PROBABILITY
 AND
 MATHEMATICAL STATISTICS
 Vol. 33, Fasc. 2 (2013), pp. 191-199

SOME DECOMPOSITIONS OF MATRIX VARIANCES

Zoltán Léka
 Dénes Petz

Abstract: When D is a density matrix and A_{1}, A_{2} are self-adjoint operators, then the standard variance is a 2×2 matrix:

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)_{i, j}:=\operatorname{Tr} D A_{i} A_{j}-\left(\operatorname{Tr} D A_{i}\right)\left(\operatorname{Tr} D A_{j}\right) \quad(1 \leq i, j \leq 2)
$$

The main result in this work is that there are projections P_{k} such that $D=\sum_{k} \lambda_{k} P_{k}$ with $0<\lambda_{k}$ and $\sum_{k} \lambda_{k}=1$ and $\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\sum_{k} \lambda_{k} \operatorname{Var}_{P_{k}}\left(A_{1}, A_{2}\right)$. In a previous paper only the $A_{1}=A_{2}$ case was included and the relevance is motivated by the paper [8].

2000 AMS Mathematics Subject Classification: Primary: 62J10; Secondary: 62F30.

Keywords and phrases: Density matrix, variance, covariance, decomposition, projections.

