(y(¢) is a Lipschitz continuous function from G to D ([0, T],R™).

LEMMA 4.2. Let T > 0 and let ¢ € D([0,T],R4Y). For any Gy, G2 € GE,

4.10) HFG1 (¥) —Tq, (1/1)”T < \/9d +9K2d + 6KVd +1-dp(Gy,Ga).

Proof. We canassume Gy =S([og ,, 81 ,] x ... x [of,, B ], [A1¢, Bi4))
and Goy = S([ag,, B3] X ... x [ag, B ], [A2,t, Bay]) forany 0 < ¢ < T Then

d .
T, (4) = Ta(WIF = sup (X [Ea; g (9)(1) = By g (0 ()]

o<t<T  j=1
= d+1 = d+1 2
+ (Bt gart (BT (E) = Egar gan (T (E)]),

where a‘f“, ‘f“, agH, g“ are as described in equations (2.9) and (2.10).

By Theorem 3.5 of [21], foreach¢ =1,2,...,d and forevery 0 < ¢t < T,

@11 [Egi 5 (0)(8) = Egg i (W) ()] = [Tt i (1) (1) = T g3 (07 (1)]
3- (llaf — abll v 18 — Bl
and
4.12) [E a0t gasr (DT (E) = Egarr gara (7 (2)]
=L o+t d+1(wd“)( t) — Fagﬂﬁgﬂ(?ﬁdﬂ)@ﬂ
<3 (HOéil+1 —ag Y| v |87 = B,

where, by (2.9),

d+1 d+1
laf*t —ag™H = |41 (¥" — B g1, 9% — a2 g2y, 97 — Ega a)
— As(P! — g1 1, %" ~ Bz gy ¥ — Eqg o)
D) = Bt g1 (0), 02 (8) = a2z g2 (1), -, 07 (8) = B pa (1)

1(t) - Eal B% (t)a 1/}2 (t) - Ea%,ﬁ% (t)7 ey ¢d(t) :a275d (t) ‘

— sup [Arg
1<t<T

)
v )
< sup A (91(t) = Eqr g1 (1), 0%(1) = Egz g2(8), -+, 9U(t) = Ega 5a(1))
1<t<T
— Ave (V1 (1) = Zay 5 (1), 07 (1) = Eaz g3 (1), . 0U(t) — Eqg 5 (1))
+ sup A (91 (1) = Eap,01 (0, 03 (1) = Eaz3(1)s - 0UE) = Epg o (1))
1<t<T
— Aoy (V1 (1) = Zqy 1 (1), V2 (1) = Eag g3 (), - 07 () = g pa (1))



ESP in time-dependent bounded regions 137

and hence
d d
laf*t —ag ™|

A =
<121;£>T0t liltlgTH( Eat g (t) = a1 1 () -+ Ead ga(t) — Eag 5a (1)) |

+ sup | A1+ —

\\

Thus, by (4.11),

4.13) [jad —ad

d
< Kg, -3 Z ot —ad|| Vv [1B: — B3])% + || A1 — Az|
=

<3K\[ dT( G2)+dM(G1,G2)
<(3K\[+1) dT G1,G2

Similarly, using (4.12), we obtain
(4.14) 187! = B3 < BEVd +1) - dj (G, Ga).

Therefore,

P () ~ T, (W) < d- (3d5,(Gr, o) + (3K VA +1) - df(Gr, o))
= (9d + 9K%d + 6KVd + 1) (d(G1,G2))?.

We are ready now to state the main result of this section showing the best
Lipschitz constant for the type of the ESM under consideration in this study.

THEOREM 4.1. Let {(Gy,di(+)) : t > 0} be an orthogonal evolving stratum
constraining system with Gy = S([a}, 8] x ... x [af, Bi] x [A¢, By]) € Gx for
every t > 0. Then the ESM for the evolving ESP on {(Gy,dy(-)) : t > 0} is Lip-
schitz continuous with constant

1+ /(@ + D2 +1) + 2K /AR 1),

i.e. for any ¢1,1 € D([0,00), RHH1),

(4.15) [To(vr) —Ta(W)l
< (14 @+ D2 +1) + 26 AR+ D) i — vl
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This result is an extension of Theorem 3.6 in [21] into the vector-valued case.
It should be noted that applying Theorem 3.6 in [21] coordinatewise would pro-
duce the Lipschitz property but with a constant that increases in direct proportion
to the dimension of the space. Instead, through a significant effort and several inter-
mediate results we will produce the best constant. Similarly to the one-dimensional
case, the Lipschitz properties of the ESM follow from the Lipschitz properties of
the constraining term.

PROPOSITION 4.3. Let {(Gy,dy(-)) : t > 0} be an orthogonal evolving stra-
tum constraining system with Gy = S([of, B}] % ... x [af, Bi] x [As, By]) € Gk
for everyt > 0. Then

4.16) ||(Ta(vr) — Ta(w2)) — (1 — )|
< (Vi 02 +1) + 2K JAEE 1) ) on — ]

The one-dimensional version of this result is (4.40) of [20]. In fact, we are
going to use the same approach as in the proof of Proposition 4.6 in [20]. Namely,
we shall first prove that the inequality holds for a dense family of functions taking
a finite number of values, and then complete the proof by taking a limit. For the
sake of convenience let A = (2 — ¢1) — (Y2 — 7).

REMARK 4.2. For any real numbers a,b and K, by the Cauchy-Schwarz
inequality, we have

(4.17) (Ka+b)? < (K? +1)(a® + b%).
LEMMA 4.3. Let G = ([}, 8] x ... x [a?, %] x [A, B)) be a fixed stratum

in R41. Then, for every z,y € RI1

4.18) [(7&H! (z) — & (y)) — (@ —y™H| <\ /EZ 41 [lz —y.

Proof. We consider several cases with different positions of = and y relative
to G.
Case A.If x and y lie between the graphs of A and B, i.e.

Azt 2?2 < 24T < Bt 22, 2
and
A(y17y27"'7yd) gde’»l <B(y17y27"'7yd)7

then 7&t! () = 28! and 7&™ (y) = y?*?, and therefore

ﬂ.g-l-l(derl) _ Wé—H( d+1) _ (xd+1 _ yd+1) —0.

Y
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Case B. Both points lie below the graph of A or both points lie above the
graph of B.

If 2941 > B(2', 22, ..., 2% and y¥** > B(y',4?,...,y?), then, using Re-
mark 4.2, we have

‘(,ﬂé-‘rl( ) _ ﬂ_g-l—l(y» _ (xd—i-l _ yd—&—l)‘
= (B(zl,x2,...,xd)—B(yl,yQ,...,yd)) —(:cd+1—yd+1)|
< >, 2 2 ..,yd)|+|xd+1—yd+1|
< Kg”(.%' ﬂxzv"'vxd) - (y17y27--~7yd)H +‘xd+l _yd—H’

Case C. One of the points lies below the graph of A and the other lies above
the graph of B.

Iy > By y?, ... y?) and ™! < A(z', 2%, 27), then

)

|[(7& () — 7 (@) — (T — 2t

=[(B( y7y’---7yd>—A(xl,x%---,xd»—<yd+1—xd+1>|
:yd+1—B(y1,y2,...,y)+A( ‘.7xd)_xd+1
<yt - By 42, ... y?) + B(a! ,$2"."xd)_xd+1
<IBY 2, yh) — Bt a2, ... 2| + [yt — 2t
<Kol o) = N g7y et =yt

K% +1- e -yl

Case D. Exactly one of the points lies between the graphs of A and B.
If 991 > B(y', 92, ..., yY) and A(2!, 22, ... 2?) < 2 < B!, 22,. .., 29),
then

d d+1 d d
(7 GH(?J) me (@) = (yH =t
= ‘ 7"'7y )_$d+1) - (yd+1 _'Id+1)| = |B(y1>"'7yd) _yd+1‘
yd“ By',...,yH) <y - B, ...,y + B@',... 2t — 2™
< |B(y17"'7yd)_B(xlv'-‘7xd)|+|yd+1_xd+1|
< Kell@@h.ah) =yl e =y <R 1zl

If y1 < A(yl, 92, ..., y%) and A(zh, 22,.. ., 2%) < 29 < B(a!,2?,... 2%
we complete the proof with analogous arguments. m
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LEMMA 4.4. Under the assumptions of Proposition 4.3, if Tq(11) = ¢1,
La(¢2) = ¢2, and

05 () — o (1) “m
[(63(1), 43(t), ..., 03(t)) — (DL(), B3(t), ..., 08(®)] ~

then

AT ()] < (mVd + vVm2 4+ 1) |2 — 1.

Proof. By Proposition 3.1,
H (Al (t) aAQ (t) Yo 7Ad (t)) H < \/g||¢2 - ¢1||,

hence

1(@2(8), 63(8), - 65(8)) = (#1(8), 67(8); .. H1D))
< \/gH/(ZJQ _1/}1“ =+ H W%(t)ﬂbg( )7 s ,¢2(t)) (wl( )7%( )7 s 7wil(t))H

Therefore,

AT ()] = [(¢571 () — 1T (1) — (w5 (1) — wi T (1)
<@g TH() — T (O] + [wg T (E) — i (1)

<ml|(5(1), ..., ¢5(t) — (61(2), ... ¢1())]| + [5 () — o (1)]
<mVd||ype — 1| +ml|(V3(2), .., w5 (1) — (Y1), ... 1)
+ gt () — it ()]

< mvd|[ha — || + V'm?2 + Ljiba(t) — i (t)]|

= (mVd+ vm?+1) |2 — ¢,

where the last inequality follows from Remark 4.2. =

(
)

LEMMA 4.5. Let {(Gy,di(+)) : 0 <t < T} be an orthogonal evolving stra-
tum constraining system with Gy = S([a}, B}] x ... x [af, B¢] x [Ay, By]) € Gk
forevery0 < t < T. Then, for any 1,2 € D([0,T],R™) and for every 0<t<T,
we have

@.19) [(57" (1) = 1 (1) — (w57 (1) —w{™ (1))
< (KVd+ VE2 +1)|[vr — s,

where ¢; = U(¢;) fori =1,2.
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Proof. We assume first that ¢1, 12 and G take only a finite number of val-
ues. Then we can find numbers 0 = tg < t1 <t < ... < t;, < T such that

m—1
Y1 =2 U1 (ti) Iyt + 01 () I, )
i=0

m—1
Yo = > Yo (ti) It b0y + Y2 (tm) L1, 10
i=0
m—1
G = U Gtil[ti,ti+1) U GtmI[tnuT]’
i=0
where I is the indicator function of the interval E. We shall prove by induction
that, forevery £k = 0,1,...,m,
4200 [(05%" (1) — o7 (tr)) — (087" (8r) — " (1)

< (KVd+ VE?+1)|[¢1 — o).

The initial step for £ = 0 follows immediately from Lemma 4.3, since

(@57 (t0) — 61" () — (57" (o) — ¥ (t0))]
= | (75 (02(0)) = m& (v2(0))) — (5! () = v ().
To prove the inductive step, first observe thatforany¢ = 1 or 2and k = 0,1,...,m

we have the following: B
If A(tig1) < @7 () + 08 (trg1) — 8 (1) < B(tga), then

(421) O (than) = O (0) + 0 (tr) — 0 (1)
For every ¢t > 0 we can partition R into three regions: S;, Ny, C;, where
Sy ={(z', ..., 2% 24y 2 < A(2t, .. 2D},
Ny = {(z}, ..., 2% 24 2 S Bt L 2},
Azt ... 2% <2< Bt ... 2

Cy={(z',... 2% %) . Az

We consider several cases as in the proof of Lemma 4.3.

Case CC.If ¢i(ty) +¢i(tps1) — ¥i(t) € Cy, ., fori = 1,2, then, by (4.21)
and the inductive assumption, we have

AT ()] = (AT (8)] < (KVA+ VE2 4 1) |41 — ]

Case CC'. Suppose now that ¢1(ty) + ¥1(tg+1) — t1(te) € Cy,,, and
Pa(tr) + o(ths1) — Ya(ty) € O, = Sy, U Ny, orvice versa. We will show
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the proof only when 1 (tx) + 1 (tk+1) — ¥1(tk) € Ct,,, and P2 (tx) + Y (tpsr)—
Va(ty) € Niy I

4.22) (65 (thg1) = 7 ()] < K| (93(tk41), B3 (tga)s - -5 95 (try1))
— ($1(ths1), A1 (thr1)s - -, L (tr1)) ||

then (4.19) holds for ¢ = ¢ by Lemma 4.4. If (4.22) does not hold, then we must
have

(4.23) (1) — ¢ (thy1) > 0.

Indeed, suppose that ¢3! (t41) — ¢¢ (tx41) < 0. Then

> ¢5  (tryr) — ¢7 (thar) = 657 (thr) — B(01(thsr), - -, 0 (thn))
= B(¢3(ths1), - 85(ths1)) — B(o1(tesr), - - - &1 (rr1))
> _KH (d)%(tk-i-l)a s 7¢§l(tk+l)) - ((b% (tk-‘rl)a R (ﬁlli(tk-‘rl)) Ha

and so (4.22) does hold for ¢t = t;, and we have a contradiction.

First suppose that Y3 (tpy 1) — ¥4 (tri1) > @9 (the1) — @9 (o)
Then

A ()| = =AY ()
= (W3 (tes1) — T (1)) — (85 (trg1) — T (Br))
<P§ T (trr) — U7 (b)) < llvor — 42,

and so (4.19) holds.
Suppose now that A1 (¢ 1) > 0. Then

0< Ad+1(tk+1) = (63 (ths1) — T (trr1)) — (W5 (1) — ¥ ()
< (957 (1) + 9§ (b)) — dH( tr))
_ (¢111+1( k) + ¢f+1(tk+1) i d+1(t )) ( d+1(tk+1) . ¢il+1(tk+1))
= (697 (te) — ¢7 (tr)) — (W5 (tk) — 7T (1r)) = AT (t),

and so (4.19) holds by the inductive assumption.

Case C'C’. Suppose now that ¢;(tx) + ¥i(trs1) — ¥i(tx) € Cy,, fori =
1, 2. That means that either both points are in Sy, , or both are in Ny, _,, or one is
in S, , and the other is in Ny, ;.

Suppose first that both points are in Sy, , or both are in Ny, .. Then both
&1(tg+1) and Pa(txy1) lie on the graph of A or both lie on the graph of B. In
either case (4.22) holds, and so (4.19) follows by Lemma 4.4.
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Suppose that ¢d+1(tk) + wd+1(tk+1) — d+1(tk) € St,,, and q§d+1( tr) +
T (1) — V5 (t) € Ny, . If (4.22) holds, then (4.19) holds for ¢ = tj1
by Lemma 4.4. If (4.22) does not hold, then, as in case CC’, (4.23) holds and we
consider two situations: AT (¢, 1) < 0.and A1 (t,,1) > 0.
Suppose first that A1 (5, 1) < 0. Then

AT (1) = —AT (trg1)
= (V5 (trar) — U7 (1)) — (857 (k1) — 05 (b))
<95 (trrn) — 9 (b)) < [ln — ol
If AT (¢4 1) > 0, then

<A (tp1) = (85 (trrr) — 05 (trs1)) — (05T (ter) — 7 (trg))
< (@5 (tk) + ¥ (terr) — ¥5 T (1)

— (¢ () + T (ter1) — LT (t)) — (V5 (trsr) — T (teg1))
= (657 (te) — ¢ (t1)) — (051 (tk) — o1 (1)) = AT (t),

and so (4.19) holds by the inductive assumption.

At this point we have proven (4.19) when 1, 12 and G take only a finite
number of values. Suppose now that G € Q[T( is arbitrary and let € > 0. By Corolla-
ry 4.2 there is G’ € GE N S such that d%; (G, G') < e. Therefore, by (4.12), (4.13),
(4.14), and by (4.19) applied to G’, forevery 0 < t < T,

(TG (@) () = T (e)®) = (57 () — i (@)
<TG (W2) (1) = TG (o) (0] + TG (Y1) (1) — TE (1) (1)
’(Fd+1 1/12)@) . Fd+1(¢1)( )) . ( d“(t) . dﬂ(t))‘
3 (3KVA+1) - d5 (GG + (KVd+ VE2+ 1)ty — s
=6- (3K¢&+ 1) e+ (KVd+ VE2+1) g1 — .

Since e is arbitrary, it follows that (4.19) holds for any G.

Finally, we can extend (4.19) to arbitrary 11,92 € D ([0,7],R™). By Re-
mark 4.1, we can find sequences ¥, ¢2,, € S ([0, 7], R™) such that lim,, . 1,
= 91 and lim,, .o Y2, = 12 uniformly. We have already proven that (4.19) holds
for 11,12, for every n. By Lemma 4.1, limy, .o I'c (¢¥1,,) = I'c (1) and
lim,—o00 L' (¥2.n) = L (12) uniformly. Therefore,

(@571 (1) = 6171 (1) — (¥5 7 (1) — i (1)
= lim [(TE (20)(t) = TE (1) (1) — (4531 () = 0T5 (1))
< (KVd+ VE?+1) lim (Y1, — vl = (KVd+ VE2 + 1)l — v,

which completes the proof of the lemma. =

0
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Proof of Proposition 4.3. Since (4.19) in Lemma 4.5 holds for every
T, it also holds for 1,19 € D([O, 00), R”) and G € Gk . Therefore, by Theo-
rem 2.1, applying (3.1) coordinatewise we obtain

1(62(t) = 61.(8)) = (2 ) = 1A@)1?

= [(A'@)..... A%) H + |Ad+1<t>|2 <dll(gh —vl,. .. vf — oD

+ (KVd+ VE2 +1) [ =t
— (d+ K%d+ K> + 1+ 2K /d(K? 1)) 105 — 1|2
= ((d+ 1)(K* + 1) + 2K\/d(K2 + 1)) |t — 1] =

Proof of Theorem 4.1. By Proposition 4.3,

[(62(t) — ¢1() || < [[(¥2(t) — () [|+[|(d2(t) — ¢1(1)) — (¥2(t) — (D)) ]|
< (14 @+ D2 + 1) + 2K VART T 1)) s — v

which proves the assertion. =

Finally, we construct an example showing that the Lipschitz constant of The-
orem 4.1 is tight.

EXAMPLE 4.1. Let b and h be positive real numbers and let d be a pos-
itive integer. Define functions A(z1,xs,...,24) = c(x1 + 2o + ... + z4)/Vd
and B(x1,x,...,2q) = c(x1 + 22 + ... + x4)/Vd + h and consider the or-
thogonal constant stratum constraining system {(Gt, dt(-)) it > 0} with Gy =
S([0,b] x ... x[0,b] x [A, B]).Let ¢y = 0 and let

d—1 1 ¢ d
=Y el + Jai1 < Z e — ed+1>f[d,d+1)+
=1 ]
1
( Z ei+ (eVd+ Ve + 1egir) [1gs1,00)-
\/(d+ 1)(c2 4+ 1) +2cy/d(c2 +1) i=1

Then the best Lipschitz constants for A and B are Cj* = ¢ and CP = c, respec-
tively, and therefore K¢ = c as well. Furthermore,

424)  |go— ] = (\/(d +1)(@ + 1)+ 20/A(@ +1) +1) 2 = vl

where ¢1 = I' (¢1) and ¢o = ' (12), i.e. the Lipschitz constant of the ESM in
Theorem 4.1 is tight.
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Proof. Since ¢1(t) = 0 € G, for every t > 0, we have ¢1(t) = ¥1(t) =0
As for ¢9 = I'g(1b2) we will have to determine its values at each jump point of ).
It follows that

¥2(0) = —e; = (—1,0,0,...,0), hence ¢2(0) = m¢, (¢
Y(1) = —ez = (0,—1,0,...,0), hence ¢2(1) = ma, (¢2(
=ng(1l,-1,0,...,
2(2) = —e3 = (0,0,—1,0,...,0), hence
$2(2) = 7, (d2(1) 4+ ¥2(2) — ¥a(1))
=rg(1,1,-1,0,...,0) = (1,1,0,...,0),

2(0)) =
2(0) +1/J2 ¢2(0))
)=

0 (100 .,0),

Pa(d—1) = —e4=(0,...,0,—1,0), hence

¢2(d - 1) = TGq_1 (¢2(d - 2) + ¢2(d - 1) - Tj)g(d - 2))
=re(1,...,1,-1,0)=(1,...,1,0,0).

Since
c c —1
vald) = <\/d(02+1)"”’ V(e +1) \/c2+1>
_ _vd
_ d<c2+1><1"“’1’ )
we get
d) = ma, (¢2(d — 1) + Ya(d) — ¥a(d — 1))
1
_WG<<1+\/T> ,1,0) — 02+1(0,0, ,0,1))
:<1 62 1))(1,1, ,1,evd).
Finally,
Pa(d+1) =
d
- 1 (Z e; + (cx/c?l—k Ve + 1)ed+1>
\/(d+1)(02+1)+2c\/m i=1
(1,...,1,eVd+ V2 +1) (1,...,1,eVd+ V2 + 1)

V@ +1)(@ +1) +26/d(E + 1) @ LeVad s VERT



146 M. Slaby

hence

ba(d) + a(d + 1) — (d) = <1 + C) (L1, 1, eV/d)

d(c® +1)
N (L1, Levd+VE+1) c (11 1_\@)
“(17177176\/g+m)“ d<C2+1) Pt S R c

1,1,... lc\/&+\/m)
= 1717-..,1, \/&—{— 2+1 + (7 y , 1,
( c F) ||(1,1,...,1,c\/ﬁ+m)u

) \/(d+1)(02+1)+20\/d(c2+1)+1(1’1’m’1’c\/&+ 50,
\/(d +1)(c?2 4+ 1) +2¢y/d(c? + 1)
When b and & are large enough, ¢2(d) + ¢2(d + 1) — ¢2(d) € G, and so
G2(d+1) = 7g,,, (d2(d) + 2(d + 1) — ¥a(d)) = d2(d) + 2(d + 1) — a(d)

c c?
= (Y@ D@+ ) +2e/a@ 11 +1) Hgiicgig%!

Therefore,

[¢2(d + 1) — d1(d+ 1)[| = [|g2(d + 1)]]

- \/(d+1)(c2+1)+26\/m+ 1.

On the other hand,

12 = ] = [l4p2]| =  max |l(k)] =1,

0<k<d+1
and so (4.24) holds. =

REMARK 4.3. The Lipschitz constant for the constraining term given in (4.16)
is tight.

Proof. In Example 4.1 we have

A(d) = (¢2(d) — ¢1(d)) — (¢2(d) — ¥1(d)) = ¢2(d) — Y2(d)

c c \/g
<1+d(c2+1)>(1,1,...,1,0\/g)—d(62+1)<1,...,1,—c>
(L,1,...,LeVd+ 2 +1).
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Therefore,

IA@I = (d+1)(@ +1) + 2e(/d@ 1) - [[Ys — ],

which completes the assertion. m
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