PROBABILITY AND MATHEMATICAL STATISTICS Vol. 33, Fasc. 2 (2013), pp. 191–199

SOME DECOMPOSITIONS OF MATRIX VARIANCES

Zoltán Léka Dénes Petz

Abstract: When D is a density matrix and A_1 , A_2 are self-adjoint operators, then the standard variance is a 2×2 matrix:

 $\operatorname{Var}_D(A_1, A_2)_{i,j} := \operatorname{Tr} DA_i A_j - (\operatorname{Tr} DA_i)(\operatorname{Tr} DA_j) \quad (1 \le i, j \le 2).$

The main result in this work is that there are projections P_k such that $D = \sum_k \lambda_k P_k$ with $0 < \lambda_k$ and $\sum_k \lambda_k = 1$ and $\operatorname{Var}_D(A_1, A_2) = \sum_k \lambda_k \operatorname{Var}_{P_k}(A_1, A_2)$. In a previous paper only the $A_1 = A_2$ case was included and the relevance is motivated by the paper [8].

2000 AMS Mathematics Subject Classification: Primary: 62J10; Secondary: 62F30.

Keywords and phrases: Density matrix, variance, covariance, decomposition, projections.

THE FULL TEXT IS AVAILABLE HERE