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1. INTRODUCTION

In this paper we present an inequality for the norms of Poisson Wick products.
The inequality involves the second quantization operator of a constant times the
identity operator.

The paper is structured as follows. In Section 2 we review a minimal back-
ground about the Charlier polynomials, exponential functions, second quantization
operator, and Poisson Wick product. In Section 3 we prove an inequality for the
norms of Poisson Wick products.

2. BACKGROUND

Let N ∪ {0} be the set of nonnegative integers, and let a be a fixed positive
number. The Poisson probability measure with mean a is the discrete probability
measure defined as

(2.1) Pa(B) =
∑
n∈B

an

n!
e−a

for any subset B of N ∪ {0}. The Poisson probability measure Pa has finite mo-
ments of all orders. Thus for each n  0, the random variable gn : N ∪ {0} → R
defined by

(2.2) gn(x) = xn
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belongs to L2(N ∪ {0}, Pa). Applying the Gram–Schmidt orthogonalization pro-
cedure to the sequence {g0, g1, g2, . . . } ⊂ L2(N ∪ {0}, Pa), we obtain a se-
quence of orthogonal polynomial random variables {C0,a, C1,a, C2,a, . . . } called
the Charlier polynomials. These polynomials are monic, i.e. normalized in such a
way that their leading coefficient is equal to one. For each n  0, the formula for
the n-th Charlier polynomial is (see [6])

(2.3) Cn,a(x) =
n∑

k=0

(
n

k

)
(−1)n−kan−k(x)k

for all x ∈ N ∪ {0}, where

(2.4) (x)k =

{
0 if x < k,

x!/(x− k)! if x  k.

For every n  0, the square of the L2-norm of n-th Charlier polynomial is

E
[
C2
n,a

]
= n!an,

where E denotes the expectation. Since the Charlier polynomials form an or-
thogonal basis of L2(N ∪ {0}, Pa), we conclude that for every random variable
f ∈ L2(N ∪ {0}, Pa) there is a unique sequence {bn}n0 of complex numbers
such that

(2.5) f =
∞∑
n=0

bnCn,a,

where this equality is understood in the L2 sense. Moreover, the square of the L2-
norm of f is

∥f∥22 =
∞∑
n=0

n!an|bn|2 <∞.

For every complex number t, we define the exponential function:

(2.6) Et(x) :=
∞∑
n=0

tn

n!an
Cn,a(x).

The exponential functions have been defined so far in terms of the Charlier poly-
nomials, but we can easily compute their pointwise formula in the following way.
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For all complex t and nonnegative integer x, we have

Et(x) =
∞∑
n=0

tn

n!an
Cn,a(x)(2.7)

=
∞∑
n=0

tn

n!an

n∑
k=0

(
n

k

)
(−1)n−kan−k(x)k

=
∞∑
k=0

tk

k!ak
(x)k

∞∑
n=k

(−1)n−k tn−k

(n− k)!

=
x∑

k=0

tk

k!ak
· x!

(x− k)!
· e−t

=
x∑

k=0

(
x

k

)
tk

ak
e−t

=

(
1 +

t

a

)x

e−t.

It is not hard to see that, for all t ∈ C and 1 ¬ p < ∞, the exponential function
Et belongs to Lp(N ∪ {0}, Pa). Moreover, the vector space spanned by {Et}t∈C is
dense in Lp(N ∪ {0}, Pa) for all 1 ¬ p <∞.

We define the Wick product of two Charlier polynomials as

(2.8) Cm,a ⋄ Cn,a := Cm+n,a

for all nonnegative integers m and n.
We can extend the definition of the Wick product in a bilinear way, defining for

every polynomial function f =
∑

m¬M amCm,a and g =
∑

n¬N bnCn,a, where
{am}m¬M and {bn}n¬N are finite sequences of complex numbers,

(2.9) f ⋄ g :=
M+N∑
k=0

( ∑
m+n=k

ambn
)
Ck,a.

It is not hard to see that if we consider the subspace of L2(N ∪ {0}, Pa) deter-
mined as

V :=
{
f =

∞∑
m=0

amCm,a | ∀m  0, am ∈ C,
∞∑

m=0

m!2mam|am|2 <∞
}
,

then for all f =
∑∞

m=0 amCm,a ∈ V and g =
∑∞

m=0 bmCm,a ∈ V , where am and
bm are complex numbers for all m  0, we can define the Wick product of f and
g as follows:

(2.10) f ⋄ g :=
∞∑
k=0

( ∑
m+n=k

ambn
)
Ck,a.
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The series on the right-hand side of (2.10) is convergent in L2(N ∪ {0}, Pa) for f
and g in V , and thus f ⋄ g ∈ L2(N ∪ {0}, Pa). In fact, we consider the formula
(2.10) to be the definition of the Wick product not only for two functions from the
space V , but also for any two functions f and g from L2(N ∪ {0}, Pa) for which
the series on the right-hand side of (2.10) converges in the L2 sense.

It is easy to see that every exponential function belongs to the space V , and
for all complex numbers s and t, we have the following formula (see [3]):

(2.11) Es ⋄ Et = Es+t.

The idea behind the formula (2.11) is the same as the idea behind the formula,
from calculus, eλx · eλy = eλ(x+y) for any x, y, and λ complex numbers. In calcu-
lus, we can prove that eλx · eλy = eλ(x+y) using the Taylor series formula for the
exponential function, computing the product of two series, and using the Newton
binomial formula. To understand this, one must compare the following two similar
formulas:

Et =
∞∑
n=0

(t/a)n

n!
C⋄n1,a

and

eλx =
∞∑
n=0

λn

n!
xn.

For every complex number c, we define the second quantization operator
Γ(cI), of c times the identity operator I , first for each Charlier polynomial Cn,a

with n  0, as follows:

(2.12) Γ(cI)Cn,a := cnCn,a.

As before, we extend this definition in a linear way, defining formally for every
f =

∑
n0 bnCn,a in L2(N ∪ {0}, Pa), where {bn}n0 is a sequence of complex

numbers, Γ(cI)f as

(2.13) Γ(cI)f :=
∞∑
n=0

bnc
nCn,a.

Again, in order for Γ(cI)f to be in L2(N ∪ {0}, Pa), the last series must be con-
vergent in the L2 sense. This is true for every exponential function, and we have

(2.14) Γ(cI)Et = Ect

for every c and t in C.
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3. A POINTWISE FORMULA AND INEQUALITY
FOR THE NORMS OF POISSON WICK PRODUCTS

We have seen in the previous section that the extension of the definition of
the Wick product, from two Charlier polynomials to two L2-functions, raises some
questions about the convergence of the series used in the definition. In this section
we present an inequality that ensures that the Wick product of two Lp random
variables belongs to the space Lp(N ∪ {0}, Pa) for 1 ¬ p ¬ ∞.

THEOREM 3.1. Let Pa be the Poisson probability measure with mean a. Let
α and β be positive numbers such that

α+ β = 1.

Let f and g be functions in L1(N ∪ {0}, Pa). Then, for all n ∈ N ∪ {0}, we have

(3.1) {[Γ(αI)f ] ⋄ [Γ(βI)g]} (n)

=
∞∑
k=0

(aβ)k

k!
e−aβ

∞∑
l=0

(aα)l

l!
e−aα

∑
p+q=n

(
n

p

)
αpβqf(p+ k)g(q + l).

This implies that, if f  0 and g  0, then

(3.2) [Γ(αI)f ] ⋄ [Γ(βI)g]  0.

Moreover, if f and g are in Lr(N ∪ {0}, Pa) for some 1 ¬ r ¬ ∞, then

(3.3) ∥Γ(αI)f ⋄ Γ(βI)g∥r ¬ ∥f∥r · ∥g∥r.

P r o o f. It is enough to check (3.1) for f = Es and g = Et, where s and t are
arbitrary complex numbers. Indeed, for a fixed n  0, we have

∞∑
k=0

(aβ)k

k!
e−aβ

∞∑
l=0

(aα)l

l!
e−aα

∑
p+q=n

(
n

p

)
αpβqEs(p+ k)Et(q + l)

=
∞∑
k=0

(aβ)k

k!
e−aβ

∞∑
l=0

(aα)l

l!
e−aα

×
∑

p+q=n

(
n

p

)
αpβq

(
1 +

s

a

)p+k (
1 +

t

a

)q+l

e−s−t

= e−s−t
∞∑
k=0

(aβ)k

k!

(
1 +

s

a

)k

e−aβ
∞∑
l=0

(aα)l

l!

(
1 +

t

a

)l

e−aα

×
∑

p+q=n

(
n

p

)[
α

(
1 +

s

a

)]p [
β

(
1 +

t

a

)]q
= e−s−te−a(α+β)

∞∑
k=0

[aβ(1 + s/a)]k

k!

∞∑
l=0

[aα(1 + t/a)]l

l!

×
[
α

(
1 +

s

a

)
+ β

(
1 +

t

a

)]n
.
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We use now the fact that α+ β = 1, and obtain

∞∑
k=0

(aβ)k

k!
e−aβ

∞∑
l=0

(aα)l

l!
e−aα

∑
p+q=n

(
n

p

)
αpβqEs(p+ k)Et(q + l)

= e−s−te−aeaβ(1+s/a)eaα(1+t/a)

[
(α+ β) +

αs+ βt

a

]n
=

(
1 +

αs+ βt

a

)n

e−s(1−β)e−t(1−α)

=

(
1 +

αs+ βt

a

)n

e−sαe−tβ

=

(
1 +

αs+ βt

a

)n

e−(αs+βt)

= Eαs+βt(n)

= [Eαs ⋄ Eβt] (n)
= {[Γ(αI)Es] ⋄ [Γ(βI)Et]} (n).

Since
∞∑
k=0

(aβ)k

k!
e−aβ = 1,

∞∑
l=0

(aα)l

l!
e−aα = 1,

and ∑
p+q=n

(
n

p

)
αpβq = 1

for any n  0, by using three times Jensen’s inequality for the convex function
x 7→ |x|r, we have, for all r  1,

|{Γ(αI)f ⋄ Γ(βI)g} (n)|r ¬
∞∑
k=0

(aβ)k

k!
e−aβ

∞∑
l=0

(aα)l

l!
e−aα

×
∑

p+q=n

(
n

p

)
αpβq|f(p+ k)|r|g(q + l)|r.

Multiplying both sides of this inequality by the positive weight (an/n!)e−a and
summing up from n = 0 to∞, we obtain

∥Γ(αI)f ⋄ Γ(βI)g∥rr ¬
∞∑
n=0

∞∑
k=0

(aβ)k

k!
e−aβ

∞∑
l=0

(aα)l

l!
e−aα

×
∑

p+q=n

(
n

p

)
αpβq|f(p+ k)|r|g(q + l)|r a

n

n!
e−a.
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Observe first that the n! from
(
n
p

)
cancels with the n! from an/n!. If we make

the changes of variables u := p + k and v := q + l, and rearrange the order of
summation (Tonelli’s theorem), we obtain

∥Γ(αI)f ⋄ Γ(βI)g∥rr ¬
∞∑
u=0

au

u!
e−a|f(u)|r

∞∑
v=0

av

v!
e−a|g(v)|r

×
u∑

k=0

u!

k!(u− k)!
βkαu−k

v∑
l=0

v!

l!(v − l)!
αlβv−l

=
∞∑
u=0

au

u!
e−a|f(u)|r

∞∑
v=0

av

v!
e−a|g(v)|r

× (β + α)u(α+ β)v

=
∞∑
u=0

au

u!
e−a|f(u)|r

∞∑
v=0

av

v!
e−a|g(v)|r · 1u · 1v

= ∥f∥rr · ∥g∥rr. �
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