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Abstract. The notion of F -stability of van Harn et al. [10] (see also
Steutel and van Harn [20]) and the related concept of F -semistability are
intimately connected with continuous-time branching processes. F -stable
and F -semistable distributions play also a significant role in the theory of
integer-valued (semi-)self-similar processes and have arisen as stationary
solutions of integer-valued autoregressive processes. The aim of this ar-
ticle is twofold. Firstly, we provide several new characterizations of uni-
variate F -stable and F -semistable distributions. Secondly, we propose
a systematic study of F -stability and F -semistability for distributions on
the d-dimensional lattice Zd

+.
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1. INTRODUCTION

In [10] van Harn et al. (see also Steutel and van Harn [20]) proposed a discrete
analogue of the concept of stability for distributions on Z+ := {0, 1, 2, . . .}. The
authors’ definition is based on the Z+-valued multiple α ⊙F X of a Z+-valued
random variable X and α ∈ (0, 1) that they define as follows:

(1.1) α⊙F X =
X∑
k=1

Yk(t) := ZX(t) (t = − lnα),

where Y1(·), Y2(·), . . . are independent copies of a continuous-time Markov branch-
ing process, independent ofX , such that, for every k  1, P

(
Yk(0) = 1

)
= 1. The

processes
(
Yk(·), k  1

)
are driven by a composition semigroup of probability

generating functions (pgf’s) F := (Ft, t  0):

(1.2) Fs ◦ Ft(z) = Fs+t(z) (|z| ¬ 1; s, t  0).
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For every k  1 and t  0, Ft(z) is the pgf of Yk(t), and the transition matrix
{pij(t)} of the Markov process Yk(·) is determined by the equation

(1.3)
∞∑
j=0

pij(t)z
j = {Ft(z)}i (|z| ¬ 1; i  0).

Note that the process ZX(·) of (1.1) is itself a Markov branching process driven by
F and starting with X individuals (ZX(0) = X).

Let P (z) be the pgf of X . Then the pgf Pα⊙FX(z) of α⊙F X is given by

(1.4) Pα⊙FX(z) = P
(
Ft(z)

)
( t = − lnα; 0 ¬ z ¬ 1).

A distribution on Z+ with pgf P (z) is said to be F-stable if for any t > 0
there exists λ > 0 such that

(1.5) P (z) =
[
P
(
Ft(z)

)]λ
(z ∈ [0, 1]).

If an F-stable distribution exists, then λ and t in (1.5) satisfy the equation
λ = eγt for some constant γ ∈ (0, 1] (see Steutel and van Harn [20], Chapter V,
Sections 5 and 8). The number γ is called the exponent of theF-stable distribution.

In terms of random variables, the definition of F-stability above can be re-
stated as follows (see Steutel and van Harn [20], Chapter V, Section 5).

A Z+-valued random variableX is said to beF-stable if there exists γ ∈ (0, 1]
such that, for every t > 0,

(1.6) X
d
= e−t ⊙F X + (1− e−γt)1/γ ⊙F X ′,

where X and X ′ are independent and X d
= X ′ (the symbol d

= designates equality
in distribution).
F-stable distributions are infinitely divisible and are characterized by the

following canonical form of their pgf’s (Theorem 8.6, p. 306, in Steutel and van
Harn [20]):

(1.7) P (z) = exp{−cA(z)γ} (0 ¬ z ¬ 1),

where c > 0, 0 < γ ¬ 1, and A(z) is the A-function of F (see (1.13) below).
Adapting Lévy’s definition of semistability (Lévy [13]) for continuous dis-

tributions to the discrete case, Krapavitskaite [11] introduced the notion of F-
semistability as follows.

A distribution on Z+ is said to be F-semistable if its pgf P (z) satisfies (1.5)
for some t > 0 and λ > 0.

If an F-semistable distribution exists, then t and λ of (1.5) must satisfy λ =
eγt for some γ ∈ (0, 1] (Krapavitskaite [11]; see also Lemma 2.1 below). We will
refer to γ as the exponent of the distribution and t its order.
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A distribution on Z+ is F-stable if and only if it is F-semistable of all orders
t > 0.
F-semistable distributions are infinitely divisible and are characterized by the

following representation of their pgf’s (see Krapavitskaite [11] and Bouzar [5]):

(1.8) P (z) = exp
{
−A(z)γgγ,t

(
|lnA(z)|

)}
(0 ¬ z < 1),

where gγ,t(·) is a continuous function from R+ to R+ that is periodic with pe-
riod t.

The notions of F-stability and F-semistability have arisen in various con-
texts. Several authors studied the connection between F-stable distributions and
continuous-time branching processes. We cite Steutel et al. [21], Hansen [8], and
Pakes [15]. F-stable and F-semistable distributions play an important role in the
theory of integer-valued (semi-)self-similar processes (van Harn and Steutel [9]
and Satheesh and Sandhya [17]). F-stable distributions have also arisen as station-
ary solutions of integer-valued autoregressive processes (see Zhu and Joe [22] and
the overview article by Aly [1]).

The aim of this article is twofold. Firstly, we provide several new character-
izations of (univariate) F-stable and F-semistable distributions. That will be the
object of Section 2. Our starting point is the functional equation

(1.9) lnP (z) =
m∑
i=1

λi lnP
(
Fti(z)

)
(0 ¬ z ¬ 1),

where m  1, λi, ti > 0 (i = 1, . . . ,m), and P (z) is a pgf such that 0<P (0)<1.
We show that, depending on the commensurability of t1, . . . , tm, or lack

thereof, the solution to (1.9) is the pgf of either an F-semistable or an F-stable
distribution. Several characterizations of F-(semi)stability are then derived from
this result. In particular, we identify necessary and sufficient conditions that will
make an F-semistable distribution an F-stable one.

Secondly, we propose a systematic study of F-stability and F-semistability
for distributions on the d-dimensional lattice Zd

+ := Z+ × . . .× Z+, where d  1
is a natural number. We generalize the representations (1.7) and (1.8) to the multi-
variate case and show that the univariate characterizations obtained by Steutel and
van Harn [20], as well as those obtained in Section 2, extend to the multivariate
setting. We also establish a connection between classical (semi)stability for dis-
tributions on Rd

+ := R+ × . . .×R+ and F-(semi)stability. The treatment of the
multivariate case is the object of Section 3. In Section 4, we show thatF-semistable
and F-stable distributions on Zd

+ arise as solutions to central limit problems. As a
consequence, we obtain characterizations of F-semistable (resp., stable) distribu-
tions on Zd

+ in terms of the Lévy measure of a semistable (resp., stable) distribution
on Rd

+.
In the remainder of this section we introduce some definitions and recall sev-

eral basic facts about the semigroup F = (Ft, t  0). For proofs and further de-
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tails we refer to van Harn et al. [10] and Steutel and van Harn [20], and references
therein.

As noted in Steutel and van Harn [20], Chapter V, Section 8, the multipli-
cation ⊙F must satisfy some minimal conditions. We impose the following limit
conditions on the composition semigroup F :

(1.10) lim
t↓0

Ft(z) = F0(z) = z, lim
t→∞

Ft(z) = 1.

The first part of (1.10) implies the continuity of the semigroup F (by way of
(1.2)) and the second part is equivalent to assuming that E

(
Y1(1)

)
= F ′1(1) ¬ 1,

which implies the (sub)criticality of the continuous-time Markov branching pro-
cess Yk(·) in (1.1). We will restrict ourselves to the subcritical case (F ′1(1) < 1)
and we will assume without loss of generality that F ′1(1) = e−1 (see Remark 3.1
in [10]). In this case,

(1.11) F ′t(1) = e−t (t > 0).

The infinitesimal generator U of the semigroup F is defined by

(1.12) U(z) = lim
t↓0

(
Ft(z)− z

)
/t (|z| ¬ 1),

and satisfies U(z) > 0 for 0 ¬ z < 1.
The related A-function is defined by

(1.13) A(z) = exp
{
−

z∫
0

(
U(x)

)−1
dx

}
(0 ¬ z ¬ 1).

The functions U(z) and A(z) satisfy, for any t > 0,

(1.14a)
∂

∂t
Ft(z) = U

(
Ft(z)

)
= U(z)F ′t(z) (|z| ¬ 1)

and

(1.14b) A
(
Ft(z)

)
= e−tA(z) (0 ¬ z < 1).

Moreover, by (1.14b), the function A(z) decreases from one to zero.
Finally, we will need the following theorem whose proof can be found in the

monograph by Rao and Shanbhag [16].

THEOREM 1.1 (the Lau–Rao theorem). Let f be an R+-valued Borel mea-
surable locally integrable function on R+, such that l([f > 0]) ̸= 0, where l is the
Lebesgue measure. Let µ be a σ-finite measure on the Borel σ-field of R+ with
µ({0}) < 1. Then

(1.15) f(x) =
∫
R+

f(x+ y)µ(dy),

for almost all x ∈ R+ with respect to l, if and only if one of the following two
conditions, with η such that

∫
R+

exp{ηx}µ(dx) = 1, holds:
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(i) µ is arithmetic with some span κ > 0 and, for almost all x ∈ R+ with
respect to l,

f(x+ nκ) = f(x) exp{nκη}, n = 0, 1, . . .

(ii) µ is non-arithmetic and, for some constant c > 0,

f(x) = c exp{ηx}

for almost all x ∈ R+ with respect to l.

2. CHARACTERIZATIONS OF F -SEMISTABLE DISTRIBUTIONS

The solution set of equation (1.9) is denoted by SF (m,λ, t), where

λ = (λ1, . . . , λm) and t = (t1, . . . , tm).

A necessary condition for SF (m,λ, t) to be nonempty is identified first.

LEMMA 2.1. Assume that m  1, ti > 0, λi > 0 (i = 1, . . . ,m).
(i) If SF (m,λ, t) ̸= ∅, then

(2.1)
m∑
i=1

λie
−ti ¬ 1 <

m∑
i=1

λi.

If, in addition, a solution distribution has finite mean, then

(2.2)
m∑
i=1

λie
−ti = 1.

(ii) A nonempty SF (1, λ, t) (for some λ > 0 and t > 0) coincides with the set
of discrete F-semistable distributions with exponent γ = (lnλ)/t and order t. In
this case, λe−t ¬ 1 < λ.

P r o o f. First, we note that the assumption F ′1(1) = e−1 implies (see van
Harn et al. [10])

(2.3) Ft(z) > z (t > 0; 0 ¬ z < 1).

(i) Assume that P (·) ∈ SF (m,λ, t). We have, by (1.9) and (2.3),

lnP (0) =
m∑
i=1

λi lnP
(
Fti(0)

)
>

( m∑
i=1

λi
)
lnP (0).

The second inequality in (2.1) thus holds (as lnP (0) < 0). By differentiation,

(2.4)
P ′(z)

P (z)
=

m∑
i=1

λiF
′
ti(z)

P ′
(
Fti(z)

)
P
(
Fti(z)

) .
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By (2.3) and the fact that P ′(z) is increasing over the interval [0, 1), we have

(2.5)
1

P (z)
=

m∑
i=1

λiF
′
ti(z)

P ′
(
Fti(z)

)
P ′(z)

1

P
(
Fti(z)

)  m∑
i=1

λiF
′
ti(z)

1

P
(
Fti(z)

) .
By (1.11), F ′ti(1) = e−ti , i = 1, . . . ,m, therefore the first inequality in (2.1) fol-
lows by letting z ↑ 1 in (2.5). The additional assumption of finite mean is equiv-
alent to 0 < P ′(1) <∞ (recall the distribution with pgf P (z) is nondegenerate).
Letting z ↑ 1 in (2.4) yields (2.2).

To prove (ii), suppose P (·) ∈ SF (1, λ, t), λ > 0 and t > 0. Then lnP (z) =
λ lnP

(
Ft(z)

)
for any z ∈ [0, 1]. Note that, by part (i), λe−t ¬ 1 < λ. Letting

γ = (lnλ)/t, we have 0 < γ ¬ 1. Therefore, P (z) is discrete semistable with
exponent γ and order t. �

The real numbers a1, a2, . . . , am are said to be commensurable if there exists
a real number a such that, for every i ∈ {1, . . . ,m}, ai = ria for some integer ri.
The real number a is called a period of the set {a1, . . . , am}.

We now give a full description of SF (m,λ, t).

THEOREM 2.1. Assume that m  1, ti > 0, λi > 0 (i = 1, . . . ,m) sat-
isfy (2.1). A pgf P (·) belongs to SF (m,λ, t) if and only if one of the following
two conditions holds, with γ being the unique solution to

∑m
i=1 λie

−γti = 1 and γ
necessarily in (0, 1]:

(i) (t1, . . . , tm) are commensurable with some period t > 0 and P (z) is the
pgf of an F-semistable distribution with exponent γ and order t (and hence of
orders t1, . . . , tm).

(ii) (t1, . . . , tm) are noncommensurable and P (z) is the pgf of an F-stable
distribution with exponent γ.

P r o o f. To prove the “if” part assume that γ ∈ (0, 1] is solution to∑m
i=1 λie

−γti = 1. Under (i), if (t1, . . . , tm) are commensurable with some pe-
riod t > 0 and P (z) is the pgf of an F-semistable distribution with exponent γ and
order t, then P (z) admits the representation (1.8) where gγ,t(·) is a nonnegative
periodic function over R+ with period t. Since, for every i ∈ {1, . . . ,m}, ti = rt
for some positive integer ri, it follows that gγ,t(·) has periods ti, i = 1, . . . ,m.
Therefore,

m∑
i=1

λi lnP
(
Fti(z)

)
= −A(z)γ

( m∑
i=1

λie
−γtigγ,t

(
|lnA(z)|+ ti

))
= lnP (z),

(2.6)

which implies P (·) ∈ SF (m,λ, t). Under (ii), P (z) is the pgf of anF-stable distri-
bution with exponent γ (we note that the lack of commensurability of the lnαi’s is
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not needed at this stage of the proof). Then, by (1.7), lnP (z) = −cA(z)γ for some
c > 0. It is easily shown that P (z) satisfies (1.9). Therefore, P (·) ∈ SF (m,λ, t).
This concludes the proof of the “if” part.

To prove the “only if” part, we will assume, without loss of generality, that
ti ̸= tj for all i, j ∈ {1, . . . ,m}, i ̸= j. Let P (·) ∈ SF (m,λ, t) and define f(x) =
− ln

[
P
(
A−1(e−x)

)]
, x  0, where A−1(·) is the inverse function of A(·) (note

A is one-to-one from [0, 1] onto [0, 1]). Clearly, f is nonnegative. By (1.14b),
Ft

(
A−1(e−x)

)
= A−1(e−t−x) for any t > 0 and x  0. Therefore, by (1.9),

(2.7) f(x) = −
m∑
i=1

λi lnP
(
Fti

(
A−1(e−x)

))
=

m∑
i=1

λif(x+ ti) (x  0).

For a > 0, let δa be the Dirac point-mass measure on the σ-field of the Borel sets
of R+. Define

(2.8) µ(·) =
m∑
i=1

λiδti(·).

The set function µ is a finite measure on the σ-field of the Borel sets of R+ with
µ({0}) = 0. It is easily seen that equation (2.7) can be rewritten in the form of
the integral equation (1.15) in Theorem 1.1 with µ of (2.8). The equation holds
for every x  0. By Theorem 1.1, there exists η ∈ R, necessarily unique, such
that

∑m
i=1 λie

ηti = 1. Setting γ = −η, we have
∑m

i=1 λie
−γti = 1. Suppose µ is

arithmetic with some span t. We can assume, without loss of generality, that t > 0.
Now the support of µ is {t1, . . . , tm} (µ({ti}) = λi > 0, i = 1, . . . ,m). It follows
that (t1, . . . , tm) are commensurable with period t, or, for every i ∈ {1, . . . ,m},
ti = rit for some positive integer ri. By Theorem 1.1 (statement (i), n = 1),

f(x+ t) = f(x)eηt = e−γtf(x) (x  0)

or, equivalently, through the change of variable z = A−1(e−x),

lnP
(
Ft(z)

)
= e−γt lnP (z) (0 ¬ z < 1).

This implies that P (z) satisfies (1.5) with λ = eγt, and hence P (z) is the pgf of
an F-semistable distribution with exponent γ and order t. The fact that γ ∈ (0, 1]
follows from Lemma 2.1 (ii). Moreover, it is easy to see that the commensurability
of the ti’s implies that P (z) is F-semistable with exponent γ and order ti for each
i = 1, . . . ,m. Assume now that µ is not arithmetic. Necessarily, (t1, . . . , tm) are
noncommensurable. By Theorem 1.1 (statement (ii)), there exists c > 0 such that
f(x) = ceηx = ce−γx, x  0, or, equivalently, lnP (z) = −cA(z)γ , 0 ¬ z < 1.
Thus P (z) is the pgf of an F-stable distribution with exponent γ, necessarily in
(0, 1]. �
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We recall that a function P (z) on [0, 1] is the pgf of an infinitely divisible
discrete distribution if and only if it admits the representation (see Steutel and van
Harn [20], Theorem 4.2, Chapter II)

(2.9) lnP (z) = −
1∫
z

R(x) dx (0 ¬ z ¬ 1),

where R(x) =
∑∞

n=0 rnx
n with rn0 and, necessarily,

∑∞
n=0 rn(n+ 1)−1<∞.

Following Steutel and van Harn [20], we will refer to R(z) as the R-function of
P (z).

Since F-stable and F-semistable distributions are infinitely divisible, it is
worthwhile to describe SF (m,λ, t) in terms of R-functions.

THEOREM 2.2. Assume that m  1, ti > 0, λi > 0 (i = 1, . . . ,m) satisfy
(2.1) and P (z) is infinitely divisible. Then P (·) ∈ SF (m,λ, t) if and only if one of
the following two conditions holds, with γ being the solution to

∑m
i=1 λie

−γti = 1
and γ necessarily in (0, 1]:

(i) (t1, . . . , tm) are commensurable with some period t > 0 and P (z) is the
pgf of an F-semistable distribution with exponent γ, order t (and hence of orders
t1, . . . , tm), and an R-function with the representation

(2.10) R(z) = A(z)γrγ,t

(∣∣ln (A(z))∣∣)/U(z) (0 ¬ z < 1),

where rγ,t(·) is a nonnegative periodic function defined over [0,∞), with periods
t and ti, i = 1, . . . ,m.

(ii) (t1, . . . , tm) are noncommensurable and P (z) is the pgf of an F-stable
distribution with exponent γ and an R-function of the form

(2.11) R(z) = kA(z)γ/U(z) (0 ¬ z < 1)

for some k > 0.

P r o o f. By (1.9) and (2.9), P (·) ∈ SF (m,λ, t) if and only if its R-function
is solution to the functional equation

(2.12) R(z) =
m∑
i=1

λiF
′
ti(z)R

(
Fti(z)

)
(0 ¬ z < 1).

It is easy to see (by way of (1.14a) and (1.14b)) that R(z) of (2.10) (resp., (2.11)),
under condition (i) (resp., (ii)), satisfies (2.12). This establishes the “if” part. We
now prove the “only if” part. Let P (·) ∈ SF (m,λ, t). We assume first that condi-
tion (i) in Theorem 2.1 holds. Noting that R(z) = (d/dz)[lnP (z)], we deduce
the representation (2.10) from (1.8) and differentiation. In this case, rγ,t(x) =
γgγ,t(x)− g′γ,t(x), x  0. We note that the differentiability of the function gγ,t(·)
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on (0,∞) ensues from the proof of Theorem 3.1 in Bouzar [5]. The nonnegativity
of rγ,t(x) follows from that of R(x). Moreover, since gγ,t(x) is periodic with peri-
ods t and ti, i = 1, . . . ,m, it is easily shown that rγ,t(x) enjoys the same property.
A similar argument, assuming this time that condition (ii) in Theorem 2.1 holds,
leads to the representation (2.11). �

COROLLARY 2.1. Let P (z) be a pgf such that 0 < P (0) < 1. Then

(2.13) P
(
Ft1(z)

)
P
(
Ft2(z)

)
= P

(
Ft(z)

)
(0 ¬ z ¬ 1)

for some distinct t1 > 0, t2 > 0, t  0 (that necessarily satisfy ti > t, i = 1, 2)
if and only if one of the following two conditions holds, with γ ∈ (0, 1] being the
unique solution to e−γt1 + e−γt2 = e−γt:

(i) t1 − t and t2 − t are commensurable with period s > 0 and P (z) is the
pgf of an F-semistable distribution with exponent γ and order s > 0.

(ii) t1 − t and t2 − t are noncommensurable and P (z) is the pgf of an F-
stable distribution with exponent γ.

P r o o f. The proof of the “if” part is essentially the same as that of its coun-
terpart in Theorem 2.1. The details are skipped. To prove the “only if” part, we first
note that, by (2.13), P

(
Ft(z)

)
< P

(
Fti(z)

)
for any 0 ¬ z < 1 and i = 1, 2. By

(1.14a), (∂/∂s)Fs(z) > 0 for any 0 ¬ z < 1, which implies that Fs(z) is an in-
creasing function of the variable s. Therefore, ti > t, i = 1, 2. By (1.2) and (2.13),

P
(
Ft(z)

)
= P

(
Ft1−t

(
Ft(z)

))
P
(
Ft2−t

(
Ft(z)

))
(0 ¬ z ¬ 1).

A simple change of variable argument shows that P (z) satisfies (1.9) for every
z ∈ [Ft(0), 1], with m = 2, λ = (1, 1), and t = (t1 − t, t2 − t), and thus, by ana-
lytic continuation, for every z ∈ [0, 1]. The conclusion follows by applying Theo-
rem 2.1. �

We note that Corollary 2.1 extends a result obtained by Rao and Shanbhag
[16], Theorem 6.4.6, p. 159, for F-stable distributions, where F is the binomial
thinning semigroup of Steutel and van Harn [20], Chapter V, Section 4,

(2.14) Ft(z) = 1− e−t + e−tz.

COROLLARY 2.2. Let P (z) be the pgf of a distribution on Z+ such that 0 <
P (0) < 1. The following assertions are equivalent:

(i) P (z) is F-stable.
(ii) P (z) is F-semistable and has two noncommensurable orders t1, t2 > 0.

(iii) There exist two noncommensurable numbers t1, t2 > 0 such that

P
(
Ft1(z)

)
P
(
Ft2(z)

)
= P (z) (z ∈ [0, 1]).
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P r o o f. To prove (i)⇔(ii) assume that P (z) is the pgf of an F-semistable
distribution with two noncommensurable orders t1, t2 > 0. There exists λi  1,
i = 1, 2, such that lnP (z) = λi lnP

(
Fti(z)

)
, z ∈ [0, 1], which implies

lnP (z) =
λ1
2

lnP
(
Ft1(z)

)
+
λ2
2

lnP
(
Ft2(z)

)
.

Therefore, P (·) ∈ SF (2, λ/2, t). Condition (2.1) holds by Lemma 2.1. Since t1
and t2 are noncommensurable, it follows by Theorem 2.1 that P (z) is the pgf of
an F-stable distribution. The converse is trivially true. The equivalence (i)⇔(iii)
follows straightforwardly from Theorem 2.1 with m = 2, λ1 = λ2 = 1. �

COROLLARY 2.3. Let P (z) be the pgf of an F-semistable distribution on
Z+. Then there exists a unique γ ∈ (0, 1] such that λ = eγt for any λ, t > 0 satis-
fying (1.5).

P r o o f. If P (z) admits two noncommensurable orders, then the conclusion
follows trivially from Corollary 2.2. Assume that P (z) satisfies (1.5) for some
λ1, t1 > 0 and λ2, t2 > 0 such that t1 and t2 are commensurable with period t > 0.
By Lemma 2.1, λi = eγiti , γi ∈ (0, 1], i = 1, 2. The same argument used to prove
Corollary 2.2 leads to P (·) ∈ SF (2, λ/2, t). By Theorem 2.1, part (ii), there exists
γ ∈ (0, 1] such that P (z) is semistable with exponent γ and of orders t, t1, t2.
Therefore, γ1 = γ2. �

Next, we state a characterization of F-stability that is an extension of a result
obtained by Gupta et al. [7], Theorem 5.2, for the binomial thinning semigroup
(2.14).

THEOREM 2.3. Let (pn, n  0) be a sequence in (0, 1) and ξ a function from
(0, 1) to (0, 1) such that:

(i) lim infn pn = lim infn ξ(pn) = 0, lim supn pn = c, and lim supn ξ(pn)
= c′, where c, c′ ∈ (0, 1).

(ii) The smallest closed subgroup under addition of R generated by{
ln(pn/c

′), ln
(
ξ(pn)/c

)
: n = 1, 2, . . .

}
is R itself.

Let Pi(z), i = 1, 2, 3, be pgf’s such that one of them is non-degenerate and,
for n  1, set tn = − ln pn and sn = − ln ξ(pn). Then

(2.15) P1

(
Ftn(z)

)
P2

(
Fsn(z)

)
= P3(z) (0 ¬ z ¬ 1; n  1)

if and only if P3(z) = P1

(
F− ln c′(z)

)
= P2

(
F− ln c(z)

)
, 0 ¬ z ¬ 1, and P3(z)

is the pgf of an F-stable distribution with some exponent γ ∈ (0, 1] that satisfies
(pn/c

′)γ +
(
ξ(pn)/c

)γ
= 1 for every n  1.
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P r o o f. Set t′ = − ln c′ and s′ = − ln c. For the “if” part, we note that the
condition (pn/c

′)γ +
(
ξ(pn)/c

)γ
= 1 implies pn < c′ (or tn > t′) and ξ(pn) < c

(or sn > s′). We have, by assumption and by (1.2),

P1

(
Ftn(z)

)
= P3

(
Ftn−t′(z)

)
and P2

(
Fsn(z)

)
= P3

(
Fsn−s′(z)

)
.

Equation (2.15) follows then from (1.7). For the “only if” part, assume that (i), (ii),
and (2.15) hold. By using the same argument as in Gupta and al. [7], the proof of
Theorem 5.2, we arrive at pn < c′, ξ(pn) < c for all n  1, and

P1

(
Ft′(z)

)
= P3(z) and P2

(
Ft′(z)

)
= P3(z) (z ∈ [0, 1]).

Therefore, by (2.15),

(2.16) P3

(
Ftn−t′(z)

)
P3

(
Fsn−s′(z)

)
= P3(z) (z ∈ [0, 1]; n  1).

If tn0 − t′ and sn0 − s′ are noncommensurable for some n0  1, then by Corolla-
ry 2.2, P3(z) is F-stable with some exponent γ ∈ (0, 1] and, by (2.16), (pn/c′)γ +(
ξ(pn)/c

)γ
= 1 for every n  1. Assume now that, for each n  1, tn − t′ and

sn− s′ are commensurable. It follows by Theorem 2.1 and Corollary 2.3 that P3(z)
is F-semistable with some exponent γ ∈ (0, 1] and of orders {tn − t′, sn − s′ :
n = 1, 2, . . .}, with (pn/c

′)γ +
(
ξ(pn)/c

)γ
= 1, n  1 (recall tn−t′=−ln(pn/c′)

and sn − s′ = − ln
(
ξ(pn)/c

)
). The continuous function g(τ) in the representa-

tion (1.8) of P3(z) is periodic with periods
{
− ln(pn/c

′),− ln
(
ξ(pn)/c

)
: n =

1, 2, . . .
}

. Hence, by assumption (ii), g(τ) admits any positive number as its pe-
riod, and thus it must be constant, making P3(z) F-stable. �

REMARK 2.1. (i) The continuous version of Theorem 2.1 for distributions on
R was obtained by Shimizu in [19]. Ben Alaya and Huillet [3] established the R+-
version of the result. Various generalizations of Shimizu’s result as well as related
characterizations of stable laws both in the univariate and multivariate settings were
proposed by several authors. We refer to Rao and Shanbhag [16] and the article by
Gupta et al. [7], and the references therein, for more on the topic.

(ii) Theorems 2.1 and 2.2, as well as Corollary 2.2, were established by Bouzar
[4] for the binomial thinning semigroup (2.14).

We conclude the section by discussing an example.

EXAMPLE 2.1. Let m = 2, t > 0, and 0 < λ < et(et − 1). Let also λ =
(1, λ) and t = (t, 2t). Clearly, condition (2.1) holds and there is a (unique) γ ∈
(0, 1) such that e−γt + λe−2γt = 1, specifically,

γ = − ln

[
−1 +

√
1 + 4λ

2λ

]
/t.
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Let ψt(x) be a continuous bounded nonnegative and periodic function with
period t. The function P (z) defined by

P (z) = exp
{
−
∞∫
0

(1− e−A(z)x)x−1−γψt(lnx) dx
}

(0 ¬ z ¬ 1)

is a pgf (see Bouzar [5]), where A(z) is given by (1.13). It is easily verified that
P (z) ∈ SF (2, λ, t). By Theorem 2.1 (i) (or direct calculations), P (z) is semistable
with exponent γ and order t.

3. MULTIVARIATE F -SEMISTABILITY

We start out by extending the multiplication ⊙F of (1.1) to the multivariate
setting.

Let d  1 be a natural number, (X1, . . . , Xd) be a Zd
+-valued random vector,

and α ∈ (0, 1). Then

(3.1) α⊙F (X1, . . . , Xd) = (α⊙F X1, . . . , α⊙F Xd).

The multiplications α⊙FXj in (3.1) are performed independently for each j.
More precisely, we suppose the existence of d independent sequences

(
Y

(j)
k (t),

t  0, k  1
)
, j = 1, 2, . . . , d, of iid continuous-time Markov branching processes

driven by the semigroup F (see (1.1)), independent of (X1, . . . , Xd), such that

(3.2) α⊙F Xj =
Xj∑
k=1

Y
(j)
k (t) (t = − lnα).

By convention, and in compatibility with (1.10), we set

0⊙F (X1, . . . , Xd) = (0, . . . , 0) and 1⊙F(X1, . . . , Xd) = (X1, . . . , Xd).

We recall that the pgf P (z1, . . . , zd) of a distribution (pn1,...,nd
, n1, . . . , nd ∈

Z+) on Zd
+ is defined by

P (z1, . . . , zd) =
∑

n1,...,nd

pn1,...,nd
zn1
1 . . . znd

d (|zi| ¬ 1; i = 1, . . . , d).

From the assumptions and a conditioning argument, it is easily shown that the
pgf of α⊙F (X1, . . . , Xd) is (for |zj | ¬ 1, j = 1, . . . , d)

(3.3) Pα⊙F (X1,...,Xd)(z1, . . . , zd) = P
(
Ft(z1), . . . , Ft(zd)

)
,

where P (z1, . . . , zd) is the pgf of (X1, . . . , Xd) and t = − lnα.
For α, β ∈ (0, 1), we have, by (1.2) and (3.3),

(3.4a) α⊙F
(
β ⊙F (X1, . . . , Xd)

) d
= (αβ)⊙F (X1, . . . , Xd).
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Moreover, if (X1, . . . , Xd) and (Y1, . . . , Yd) are independent Zd
+-valued random

vectors and α ∈ (0, 1), then

(3.4b) α⊙F
(
(X1, . . . , Xd) + (Y1, . . . , Yd)

) d
=

d
= α⊙F (X1, . . . , Xd) + α⊙F (Y1, . . . , Yd).

A distribution on Zd
+ is said to be F-semistable if its pgf P (z1, . . . , zd) satis-

fies 0 < P (0, . . . , 0) < 1 and

(3.5) P (z1, . . . , zd) =
[
P
(
Ft(z1), . . . , Ft(zd)

)]λ
(z1, . . . , zd ∈ [0, 1])

for some t > 0 and λ > 0.
A distribution on Zd

+ (or its pgf) with pgf P (z1, . . . , zd) such that 0 <
P (0, . . . , 0) < 1 is said to be F-stable if, for every t > 0, there exists λ > 0 such
that (3.5) holds.

As a direct consequence of the definition, the marginal distributions of an F-
semistable (resp., F-stable) distribution on Zd

+ are univariate F-semistable (resp.,
F-stable). Therefore, by Lemma 2.1 (ii), λ and t in (3.5) satisfy the equation λ =
eγt for some γ ∈ (0, 1]. As in the univariate case, we will refer to γ and t as the
exponent and order of an F-semistable distribution, respectively.

By definition, a distribution on Zd
+ is F-stable if and only if it is F-semistable

of all orders t > 0.

PROPOSITION 3.1. Any F-semistable, and thus any F-stable, distribution on
Zd
+ is infinitely divisible.

P r o o f. Let P (z1, . . . , zd) be the pgf of an F-semistable distribution with
exponent γ ∈ (0, 1] and order t > 0. By (1.2), (3.5), and induction, we have, for
any n  0 and z1, . . . , zd ∈ [0, 1],

(3.6) [P (z1, . . . , zd)]
e−nγt

= P
(
Fnt(z1), . . . , Fnt(zd)

)
.

Let Pn(z1, . . . , zd) = exp
{
enγt

(
[P (z1, . . . , zd)]

e−nγt − 1
)}

for n  0. By (3.6),
Pn(z1, . . . , zd) is the pgf of a compound Poisson distribution on Zd

+ and is there-
fore infinitely divisible. Moreover, we have

lim
n→∞

Pn(z1, . . . , zd) = P (z1, . . . , zd).

Hence, any F-semistable distribution is the weak limit of a sequence of infinitely
divisible distributions and is therefore infinitely divisible. �

We state a useful lemma.
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LEMMA 3.1. Let P (z1, . . . , zd) be the pgf of an F-semistable distribution
on Zd

+. Then there exists a unique γ ∈ (0, 1] such that λ = eγt for any λ, t > 0
satisfying (3.5).

P r o o f. The marginal pgf Q1(z) = P (z, 1, . . . , 1) of P (z1, . . . , zd) is (uni-
variate) F-semistable. The conclusion follows by applying Corollary 2.3 to the
marginal pgf Q1(z). �

Next, we give characterization results for F-semistability and F-stability for
distributions on Zd

+.

THEOREM 3.1. Let t > 0 and 0 < γ ¬ 1. A distribution on Zd
+ with pgf

P (z1, . . . , zd) is F-semistable with exponent γ and order t if and only if, for any
z1, . . . , zd ∈ [0, 1),

(3.7) lnP (z1, . . . , zd) = −
( d∏
i=1

A(zi)
)γ/d

gγ,t
(
|lnA(z1)|, . . . , |lnA(zd)|

)
,

whereA(z) is theA-function of F (see (1.13)) and gγ,t(τ1, . . . , τd) is a continuous
function from Rd

+ to R+ such that

(3.8) gγ,t(τ1 + t, . . . , τd + t) = gγ,t(τ1, . . . , τd) (τi  0; i = 1, . . . , d).

P r o o f. Let P (z1, . . . , zd) be the pgf of an F-semistable distribution on Zd
+

with exponent γ and order t. Define, for z1, . . . , zd ∈ [0, 1),

fγ,t(z1, . . . , zd) = −
( d∏
i=1

A(zi)
)−γ/d

lnP (z1, . . . , zd).

By (3.5) and (1.14b), fγ,t
(
Ft(z1), . . . , Ft(zd)

)
= fγ,t(z1, . . . , zd). Therefore,

(3.9) lnP (z1, . . . , zd) = −
( d∏
i=1

A(zi)
)γ/d

fγ,t(z1, . . . , zd).

For τi  0, i = 1, . . . , d, define

gγ,t(τ1, . . . , τd) = fγ,t
(
A−1(e−τ1), . . . , A−1(e−τd)

)
.

We clearly have, for any z1, . . . , zd ∈ [0, 1),

(3.10) gγ,t
(
− lnA(z1), . . . ,− lnA(zd)

)
= fγ,t(z1, . . . , zd).

Combining (3.9) and (3.10) leads to (3.7). Now A
[
Ft

(
A−1(e−τ )

)]
= e−τ−t for

any τ  0. Therefore,

gγ,t(τ1 + t, . . . , τd + t) = fγ,t

(
Ft

(
A−1(e−τ1)

)
, . . . , Ft

(
A−1(e−τd)

))
,
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which, along with (3.10), implies (3.8). Conversely, a pgf of a distribution on Zd
+

that admits the representation (3.7) must satisfy (3.5) for any z1, . . . , zd ∈ [0, 1),
and thus, by the principle of analytic continuation, for any z1, . . . , zd such that
|zi| ¬ 1. �

THEOREM 3.2. Let 0 < γ ¬ 1. A distribution on Zd
+ with pgf P (z1, . . . , zd)

is F-stable with exponent γ if and only if, for any z1, . . . , zd ∈ [0, 1),

(3.11) lnP (z1, . . . , zd) =

= −
( d∏
i=1

A(zi)
)γ/d

Qγ

(
ln[A(z1)/A(z2)], . . . , ln[A(z1)/A(zd)]

)
,

where A(z) is the A-function of F (see (1.13)) and Qγ(x1, . . . , xd−1) is a nonneg-
ative function on Rd−1 if d  2, and a constant if d = 1.

P r o o f. If P (z1, . . . , zd) satisfies (3.11), it is easily shown that it also sat-
isfies (3.5) for every t > 0 (with λ = eγt). Therefore, P (z1, . . . , zd) is F-stable.
Conversely, if P (z1, . . . , zd) is F-stable, then it is F-semistable for every t > 0
and some exponent γ ∈ (0, 1]. By Lemma 3.1, the exponent γ is independent of t.
Therefore, the nonnegative function gγ,t(τ1, . . . , τd) in the representation (3.7) of
P (z1, . . . , zd) is also independent of t. We denote it by g(τ1, . . . , τd). Note that
g(τ1, . . . , τd) is defined on Rd

+ and satisfies (3.8) for every t > 0. In the case
d = 1, this implies that g(τ1, . . . , τd) is constant. Assume d  2. We define the
subsets Bj , j = 0, 1, . . . , d− 1, of Rd−1 as follows:

B0 = {(x1, . . . , xd−1) | xi  0, i = 1, . . . , d− 1},

Bi = {(x1, . . . , xd−1) |
xi < 0, xi < x1, . . . , xi < xi−1, xi ¬ xi+1, . . . , xi ¬ xd−1}

for 1 ¬ i ¬ d− 2, and

Bd−1 = {(x1, . . . , xd−1) | xd−1 < 0, xd−1 < x1, . . . , xd−1 < xd−2}.

{Bi : i = 0, 1, . . . , d− 1} forms a partition of Rd−1. We introduce a function Qγ

on Rd−1 as follows. For (x1, . . . , xd−1) in Rd−1, set x0 = 0 and let xij = xj − xi
for i, j ∈ {0, 1, . . . , d− 1}. Then Qγ is defined by

Qγ(x1, . . . , xd−1) = g(xi0, xi1, . . . , xi,d−1) ((x1, . . . , xd−1) ∈ Bi)

for each i ∈ {0, 1, . . . , d− 1}. It is easily checked that for τi  0, i = 1, . . . , d,

(3.12) g(τ1, . . . , τd) = Qγ(τ2 − τ1, τ3 − τ1, . . . , τd − τ1).

The representation (3.11) follows from (3.7) and (3.12). �
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Let (X1, . . . , Xd) be a Zd
+-valued random vector and α1, . . . , αd ∈ (0, 1]. Us-

ing the operator⊙F of (1.1), we define a linear combination of theXi’s as follows:

(3.13) Y =
d∑

j=1

αj ⊙F Xj (with 1⊙F X = X).

The multiplications αj ⊙F Xj in (3.13) are performed independently for each j
(see (3.2) and the discussion preceding it). From the assumptions and a condition-
ing argument, the pgf PY (z) of the linear combination (3.13) is given by

(3.14) PY (z) = P
(
Fs1(z), . . . , Fsd(z)

)
(sj = − lnαj ; j = 1, . . . , d),

where P (z1, . . . , zd) is the pgf of (X1, . . . , Xd).

THEOREM 3.3. A Zd
+-valued random vector (X1, . . . , Xd) has an F-semi-

stable (resp., F-stable) distribution with exponent γ ∈ (0, 1] and order t > 0
(resp., exponent γ) if and only if for every (α1, . . . , αd) ∈ (0, 1]d the linear com-
bination (3.13) is univariate F-semistable (resp., F-stable) with exponent γ and
order t (resp., exponent γ).

P r o o f. It suffices to establish the result for semistability. The “only if” part
follows easily from (3.5), (3.14), and the semigroup property (1.2). Assume that
the linear combination (3.13) is univariate F-semistable with exponent γ ∈ (0, 1]
and order t > 0 for every α1, . . . , αd ∈ (0, 1]. Let P (z1, . . . , zd) be the pgf of
(X1, . . . , Xd) and λ = eγt. We have, by (1.5) and (3.14),

(3.15) P
(
Fs1(z), . . . , Fsd(z)

)
=

[
P
(
Fs1+t(z), . . . , Fsd+t(z)

)]λ
for any s1, . . . , sd > 0 and z ∈ [0, 1]. Choose z1, . . . , zd arbitrarily in [0, 1). By
(1.13) and (1.14b), the function φ(t) = Ft(0) is one-to-one from [0,∞) onto [0, 1).
Its inverse is φ−1(z) =

∫ z

0

(
1/U(x)

)
dx, z ∈ [0, 1). Thus, there exist s1, . . . , sd ∈

[0,∞) such that zj = Fsj (0), j = 1, . . . , d. By setting z = 0 in (3.15), we have
shown that (3.5) holds for any z1, . . . , zd ∈ [0, 1), and thus, by the principle of
analytic continuation, for any z1, . . . , zd such that |zi| ¬ 1. �

Next, we extend Theorem 2.1 to the multivariate setting by considering the
functional equation

(3.16) lnP (z1, . . . , zd) =
m∑
i=1

λi lnP
(
Fti(z1), . . . , Fti(zd)

)
for z1, . . . , zd ∈ [0, 1], wherem  1, λi, ti > 0 (i = 1, . . . ,m), and P (z1, . . . , zd)
belongs to the set of pgf’s of nondegenerate distributions on Zd

+ such that 0 <
P (0, . . . , 0) < 1.
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LEMMA 3.2. A pgf P (z1, . . . , zd) is a solution to equation (3.16) if and only if
the univariate pgf Qs1,...,sd(z) = P

(
Fs1(z), . . . , Fsd(z)

)
(see (3.14)) is a solution

to equation (1.9) with the same λi’s, ti’s, and m for every s1, . . . , sd  0.

P r o o f. The “only if” part is straightforward. The same argument used in the
second part of the proof of Theorem 3.3 shows that the converse holds. The details
are omitted. �

THEOREM 3.4. Assume that m  1, ti > 0, λi > 0 (i = 1, . . . ,m) satisfy
the condition (2.1). A pgf P (z1, . . . , zd) is a solution to equation (3.16) if and only
if one of the following two conditions holds, with γ being the unique solution to∑m

i=1 λie
−γti = 1 and γ necessarily in (0, 1]:

(i) (t1, . . . , tm) are commensurable with some period t>0 andP (z1, . . . , zd)
is the pgf of an F-semistable distribution on Zd

+with exponent γ and order t (and
hence of orders t1, . . . , tm).

(ii) (t1, . . . , tm) are noncommensurable and P (z1, . . . , zd) is the pgf of an
F-stable distribution on Zd

+ with exponent γ.

P r o o f. The proof of the “if” part is essentially the same as the one given in
the univariate case (Theorem 2.1). The representations (3.7) (resp., (3.11)) clearly
satisfy (3.16). Noting that in the univariate case, the exponent γ ∈ (0, 1] and order
t > 0 depend only on the λi’s, the ti’s, and m (see Theorem 2.1 and its proof), the
“only if” part follows readily from Lemma 3.2 and Theorem 3.3. �

The following result is the multivariate extension of Corollary 2.1 (and is
proved along the same lines). The F-stability part was first established by Rao
and Shanbhag [16] for the binomial thinning semigroup (2.14).

COROLLARY 3.1. Let P (z) be a pgf of a distribution on Zd
+ such that 0 <

P (0, . . . , 0) < 1. Then, there exist distinct numbers t1 > 0, t2 > 0, t  0 (that
necessarily satisfy ti > t, i = 1, 2) such that

(3.17) P
(
Ft1(z1), . . . , Ft1(zd)

)
P
(
Ft2(z1), . . . , Ft2(zd)

)
= P

(
Ft(z1), . . . , Ft(zd)

)
for every z1, . . . , zd ∈ [0, 1] if only if one of the following two conditions holds,
with γ ∈ (0, 1] being the unique solution to e−γt1 + e−γt2 = e−γt:

(i) t1− t and t2− t are commensurable with period s > 0 and P (z1, . . . , zd)
is the pgf of an F-semistable distribution with exponent γ and order s > 0.

(ii) t1 − t and t2 − t are noncommensurable and P (z1, . . . , zd) is the pgf of
an F-stable distribution with exponent γ.

We gather several characterizations of multivariate F-stability that extend
some results in the univariate case found in Section 2 and in Steutel and van Harn
[20], Chapter V, Section 8.
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COROLLARY 3.2. Let P (z1, . . . , zd) be the pgf of a distribution on Zd
+ such

that 0 < P (0, . . . , 0) < 1. The following assertions are equivalent:
(i) P (z1, . . . , zd) is F-stable.

(ii) P (z1, . . . , zd) isF-semistable and admits two noncommensurable orders
t1 > 0 and t2 > 0.

(iii) There exists γ ∈ (0, 1) such that

(3.18) P (z1, . . . , zd) = P
(
Fs(z1), . . . , Fs(zd)

)
P
(
Ft(z1), . . . , Ft(zd)

)
for every s, t > 0 that satisfy e−γs + e−γt = 1 and z1, . . . , zd ∈ [0, 1].

(iv) For every n  1, there exists tn  0 such that

(3.19) P (z1, . . . , zd) =
[
P
(
Ftn(z1), . . . , Ftn(zd)

)]n
(z1, . . . , zd ∈ [0, 1]).

In this case, there exists γ ∈ (0, 1] such that tn = n1/γ for every n  1.
(v) There exists two noncommensurable numbers t1, t2 > 0 such that

(3.20) P
(
Ft1(z1), . . . , Ft1(zd)

)
P
(
Ft2(z1), . . . , Ft2(zd)

)
= P (z1, . . . , zd)

for z1, . . . , zd ∈ [0, 1].

P r o o f. For (i)⇔(ii) the proof is the same as that of Corollary 2.2.
To prove (i)⇔(iii) observe that (i)⇒(iii) is straightforward, via (3.11), and for

(iii)⇒(i), we choose s, t > 0, noncommensurable and such that e−γs + e−γt = 1;
then (i) follows from Theorem 3.4 with m = 2, t1 = s, t2 = t, λ1 = λ2 = 1.

For (i)⇔(iv), it is easy to see that P (z1, . . . , zd) of (3.11) satisfies (3.19) by
choosing tn = n1/γ , and thus (i)⇒(iv). Conversely, by (3.19), P (z1, . . . , zd) is F-
semistable and satisfies (3.5) for every n  1 (λ = n and t = tn). By Lemma 3.1,
there exists γ ∈ (0, 1] such that n = eγtn , or tn = n1/γ , for every n  1. Choose
n and m such that tn and tm are noncommensurable. The conclusion follows from
(ii)⇒(i).

Finally, (i)⇔(v) is a direct consequence of Theorem 3.4 by taking m = 2,
λ1 = λ2 = 1. �

It is worthwhile translating Corollary 3.2 in terms of random vectors. The
translation is based on equations (3.1), (3.3), and (3.4b).

COROLLARY 3.3. Let (X1, . . . , Xd) be a Zd
+-valued random vector. The fol-

lowing assertions are equivalent:
(i) (X1, . . . , Xd) has an F-stable distribution.

(ii) There exists γ ∈ (0, 1] such that, for every α ∈ (0, 1),

(X1, . . . , Xd)
d
= α⊙F (X1, . . . , Xd) + (1− αγ)1/γ ⊙F (X ′1, . . . , X

′
d),

where (X1, . . . , Xd) and (X ′1, . . . , X
′
d) are independent and (X1, . . . , Xd)

d
= (X ′1, . . . , X

′
d).
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(iii) For every n  1, there exists αn ∈ (0, 1) such that

(X1, . . . , Xd)
d
= αn ⊙F

n∑
i=1

(X
(i)
1 , . . . , X

(i)
d ),

where
(
(X

(i)
1 , . . . , X

(i)
d ), i  1

)
is iid, independent of (X1, . . . , Xd), and

(X1, . . . , Xd)
d
= (X

(i)
1 , . . . , X

(i)
d ). In this case, there exists γ ∈ (0, 1] such that

αn = n−1/γ for every n  1.

We conclude the section by discussing the relationship between the notions of
semistability on Zd

+ and Rd
+.

We recall (see Sato [18]) that a distribution on Rd
+ with Laplace–Stieltjes

transform (LST) ϕ(u1, . . . , ud) is said to be stable if for any α ∈ (0, 1) there exists
λ > 0 such that

(3.21) ϕ(u1, . . . , ud) = [ϕ(αu1, . . . , αud)]
λ (u1, . . . , ud  0).

It is said to be semistable if (3.21) is satisfied for some λ > 0 and α ∈ (0, 1).
The real numbers α and λ in (3.21) satisfy the equation λ = α−γ for some

γ ∈ (0, 1]. As above, we refer to γ as the exponent of the distribution, and in the
case of semistability, t as its order.

LEMMA 3.3. Let ϕ(u1, . . . , ud) be the LST of a distribution on Rd
+ and A(z)

the A-function of F (see (1.13)). Then, for any θ > 0,

(3.22) Pθ(z1, . . . , zd) = ϕ
(
θA(z1), . . . , θA(zd)

)
(z1, . . . , zd ∈ [0, 1])

is the pgf of a distribution on Zd
+.

P r o o f. We use an argument due to Barndorff-Nielsen et al. [2] to con-
struct a multiparameter Zd

+-valued stochastic process. Let us assume θ > 0. Let
{X1(t)}, {X2(t)},. . ., {Xd(t)} be independent Lévy processes such that, for every
i = 1, . . . , d, the pgf of Xi(1) is F-discrete stable with pgf Qθ(z) = e−θA(z). Let
(T1, . . . , Td) be an Rd

+-valued random vector independent of the process{(
X1(t), . . . , Xd(t)

)}
. Define the multiparameter process X(s1, . . . , sd) by

X(s1, . . . , sd) =
(
X1(s1), . . . , Xd(sd)

)
(s1, . . . , sd  0).

The conditional pgf of X(T1, . . . , Td) given (T1, . . . , Td) is

E
( d∏
i=1

z
Xi(si)
i |T1 = s1, . . . , Td = sd

)
=

d∏
i=1

E(z
Xi(si)
i ) =

d∏
i=1

(
Qθ(zi)

)si .
Letting ϕ(u1, . . . , ud) be the LST of (T1, . . . , Td), we conclude that the (uncondi-
tional) pgf of X(T1, . . . , Td) is

P (z1, . . . , zd) = E
(
exp

(
−

d∑
i=1

θA(zi)Ti
))

= ϕ
(
θA(z1), . . . , θA(zd)

)
for z1, . . . , zd ∈ [0, 1]. �
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We now show that F-semistable and F-stable distributions on Zd
+ can be ob-

tained from their continuous counterparts with support on Rd
+.

THEOREM 3.5. A function ϕ(u1, . . . , ud) defined on Rd
+ is the LST of a stable

(resp., semistable) distribution on Rd
+ with exponent γ ∈ (0, 1] (resp., exponent γ

and order α ∈ (0, 1)) if and only if, for every θ > 0, Pθ(z1, . . . , zd) of (3.22) is
the pgf of an F-stable (resp., F-semistable) distribution on Zd

+ with exponent γ
(resp., exponent γ and order t = − lnα).

P r o o f. It suffices to prove the result for the semistable case. Let θ > 0 and
assume that ϕ(u1, . . . , ud) satisfies (3.21) for α ∈ (0, 1), λ = α−γ , and γ ∈ (0, 1].
Setting t = − lnα, we have, by (3.21), (3.22), and (1.14b),

Pθ(z1, . . . , zd)=
[
ϕ
(
e−tθA(z1), . . . , e

−tθA(zd)
)]λ

=
[
Pθ

(
Ft(z1), . . . , Ft(zd)

)]λ
,

which proves the “only if” part. Conversely, assume that ϕ(u1, . . . , ud) is an LST
with the property that there exist α ∈ (0, 1), λ = α−γ for some γ ∈ (0, 1], such
that, for any θ > 0, Pθ(z1, . . . , zd) of (3.22) satisfies (3.5) with t = − lnα. Se-
lect u1, . . . , ud  0 and choose θ > max1¬i¬d ui. Define zi = A−1(ui/θ) for
i = 1, . . . , d. Then, by (3.5), (3.22), and (1.14b),

Pθ(z1, . . . , zd) =
[
ϕ
(
αθA(z1), . . . , αθA(zd)

)]λ
= [ϕ(αu1, . . . , αud)]

λ,

which implies (3.21), since ϕ(u1, . . . , ud) = Pθ(z1, . . . , zd). �

REMARK 3.1. (i) Theorem 2.3 extends to distributions on Zd
+ (a result also

derived by Gupta and al. [7] for the binomial thinning semigroup (2.14)). The proof
reduces to the univariate case via Theorem 3.3. The details are omitted.

(ii) Corollary 3.2 [(i)⇔(ii)] is the discrete analogue of a result in the continu-
ous case (see, e.g., Maejima [14], Theorem 1.4).

(iii) Corollary 3.2 [(i)⇔(v)] was proved by Gupta et al. [7] for the binomial
thinning semigroup (2.14).

4. LIMIT THEOREMS

In this section we show that F-semistable and F-stable distributions on Zd
+

arise as solutions to central limit problems. We will need the following function:

(4.1) V (x) = 1− Flnx(0) (x  1).

First, we state the multivariate version of Theorem 8.4 (part (i)) due to van
Harn et al. [10]. Their proof extends almost verbatim to the multivariate setting.
The details are omitted.
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THEOREM 4.1. Let
(
(S

(n)
1 , . . . , S

(n)
d ), n  1

)
be a sequence of Zd

+-valued
random vectors with pgf’s Pn(z1, . . . , zd), n  1. Then there exist cn →∞ and a
pgf P (z1, . . . , zd) such that

lim
n→∞

Pn

(
Fln cn(z1), . . . , Fln cn(zd)

)
= P (z1, . . . , zd)

if and only if there exist an →∞ such that a−1n (S
(n)
1 , . . . , S

(n)
d ) converges weakly

to a distribution on Rd
+ with LST ϕ(u1, . . . , ud) (as n→∞). In this case,

(4.2) lim
n→∞

anV (cn) = θ (for some θ > 0)

and

(4.3) P (z1, . . . , zd) = ϕ
(
θA(z1), . . . , θA(zd)

)
.

The next result identifies F-semistable distributions as weak limits of subse-
quences of weighted sums of Zd

+-valued iid random vectors.

THEOREM 4.2. Let
(
(X

(n)
1 , . . . , X

(n)
d ), n1

)
be a sequence of iid Zd

+-valued
random vectors and 0 < α < 1. Let (cn, n  1) be an increasing sequence of real
numbers such that cn  1 and cn ↑ ∞ and let (kn, n  1) be a sequence in Z+

such that kn ↑ ∞. Furthermore, assume that
(i) c−1n ⊙F

∑kn
i=1(X

(i)
1 , . . . , X

(i)
d ) converges weakly to a Zd

+-valued random
vector (X1, . . . , Xd);

(ii) limn→∞ cn/cn+1 = α.
Then (X1, . . . , Xd) has an F-semistable distribution with some exponent 0 <

γ ¬ 1 and order t = − lnα. Moreover, the pgf of (X1, . . . , Xd) admits a rep-
resentation of the type (3.22) (for some θ > 0), where ϕ(u1, . . . , ud) is the LST
of a semistable distribution on Rd

+ with exponent γ and order α. The sequence
(kn, n  1) necessarily satisfies

(4.4) lim
n→∞

kn
kn+1

= αγ .

Conversely, if a Zd
+-valued random vector (X1, . . . , Xd) has an F-semistable

distribution with exponent 0 < γ ¬ 1 and order t > 0, then there exist sequences(
(X

(n)
1 , . . . , X

(n)
d ), n  1

)
, (cn, n  1), and (kn, n  1), as defined above, that

satisfy (i)–(ii) and (4.4), with α = e−t.

P r o o f. Let P (z1, . . . , zd) be the pgf of (X1, . . . , Xd) and Qi(z1, . . . , zd),
i  1, be that of (X(i)

1 , . . . , X
(i)
d ). By the assumption (i) and Theorem 4.1, there

exists a sequence (an, n  0), limn→∞ an = ∞, such that the Rd
+-valued se-

quence
(
a−1n

∑kn
i=1(X

(i)
1 , . . . , X

(i)
d ), n  1

)
converges weakly to an Rd

+-valued
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random vector (Y1, . . . , Yd) and P (z1, . . . , zd) admits the representation (3.22),
where ϕ(u1, . . . , ud) is the LST of (Y1, . . . , Yd) and θ > 0 is given by (4.2). By
van Harn et al. [10], V (x) = x−1L(x) (x  1) for some function L that varies
slowly at infinity. Therefore, by condition (ii) and (4.2),

(4.5) lim
n→∞

an
an+1

= lim
n→∞

anV (cn)

an+1V (cn+1)

c−1n+1L(cn+1)

c−1n L(cn)
= α.

It follows by Theorem 2.1 (i) in Maejima [14] (see also Kruglov [12]) that
(Y1, . . . , Yd) has a semistable distribution on Rd

+ with order α and exponent γ ∈
(0, 1] that satisfies (4.4). We conclude by Theorem 3.5 that P (z1, . . . , zd) is the pgf
of an F-semistable distribution on Zd

+ with exponent γ and order α.
Conversely, assume that (X1, . . . , Xd) has an F-semistable distribution with

exponent 0 < γ ¬ 1 and order t > 0. Let α = e−t. For n  1, let kn = [α−nγ ]
(where [x] denotes the largest integer less than or equal to x) and cn = α−n.
Clearly, {cn} and {kn} satisfy (ii) and (4.4), respectively. Define a sequence of

iid Zd
+-valued random vectors {(X(n)

1 , . . . , X
(n)
d )} such that (X(n)

1 , . . . , X
(n)
d )

d
=

(X1, . . . , Xd). Let us denote by Pn(z1, . . . , zd) and P (z1, . . . , zd) the pgf’s of
c−1n ⊙F

∑kn
i=1(X

(i)
1 , . . . , X

(i)
d ) and (X1, . . . , Xd), respectively. Noting that for

every n  1, P (z1, . . . , zd) =
[
P
(
Fln cn(z1), . . . , Fln cn(zd)

)]α−nγ

(by (3.5) and

(3.6)), Pn(z1, . . . , zd) =
[
P
(
Fln cn(z1), . . . , Fln cn(zd)

)]kn , and α−nγ = kn + ξn
for some 0 ¬ ξn < 1, it follows by (1.10) that

lim
n→∞
|Pn(z1, . . . , zd)− P (z1, . . . , zd)|

¬ lim
n→∞

∣∣1− P ξn
(
Fln cn(z1), . . . , Fln cn(zd)

)∣∣ = 0. �

The following corollary is a direct consequence of Theorems 3.5 and 4.2.

COROLLARY 4.1. A Zd
+-valued random vector (X1, . . . , Xd) has an F-semi-

stable distribution with exponent 0<γ¬1 and order t > 0 if and only if its pgf
admits the representation (3.22) (for some θ > 0), where ϕ(u1, . . . , ud) is the LST
of a semistable distribution on Rd

+ with exponent γ and order α = e−t.

Theorem 4.2 extends to F-stable distributions on Zd
+ as follows.

THEOREM 4.3. Let
(
(X

(n)
1 , . . . , X

(n)
d ), n1

)
be a sequence of iid Zd

+-valued
random vectors and 0 < α < 1. Let (cn, n  1) be an increasing sequence of real
numbers such that cn  1 and cn ↑∞. Assume c−1n ⊙F

∑n
i=1(X

(i)
1 , . . . , X

(i)
d ) con-

verges weakly to a Zd
+-valued random vector (X1, . . . , Xd). Then (X1, . . . , Xd)

has an F-stable distribution with some exponent 0 < γ ¬ 1. Moreover, the pgf of
(X1, . . . , Xd) admits a representation of the type (3.22) (for some θ > 0), where
ϕ(u1, . . . , ud) is the LST of a stable distribution on Rd

+ with exponent γ.
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Conversely, if a Zd
+-valued random vector (X1, . . . , Xd) has an F-stable dis-

tribution with exponent 0 < γ ¬ 1, then there exist sequences (cn, n  1) and(
(X

(n)
1 , . . . , X

(n)
d ), n  1

)
such that c−1n ⊙F

∑n
i=1(X

(i)
1 , . . . , X

(i)
d ) converges

weakly to (X1, . . . , Xd).

P r o o f. The first part is proven along the same lines as the semistable case.
We rely on Theorem 15.7 in Sato [18] instead of Theorem 2.1 in Maejima [14].
The converse follows from Corollary 3.3 (iii), with c−1n = n−1/γ . �

COROLLARY 4.2. A Zd
+-valued random vector (X1, . . . , Xd) has anF-stable

distribution with exponent 0 < γ ¬ 1 if and only if its pgf admits the representation
(3.22) (for some θ > 0), where ϕ(u1, . . . , ud) is the LST of a stable distribution on
Rd

+ with exponent γ.

We derive some new representation results for F-semistable and F-stable dis-
tributions on Zd

+.
Let S be the unit sphere on Rd. We define S+ = S ∩ Rd

+ and denote by
B(R+) and B(S+) the σ-algebra of Borel sets in R+ and S+, respectively. For
E ⊂ R+ and B ⊂ S+, let EB = {(ux1, . . . , uxd) : u ∈ E, (x1, . . . , xd) ∈ B}.

We recall (see Choi [6]) that a distribution on Rd
+ is semistable with exponent

γ ∈ (0, 1] and α ∈ (0, 1) if and only if it is infinitely divisible and its Lévy measure
Λ satisfies, for any B ∈ B(S+) and E ∈ B(R+),

(4.6) Λ(EB) =
∫
. . .

∫
B

µ(dx1, . . . , dxd)
∫
E

d
(
−H(x1, . . . , xd;u)u

−γ),
where µ is a finite measure on B(S+), H(x1, . . . , xd;u) is nonnegative and right-
continuous in u, and Borel measurable in (x1, . . . , xd), H(x1, . . . , xd;u)u

−γ

is nonincreasing in u, H(x1, . . . , xd; 1) = 1, and, finally, H(x1, . . . , xd;αu) =
H(x1, . . . , xd;u).

COROLLARY 4.3. A distribution on Zd
+ is F-semistable with exponent γ ∈

(0, 1] and order t > 0 if and only if its pgf P (z1, . . . , zd) admits the representation
(3.7) with the function gγ,t(τ1, . . . , τd) given by

(4.7) gγ,t(τ1, . . . , τd) = exp

(
γ

d

d∑
i=1

τi

)
×
∞∫
0

. . .
∞∫
0

(
1− exp

(
− θ

d∑
i=1

e−τixi
))

Λ(dx1, . . . , dxd),

where Λ is the Lévy measure (given by (4.6)) of a semistable distribution on Rd
+

with exponent γ and order α = e−t, and θ > 0.
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P r o o f. The “only if” part follows from Corollary 4.1, (3.7), (3.22), and the
Lévy–Khintchine representation of the LST of a semistable distribution (Proposi-
tion 2.3 in Choi [6]) with Lévy measures given by (4.6). The “if” part can be easily
checked. �

In the univariate case (d = 1), the function gγ,t of (4.7) reduces to

(4.8) gγ,t(τ) = eγτ
∞∫
0

(
1− exp(−θe−τx)

)
Λ(dx) (τ  0)

for some θ > 0. The measure Λ is given by

(4.9) Λ(E) =
∫
E

d
(
−H(u)u−γ

)
(E ∈ B(R+)),

where H(u) is nonnegative and right-continuous in u, H(u)u−γ is nonincreasing,
H(1) = 1, and H(αu) = H(u) with α = e−t.

A similar characterization of the function rγ,t in the representation (2.10) of
the R-function of an F-semistable distribution on Z+ can be obtained.

COROLLARY 4.4. An infinitely divisible distribution on Z+ is F-semistable
with exponent γ ∈ (0, 1] and order t > 0 if and only if its R-function R(z) admits
the representation (2.10) with the function rγ,t(τ) given by

(4.10) rγ,t(τ) = θe(γ−1)τ
∞∫
0

x exp(−θe−τx)Λ(dx),

where Λ is the Lévy measure (given by (4.9)) of a semistable distribution on R+

with exponent γ and order α = e−t, and θ > 0.

P r o o f. If R(z) is the R-function of an F-semistable distribution with expo-
nent γ ∈ (0, 1] and order t > 0, then, by Corollary 4.1,

(4.11) R(z) = θA′(z)
ϕ′
(
θA(z)

)
ϕ
(
θA(z)

) ,
where ϕ(τ) is the LST of a semistable distribution on R+ with exponent γ and
order α = e−t, and θ > 0. By the Lévy–Khintchine representation of ϕ(τ), we
have

(4.12)
ϕ′(τ)

ϕ(τ)
= −

∞∫
0

xe−τxΛ(dx) (τ > 0),

where Λ is the Lévy measure (described by (4.9)) of ϕ(τ). It follows by (2.10),
(4.11), (4.12), and the fact that 1/U(z) = −A′(z)/A(z) (see (1.13)) that

(4.13) rγ,t
(
− lnA(z)

)
= θA(z)1−γ

∞∫
0

xe−θA(z)xΛ(dx) (z ∈ [0, 1)).

Letting τ = − lnA(z) yields (4.10). The converse is easily shown to hold. �
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By using Corollary 4.2, and noting that the Lévy measure of a stable distribu-
tions on Rd

+ takes the form (see Theorem 14.3 in Sato [18])

(4.14) Λ(B) =
∫
. . .

∫
S+

µ(dx1, . . . , dxd)
∞∫
0

IB(ux1, . . . , uxd)u
−1−γ du,

where µ is a finite measure on B(S+) and B ∈ B(S+), we obtain the following
characterization of F-stable distributions on Zd

+.

COROLLARY 4.5. Let 0 < γ ¬ 1 and d > 1. A distribution on Zd
+ isF-stable

with exponent γ if and only if its pgf P (z1, . . . , zd) admits the representation (3.11)
and the function Qγ(u1, . . . , ud) satisfies (for any τ1, . . . , τd  0)

(4.15) Qγ(τ2 − τ1, . . . , τd − τ1) = exp

(
γ

d

d∑
i=1

τi

)
×
∞∫
0

. . .
∞∫
0

(
1− exp

(
− θ

d∑
i=1

e−τixi
))

Λ(dx1, . . . , dxd),

where Λ is the Lévy measure (given by (4.14)) of a stable distribution on Rd
+ with

exponent γ and θ > 0.
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