SOME DECOMPOSITIONS OF MATRIX VARIANCES

BY
ZOLTÁN LÉKA (Budapest) and DÉNES PETZ (Budapest)

This paper is dedicated to Rajendra Bhatia on the occasion of his 60th birthday

Abstract. When D is a density matrix and A_{1}, A_{2} are self-adjoint operators, then the standard variance is a 2×2 matrix:
$\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)_{i, j}:=\operatorname{Tr} D A_{i} A_{j}-\left(\operatorname{Tr} D A_{i}\right)\left(\operatorname{Tr} D A_{j}\right) \quad(1 \leqslant i, j \leqslant 2)$.
The main result in this work is that there are projections P_{k} such that $D=\sum_{k} \lambda_{k} P_{k}$ with $0<\lambda_{k}$ and $\sum_{k} \lambda_{k}=1$ and $\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=$ $\sum_{k} \lambda_{k} \operatorname{Var}_{P_{k}}\left(A_{1}, A_{2}\right)$. In a previous paper only the $A_{1}=A_{2}$ case was included and the relevance is motivated by the paper [8]

2000 AMS Mathematics Subject Classification: Primary: 62J10; Secondary: 62F30.

Key words and phrases: Density matrix, variance, covariance, decomposition, projections.

1. INTRODUCTION

The subject of the paper is matrix theory, see [1] and [3]. By a density matrix $D \in M_{n}(\mathbb{C})$ we mean $D \geqslant 0$ and $\operatorname{Tr} D=1$. In quantum information theory the traditional variance is

$$
\begin{equation*}
\operatorname{Var}_{D}(A)=\operatorname{Tr} D A^{2}-(\operatorname{Tr} D A)^{2} \tag{1.1}
\end{equation*}
$$

when D is a density matrix and $A \in M_{n}(\mathbb{C})$ is a self-adjoint operator (see [3], [5], and [6]). This is a simple example, but here A_{1}, A_{2} are self-adjoint operators. Then the standard variance is a matrix:

$$
\begin{aligned}
& \operatorname{Var}_{D}\left(A_{1}, A_{2}\right) \\
= & {\left[\begin{array}{cc}
\operatorname{Tr} D A_{1}^{2}-\left(\operatorname{Tr} D A_{1}\right)^{2} & \operatorname{Tr} D A_{1} A_{2}-\left(\operatorname{Tr} D A_{1}\right)\left(\operatorname{Tr} D A_{2}\right) \\
\operatorname{Tr} D A_{2} A_{1}-\left(\operatorname{Tr} D A_{2}\right)\left(\operatorname{Tr} D A_{1}\right) & \operatorname{Tr} D A_{2}^{2}-\left(\operatorname{Tr} D A_{2}\right)^{2}
\end{array}\right] . }
\end{aligned}
$$

Assume that $0 \leqslant \lambda_{1}, \lambda_{2}$ and $\lambda_{1}+\lambda_{2}=1$. By an elementary computation we obtain

$$
\begin{aligned}
\operatorname{Var}_{\lambda_{1} D_{1}+\lambda_{2} D_{2}}\left(A_{1}, A_{2}\right)-\lambda_{1} \operatorname{Var}_{D_{1}}\left(A_{1}, A_{2}\right)-\lambda_{2} & \operatorname{Var}_{D_{2}}\left(A_{1}, A_{2}\right) \\
& =\lambda_{1} \lambda_{2}\left[\begin{array}{cc}
a^{2} & a b \\
a b & b^{2}
\end{array}\right] \geqslant 0
\end{aligned}
$$

where

$$
a=\operatorname{Tr}\left(D_{1}-D_{2}\right) A_{1} \quad \text { and } \quad b=\operatorname{Tr}\left(D_{1}-D_{2}\right) A_{2}
$$

It follows that we have the concavity of the variance functional $D \mapsto \operatorname{Var}_{D}\left(A_{1}, A_{2}\right)$:

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right) \geqslant \sum_{i} \lambda_{i} \operatorname{Var}_{D_{i}}\left(A_{1}, A_{2}\right) \quad \text { if } D=\sum_{i} \lambda_{i} D_{i}
$$

where $\lambda_{i} \geqslant 0$ and $\sum_{i} \lambda_{i}=1$. Here the equality may be also true and this is the result in Theorem 3.1: D is a certain convex combination of projections P_{i} as $D=\sum_{i} p_{i} P_{i}$ and

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\sum_{i} p_{i} \operatorname{Var}_{P_{i}}\left(A_{1}, A_{2}\right)
$$

We note that our results can be interpreted in the recent terminology of roof (see, e.g., [9]) that originates from quantum theory. It seems to be important to understand roofs because they admit convex decompositions of various quantum mechanical quantities; see, e.g., [6], [8], [10]. In this context, the introduced variance matrix is a concave roof of itself.

The particular case $A_{1}=A_{2}$ was already obtained in [6]. It is easy to show that

$$
\operatorname{Var}_{D}\left(A_{1}+\lambda_{1} I, A_{2}+\lambda_{2} I\right)=\operatorname{Var}_{D}\left(A_{1}, A_{2}\right) \quad\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right)
$$

Therefore we can assume $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$.

2. GENERAL COMPUTATIONS

We are interested in the projections $P_{1}, P_{2}, \ldots, P_{N}$ when given a density D and self-adjoint matrices A_{1}, A_{2} such that $D=\sum_{i} \lambda_{i} P_{i}\left(\lambda_{i} \geqslant 0, \sum_{i} \lambda_{i}=1\right)$ and

$$
\begin{equation*}
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\sum_{i} \lambda_{i} \operatorname{Var}_{P_{i}}\left(A_{1}, A_{2}\right) \tag{2.1}
\end{equation*}
$$

First we make an elementary computation when $\sum_{i} \lambda_{i} P_{i}=D$. (It is not assumed that the projections P_{i} are orthogonal.) The point is to find a 2×2 matrix:

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)-\sum_{i} \lambda_{i} \operatorname{Var}_{P_{i}}\left(A_{1}, A_{2}\right)=:\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right]
$$

We compute α, β, γ :

$$
\begin{gathered}
\alpha=-\left(\sum_{i} \lambda_{i} \operatorname{Tr} P_{i} A_{1}\right)^{2}+\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{1}\right)^{2} \\
=\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{1}\right)\left(\operatorname{Tr} P_{i} A_{1}-\operatorname{Tr} D A_{1}\right), \\
\gamma=\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{2}\right)\left(\operatorname{Tr} P_{i} A_{2}-\operatorname{Tr} D A_{2}\right), \\
\beta=-\left(\sum_{i} \lambda_{i} \operatorname{Tr} P_{i} A_{1}\right)\left(\sum_{j} \lambda_{j} \operatorname{Tr} P_{j} A_{2}\right)+\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{1}\right)\left(\operatorname{Tr} P_{i} A_{2}\right) \\
=\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{1}\right)\left(\operatorname{Tr} P_{i} A_{2}-\operatorname{Tr} D A_{2}\right) .
\end{gathered}
$$

Given the density D and the self-adjoint matrices A_{1} and A_{2} we should find the following solution:
(a) $D=\sum_{i} \lambda_{i} P_{i}$, where P_{i} 's are projections, $\lambda_{i} \geqslant 0$, and $\sum_{i} \lambda_{i}=1$;
(b) $\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{1}\right)^{2}=\left(\operatorname{Tr} D A_{1}\right)^{2}(\alpha=0)$;
(c) $\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{2}\right)^{2}=\left(\operatorname{Tr} D A_{2}\right)^{2}(\gamma=0)$;
(d) $\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i} A_{1}\right)\left(\operatorname{Tr} P_{i} A_{2}-\operatorname{Tr} D A_{2}\right)=0(\beta=0)$.

Instead of (d) we can take
$\left(\mathrm{d}^{\prime}\right) \sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i}\left(A_{1}+A_{2}\right)\right)^{2}=\left(\operatorname{Tr} D\left(A_{1}+A_{2}\right)\right)^{2}$.
This implies that the above conditions (b)-(d) have an equivalent form.
THEOREM 2.1. The condition (2.1) has the equivalent form

$$
\begin{equation*}
\sum_{i} \lambda_{i}\left(\operatorname{Tr} P_{i}\left(\alpha A_{1}+\beta A_{2}\right)\right)^{2}=\left(\operatorname{Tr} D\left(\alpha A_{1}+\beta A_{2}\right)\right)^{2} \tag{2.2}
\end{equation*}
$$

for $\alpha, \beta \in\{0,1\}$.
We shall give a solution for the formula (2.2). First we have the following result when D has rank 2 .

Lemma 2.1. Let $D \in M_{n}(\mathbb{C})$ be a density matrix with $\operatorname{rank} D=2$ and let $A_{1}, A_{2} \in M_{n}(\mathbb{C})$ be self-adjoint matrices such that $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$. There exist projections $P_{1}, P_{2} \in M_{n}(\mathbb{C})$ and $p \in(0,1)$ such that

$$
D=p P_{1}+(1-p) P_{2}
$$

and

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=p \operatorname{Var}_{P_{1}}\left(A_{1}, A_{2}\right)+(1-p) \operatorname{Var}_{P_{2}}\left(A_{1}, A_{2}\right)
$$

Proof. Without loss of generality one can assume that D is diagonal, hence it is enough to prove the statement when $n=2$. We recall that any 2×2 selfadjoint ρ with $\operatorname{Tr} \rho=1$ can be written as the real linear combination of the identity
I and the Pauli matrices. In fact, let

$$
\sigma_{x}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

then we have

$$
\rho=\frac{1}{2}\left(I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right)
$$

(this is called the Bloch representation); the self-adjoint points on the Bloch sphere, that is $x^{2}+y^{2}+z^{2}=1$, correspond to the pure states. Moreover, any traceless self-adjoint 2×2 matrix can be recovered by real linear combinations of the Pauli matrices as well.

Now one can write $\left(\operatorname{Tr} A_{1}\right)^{-1} A_{1}$ and $\left(\operatorname{Tr} A_{2}\right)^{-1} A_{2}$ in Bloch's representation (if $\operatorname{Tr} A_{1}=0$ or $\operatorname{Tr} A_{2}=0$, rewrite A_{1} and A_{2} as the linear combination of the Pauli matrices). Hence the densities which are orthogonal to A_{1} and A_{2} are lying at the non-empty intersection of two affine subspaces of \mathbb{R}^{3}. By the assumption $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$, the intersection contains the point of the Bloch ball that represents D, and hence meets the Bloch sphere as well in P_{1} and P_{2}. Then D is the convex combination of the projections P_{1} and P_{2}. Since $\operatorname{Tr} A_{1} P_{i}=\operatorname{Tr} A_{2} P_{i}=0$ holds, we readily obtain the decomposition of the variance as well.

3. DECOMPOSITION OF THE MATRIX VARIANCE

To prove the main theorem here, we need the following lemma.
Lemma 3.1. Let $D \in M_{n}(\mathbb{C})$ be a density matrix with $\operatorname{rank} D \geqslant 3$ and let $A_{1}, A_{2} \in M_{n}(\mathbb{C})$ be self-adjoint matrices such that $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$. There exist densities $D_{1}, D_{2} \in M_{n}(\mathbb{C})$ and $p \in(0,1)$ such that

$$
D=p D_{1}+(1-p) D_{2}, \quad \operatorname{Tr} D_{i} A_{1}=\operatorname{Tr} D_{i} A_{2}=0(i=1,2)
$$

and $\operatorname{rank} D_{i}<\operatorname{rank} D$ for $i=1,2$.
Proof. Let us assume the matrix form

$$
D=\operatorname{Diag}\left(d_{-j}, \ldots, d_{-1}, d_{0}, d_{1}, \ldots, d_{k}\right)
$$

where $j, k \geqslant 1$ and $d_{-1}, d_{0}, d_{1}>0$. Then we shall construct D_{1} and D_{2} in the block-matrix forms as

$$
D_{1}=\left[\begin{array}{ccccc}
\operatorname{Diag}\left(d_{-j}, \ldots, d_{-2}\right) & 0 & 0 & 0 & 0 \\
0 & d_{-1} & x & y & 0 \\
0 & x & d_{0} & z & 0 \\
0 & y & z & d_{1} & 0 \\
0 & 0 & 0 & 0 & \operatorname{Diag}\left(d_{2}, \ldots, d_{k}\right)
\end{array}\right]
$$

and

$$
D_{2}=\left[\begin{array}{ccccc}
\operatorname{Diag}\left(d_{-j}, \ldots, d_{-2}\right) & 0 & 0 & 0 & 0 \\
0 & d_{-1} & \frac{-p x}{1-p} & \frac{-p y}{1-p} & 0 \\
0 & \frac{-p x}{1-p} & d_{0} & \frac{-p z}{1-p} & 0 \\
0 & \frac{-p y}{1-p} & \frac{-p z}{1-p} & d_{1} & 0 \\
0 & 0 & 0 & 0 & \operatorname{Diag}\left(d_{2}, \ldots, d_{k}\right)
\end{array}\right],
$$

where $x, y, z \in \mathbb{R}$. Let $D_{1}^{>}$and $D_{2}^{>}$denote the 3×3 matrices from D_{1} and D_{2} :

$$
D_{1}^{>}=\left[\begin{array}{ccc}
d_{-1} & x & y \\
x & d_{0} & z \\
y & z & d_{1}
\end{array}\right], \quad D_{2}^{>}=\left[\begin{array}{ccc}
d_{-1} & \frac{-p x}{1-p} & \frac{-p y}{1-p} \\
\frac{-p x}{1-p} & d_{0} & \frac{-p z}{1-p} \\
\frac{-p y}{1-p} & \frac{-p z}{1-p} & d_{1}
\end{array}\right] .
$$

Now $p \in(0,1)$ is a fixed parameter, its value will be determined later. First, we need to guarantee that

$$
\operatorname{Tr} D_{i} A_{1}=\operatorname{Tr} D_{i} A_{2}=0 \quad(i=1,2) .
$$

Since $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$, the last equalities can be written as

$$
\begin{aligned}
& \operatorname{Tr} D_{i} A_{1}=\operatorname{Re}\left(x\left(A_{1}\right)_{j, j+1}+y\left(A_{1}\right)_{j, j+2}+z\left(A_{1}\right)_{j+1, j+2}\right)=0, \\
& \operatorname{Tr} D_{i} A_{2}=\operatorname{Re}\left(x\left(A_{2}\right)_{j, j+1}+y\left(A_{2}\right)_{j, j+2}+z\left(A_{2}\right)_{j+1, j+2}\right)=0 .
\end{aligned}
$$

The (x, y, z) vectors that are orthogonal to the hyperplane spanned by $\operatorname{Re}\left(\left(A_{1}\right)_{j, j+1},\left(A_{1}\right)_{j, j+2},\left(A_{1}\right)_{j+1, j+2}\right)$ and $\operatorname{Re}\left(\left(A_{2}\right)_{j, j+1},\left(A_{2}\right)_{j, j+2},\left(A_{2}\right)_{j+1, j+2}\right)$ (except for the trivial degenerative case) are lying on a line of \mathbb{R}^{3} crossing the centre $(0,0,0)$. Hence, let us use the parametrization $(\lambda x, \lambda y, \lambda z)$, where $\lambda \in \mathbb{R}$ and $x^{2}+y^{2}+z^{2}=1$, for the solutions of the above linear system.

Next, we choose the value of λ to obtain positive D_{1} and D_{2} and guarantee the lower rank for them as well.

For the lower rank of D_{1} and D_{2}, it is enough that the following equalities are satisfied:

$$
\begin{aligned}
\left(\operatorname{det} D_{1}^{>}\right)(\lambda)= & d_{-1} d_{0} d_{1}+2 \lambda^{3} x y z-\lambda^{2}\left(x^{2} d_{1}+y^{2} d_{0}+z^{2} d_{-1}\right)=0, \\
\left(\operatorname{det} D_{2}^{>}\right)(\lambda)= & d_{-1} d_{0} d_{1}-2 \lambda^{3}\left(\frac{p}{1-p}\right)^{3} x y z \\
& -\lambda^{2}\left(\frac{p}{1-p}\right)^{2}\left(x^{2} d_{1}+y^{2} d_{0}+z^{2} d_{-1}\right)=0 .
\end{aligned}
$$

To get positive semi-definite D_{1} and D_{2}, let us calculate the Hilbert-Schmidt norm $\|\cdot\|_{2}$ of $D_{1}^{>}$and $D_{2}^{>}$. We recall that

$$
\left\|D_{i}^{>}\right\|_{2}^{2}=\sum_{j, k}\left(D_{i}^{>}\right)_{j k}^{2}=\operatorname{Tr}\left(D_{i}^{>}\right)^{2}=\sigma_{D_{i}^{>}, 1}^{2}+\sigma_{D_{i}^{>}, 2}^{2}+\sigma_{D_{i}, 3}^{2},
$$

where $\sigma_{D_{i}, j}$ denote the eigenvalues of $D_{i}^{>}$. Since $\operatorname{det} D_{i}^{>}=0$, the matrix $D_{i}^{>}$ is positive semi-definite if (and only if) $\left\|D_{i}^{>}\right\|_{2} \leqslant \operatorname{Tr} D_{i}^{>}$are satisfied (i=1,2). Hence we need

$$
\left\|D_{1}^{>}\right\|_{2}^{2}=d_{-1}^{2}+d_{0}^{2}+d_{1}^{2}+2 \lambda^{2}\left(x^{2}+y^{2}+z^{2}\right) \leqslant\left(\operatorname{Tr} D_{1}^{>}\right)^{2}
$$

which is the same as

$$
\begin{equation*}
|\lambda| \leqslant \sqrt{\frac{1}{2}\left(\left(d_{-1}+d_{0}+d_{1}\right)^{2}-d_{-1}^{2}-d_{0}^{2}-d_{1}^{2}\right)}=\left(d_{-1} d_{0}+d_{0} d_{1}+d_{1} d_{-1}\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

Using the analogous inequality for $\left\|D_{2}^{>}\right\|_{2}^{2}$, we note that it is enough to prove that the equation $\left(\operatorname{det} D_{1}^{>}\right)(\lambda)=0$ has solutions of different signs λ_{1}, λ_{2} such that (3.1) holds. Then one can find a $p \in(0,1)$ such that $-\lambda_{1} p /(1-p)=\lambda_{2}$. Therefore, $\left(\operatorname{det} D_{1}^{>}\right)\left(\lambda_{1}\right)=\left(\operatorname{det} D_{1}^{>}\right)\left(\lambda_{2}\right)=\left(\operatorname{det} D_{2}^{>}\right)\left(\lambda_{1}\right)=0$, which is what we intended to have. Moreover, the positivity of $D_{i}^{>}$implies that $D_{i} \geqslant 0, i=1,2$.

To establish (3.1), note that the cubic function $\lambda \mapsto\left(\operatorname{det} D_{1}^{>}\right)(\lambda)(\lambda \in \mathbb{R})$ has positive local maximum at zero, i.e. $\left(\operatorname{det} D_{1}^{>}\right)(0)=d_{-1} d_{0} d_{1}$. Hence we can find solutions of the equation $\left(\operatorname{det} D_{1}\right)(\lambda)=0$ with the above property if (and only if)

$$
\left(\operatorname{det} D_{1}^{>}\right)\left(\pm\left(d_{-1} d_{0}+d_{0} d_{1}+d_{1} d_{-1}\right)^{1 / 2}\right) \leqslant 0
$$

or, equivalently,

$$
\begin{aligned}
& d_{-1} d_{0} d_{1} \pm 2\left(d_{-1} d_{0}+d_{0} d_{1}+d_{1} d_{-1}\right)^{3 / 2} x y z \\
& \quad-\left(d_{-1} d_{0}+d_{0} d_{1}+d_{1} d_{-1}\right)\left(x^{2} d_{1}+y^{2} d_{0}+z^{2} d_{-1}\right) \leqslant 0
\end{aligned}
$$

Expanding the last product we get

$$
\begin{aligned}
& \pm 2\left(d_{1} d_{0}+d_{0} d_{-1}+d_{-1} d_{1}\right)^{3 / 2} x y z \\
& \quad \leqslant x^{2} d_{1}^{2}\left(d_{0}+d_{-1}\right)+y^{2} d_{0}^{2}\left(d_{1}+d_{-1}\right)+z^{2} d_{-1}^{2}\left(d_{1}+d_{0}\right)
\end{aligned}
$$

From the Cauchy-Schwarz inequality we have

$$
\begin{aligned}
& \left(d_{1}\left(d_{0}+d_{-1}\right)+d_{0}\left(d_{-1}+d_{1}\right)+d_{-1}\left(d_{1}+d_{0}\right)\right) x y z \\
& \quad \leqslant \\
& \quad\left(x^{2} d_{1}^{2}\left(d_{0}+d_{-1}\right)+y^{2} d_{0}^{2}\left(d_{1}+d_{-1}\right)+z^{2} d_{-1}^{2}\left(d_{1}+d_{0}\right)\right)^{1 / 2} \\
& \quad \times\left(x^{2} y^{2}\left(d_{1}+d_{0}\right)+y^{2} z^{2}\left(d_{0}+d_{-1}\right)+x^{2} z^{2}\left(d_{1}+d_{-1}\right)\right)^{1 / 2}
\end{aligned}
$$

Thus it is enough to prove that

$$
\begin{gather*}
\left(d_{1} d_{0}+d_{0} d_{-1}+d_{1} d_{-1}\right)\left(x^{2} y^{2}\left(d_{1}+d_{0}\right)+y^{2} z^{2}\left(d_{0}+d_{-1}\right)+x^{2} z^{2}\left(d_{1}+d_{-1}\right)\right) \tag{3.2}\\
\leqslant x^{2} d_{1}^{2}\left(d_{0}+d_{-1}\right)+y^{2} d_{0}^{2}\left(d_{1}+d_{-1}\right)+z^{2} d_{-1}^{2}\left(d_{1}+d_{0}\right)
\end{gather*}
$$

After multiplication we see that the left-hand side is equal to

$$
\begin{aligned}
x^{2}\left(y^{2}+\right. & \left.z^{2}\right) d_{1}^{2}\left(d_{0}+d_{-1}\right)+y^{2}\left(x^{2}+z^{2}\right) d_{0}^{2}\left(d_{1}+d_{-1}\right) \\
& +z^{2}\left(x^{2}+y^{2}\right) d_{-1}^{2}\left(d_{1}+d_{0}\right)+2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) d_{1} d_{0} d_{-1}
\end{aligned}
$$

Since $x^{2}+y^{2}+z^{2}=1$, we can actually write (3.2) in the following form:

$$
\begin{aligned}
2\left(x^{2} y^{2}+y^{2} z^{2}\right. & \left.+z^{2} x^{2}\right) d_{1} d_{0} d_{-1} \\
& \leqslant x^{4} d_{1}^{2}\left(d_{0}+d_{-1}\right)+y^{4} d_{0}^{2}\left(d_{1}+d_{-1}\right)+z^{4} d_{-1}^{2}\left(d_{1}+d_{0}\right)
\end{aligned}
$$

From the trivial identity $2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)=1-\left(x^{4}+y^{4}+z^{4}\right)$ it follows that

$$
d_{1} d_{0} d_{-1} \leqslant\left(d_{1} d_{0}+d_{0} d_{-1}+d_{-1} d_{1}\right)\left(x^{4} d_{1}+y^{4} d_{0}+z^{4} d_{-1}\right)
$$

which is that same as

$$
\frac{1}{\frac{1}{d_{1}}+\frac{1}{d_{0}}+\frac{1}{d_{-1}}}=\frac{1}{\frac{x^{2}}{x^{2} d_{1}}+\frac{y^{2}}{y^{2} d_{0}}+\frac{z^{2}}{z^{2} d_{-1}}} \leqslant x^{4} d_{1}+y^{4} d_{0}+z^{4} d_{-1}
$$

a weighted form of the harmonic and arithmetic mean inequality [7]. We showed that (3.2) holds, hence (3.1) also follows. This means that there exist $p \in(0,1)$ and real density matrices D_{1}, D_{2} such that $D=p D_{1}+(1-p) D_{2}, \operatorname{Tr} D_{i} A_{1}=$ $\operatorname{Tr} D_{i} A_{2}=0$ and $\operatorname{rank} D_{i}<\operatorname{rank} D$.

Now we can prove our main result.
THEOREM 3.1. Let $D \in M_{n}(\mathbb{C})$ be a density matrix and let $A_{1}, A_{2} \in M_{n}(\mathbb{C})$ be self-adjoint matrices. There exist a probability distribution p_{i} and a family of projections P_{i} such that

$$
D=\sum_{i} p_{i} P_{i} \quad \text { and } \quad \operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\sum_{i} p_{i} \operatorname{Var}_{P_{i}}\left(A_{1}, A_{2}\right)
$$

Proof. Since

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\operatorname{Var}_{D}\left(A_{1}-\lambda_{1} I, A_{2}-\lambda_{2} I\right)
$$

for any $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, we can assume that $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$.
Let us apply induction on the rank of D. We remark that from conjugation by unitaries we can always assume that D is diagonal. If $\operatorname{rank} D=2$ then the existence of the decomposition is proved in Lemma 2.1.

For the general case, let us note that we can always reduce rank D according to Lemma 3.1. Since $\operatorname{Tr} D_{i} A_{1}=\operatorname{Tr} D_{i} A_{2}=0$ also holds, we readily get

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=p \operatorname{Var}_{D_{1}}\left(A_{1}, A_{2}\right)+(1-p) \operatorname{Var}_{D_{2}}\left(A_{1}, A_{2}\right)
$$

where $p \in(0,1)$. Now the induction gives a decomposition for D_{1} and D_{2} and the proof is complete.

We remark here that the existence of the decomposition of the matrix variance is essentially based on the decomposition of the low-dimensional densities. In fact, the Krein-Milman theorem always gives the decomposition into rank-3 or lower rank densities. This is the subject of the next example. The proof is based on a simple geometrical observation.

LEMMA 3.2. Let \mathcal{R} be a nonempty intersection of an $(n-1)$-simplex Δ and two affine hyperplanes of $\mathbb{R}^{n}(n \geqslant 3)$. The extreme points of \mathcal{R} are lying at 2 simplices of Δ.

Proof. If $n=3$, we are ready. Thus let us assume that $n>3$. An extreme point e of \mathcal{R} must be lying on its topological boundary but any boundary point is on a proper face \mathcal{F}_{e} of Δ. Since $\mathcal{F}_{e} \cap \mathcal{R}$ is a face of \mathcal{R}, it follows that e is an extreme point of $\mathcal{F}_{e} \cap \mathcal{R}$ as well. The simplex \mathcal{F}_{e} has lower dimension, hence one can infer by induction that e is lying on a 2 -simplex of Δ.

EXAMPLE 3.1. Let $n \geqslant 3$ and $D=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right) \in M_{n}(\mathbb{C})$ be a density matrix. Let $A_{1}, A_{2} \in M_{n}(\mathbb{C})$ be self-adjoint matrices. Then one can find a probability distribution p_{i} and a family of densities D_{i} such that $\operatorname{rank} D_{i} \leqslant 3$,

$$
D=\sum_{i} p_{i} D_{i} \quad \text { and } \quad \operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\sum_{i} p_{i} \operatorname{Var}_{D_{i}}\left(A_{1}, A_{2}\right)
$$

In fact, again by the equality

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\operatorname{Var}_{D}\left(A_{1}-\lambda_{1} I, A_{2}-\lambda_{2} I\right)
$$

we can assume that $\operatorname{Tr} D A_{1}=\operatorname{Tr} D A_{2}=0$. Let Δ_{n-1} denote the convex hull of the standard basis vectors in \mathbb{R}^{n}, i.e. the standard $(n-1)$-simplex. The points $\left(r_{1}, \ldots, r_{n}\right) \in \Delta_{n-1}$ that satisfy the equalities

$$
\sum_{i} r_{i}\left(A_{1}\right)_{i i}=0 \quad \text { and } \quad \sum_{i} r_{i}\left(A_{2}\right)_{i i}=0
$$

form a nonempty compact convex set \mathcal{R} of \mathbb{R}^{n}. By Lemma 3.2, the extreme points of \mathcal{R}, denoted by $\mathcal{E}(\mathcal{R})$, are lying at 2 -simplices of Δ_{n-1}. However, any element of $\mathcal{E}(\mathcal{R})$ is spanned by at most three standard basis vectors. On the other hand, the Krein-Milman theorem [4] gives

$$
\mathcal{R}=\sum_{e \in \mathcal{E}(\mathcal{R})} p_{e} e, \quad \text { where } \sum_{e \in \mathcal{E}(\mathcal{R})} p_{e}=1 \text { and } p_{e} \geqslant 0 .
$$

Since any point in $\mathcal{E}(\mathcal{R})$ uniquely determines a diagonal operator (state) and $\left(d_{1}, \ldots, d_{n}\right) \in \mathcal{R}$, we conclude that there exist densities D_{i} such that

$$
D=\sum_{i} p_{i} D_{i}
$$

where $\operatorname{rank} D_{i} \leqslant 3$. Moreover, by the orthogonality $\operatorname{Tr} D_{i} A_{1}=\operatorname{Tr} D_{i} A_{2}=0$ we obtain

$$
\operatorname{Var}_{D}\left(A_{1}, A_{2}\right)=\sum_{i} p_{i} \operatorname{Var}_{D_{i}}\left(A_{1}, A_{2}\right)
$$

We note that one can give an alternative proof of Theorem 3.1 relying on the previous example. In fact, any rank-3 density can be decomposed into lower rank ones according to the proof of Lemma 3.1 and Lemma 2.1. Furthermore, a linear estimate readily results from the number of the projections used in Theorem 3.1. Actually, by an elementary geometrical reasoning, the length of the decomposition is $O\left((\operatorname{rank} D)^{3}\right)$.

Acknowledgments. This work was partially supported by the Hungarian Research Grant OTKA K104206.

REFERENCES

[1] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton 2007.
[2] O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Covariance matrices and the separability problem, Phys. Rev. Lett. 99 (2007), 130504.
[3] F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, to appear in Hindustan Book Agency.
[4] P. D. Lax, Functional Analysis, Wiley, 2002.
[5] D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Heidelberg 2008.
[6] D. Petz and G. Tóth, Matrix variances with projections, Acta Sci. Math. (Szeged) 78 (2012), pp. 683-688.
[7] J. M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press, Cambridge 2004.
[8] G. Tóth and D. Petz, Extremal properties of the variance and the quantum Fisher information, Phys. Rev. A 87 (2013), 032324.
[9] A. Uhlmann, Roofs and convexity, Entropy 12 (2010), pp. 1799-1832.
[10] S. Yu, Quantum Fisher information as the convex roof of variance, http://arxiv.org/ abs/1302.5311.

Alfréd Rényi Institute of Mathematics
H-1364 Budapest, POB 127, Hungary
E-mail: leka.zoltan@renyi.mta.hu

Alfréd Rényi Institute of Mathematics H-1364 Budapest, POB 127, Hungary E-mail: petz@math.bme.hu

